Performance Boundaries in Nb$_3$Sn Superconductors

Arno Godeke
Berkeley, CA
May 1, 2006
Acknowledgments

Bennie ten Haken
Herman ten Kate
Sasha Golubov

David Larbalestier
Peter Lee
Alex Gurevich
Matt Jewell
Chad Fischer

...
Outline

- Critical current density and critical current

- Composition variation in Nb₃Sn wires

- Composition and $H_{c2}(T)$

- Pinning capacity, grain boundary pinning, grain size

- Composition and J_c

- Strain dependence ($time allowing$)

- Present status and future prospects
Wire J_c progress versus time

![Graph showing J_c non-Cu [kA/mm2] versus year. The graph plots data points for years 1992 to 2004, showing an increasing trend with $\mu_0H = 12T$ and $T = 4.2K$.]

Parrell, ACE 2004
What determines J_c?

Pinning capacity

- Average grain size

Effective $H - T$ phase boundary

- Composition
- Strain state

$J_c \rightarrow I_c$?
What determines I_c?

- Powder-in-tube wire (SMI)

- 50% Non – Cu fraction

- Only 20% of the wire carries J_c
Outline

- Critical current density and critical current
- Composition variation in Nb$_3$Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects
Composition: $\text{Nb}_3\text{Sn} \rightarrow \text{Nb}_{1-\beta} \beta \text{Sn}_\beta$

- Binary phase diagram \rightarrow 18 to 25 at.% Sn \rightarrow ‘A15’

$\text{Charlesworth, JMS 1970, Flükiger, ACE 1982}$
Nb$_3$Sn diffusion reaction in wires

- Reaction at 675°C vs time in Powder-in-Tube wire (SMI)

![Image showing diffusion reaction process and products](image_url)
Composition variation in wires

- Composition analysis on SMI Powder-in-Tube wire

- \(0.3 \text{ at.\% Sn/}\mu\text{m}\)
- \(J_c(12\text{T},4.2) = 2250 \text{ A/mm}^2\)
Composition variation in wires

- Bronze process wire
 Univ. of Geneva

- 4 at.% Sn/μm
- $J_c(12T, 4.2) = 720$ A/mm2

Abächerli, TAS 2005
Composition variation in wires

- OST Internal-Tin wire
- Flat Sn content at 24 at.%
- $J_c(12\text{T}, 4.2) = 3000 \text{ A/mm}^2$

Uglietti, MT19 2005
Increasing J_c with increasing Sn

<table>
<thead>
<tr>
<th>Process</th>
<th>Sn Concentration</th>
<th>Gradient</th>
<th>$J_c(12T,4.2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geneva Bronze Process</td>
<td>25 at.% Sn @ source</td>
<td>4 at.% Sn/µm gradient</td>
<td>$J_c(12T,4.2) = 720$ A/mm²</td>
</tr>
<tr>
<td>SMI Powder-In-Tube</td>
<td>25 at.% Sn @ source</td>
<td>0.3 at.% Sn/µm gradient</td>
<td>$J_c(12T,4.2) = 2250$ A/mm²</td>
</tr>
<tr>
<td>OST Internal Tin</td>
<td>24 at.% Sn no gradient</td>
<td></td>
<td>$J_c(12T,4.2) = 3000$ A/mm²</td>
</tr>
</tbody>
</table>

Sn richer
Higher J_c
Why?
Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects
What happens with changing Sn content?

- **Pure Nb**
 - *bcc* Nb spacing 0.286 nm
 - $T_c = 9.2$ K

- **Nb$_3$Sn → A15 unit cell**
 - *bcc* Sn, orthogonal Nb chains
 - Nb spacing 0.265 nm
 - High peaks in d-band DOS
 - Increased $T_c = 18$ K

- **Off-stoichiometry**
 - Sn vacancies unstable
 - Excess Nb on Sn sites
 - Additional d-band
 - Less electrons for chains
 - Rounded off DOS peaks
 - Reduced T_c

Dew-Hughes, Cryogenics 1975
Nb chain continuity, $N(E_F)$, λ_{ep}, T_c, H_{c2}

In general

- Sn deficiency
- Tetragonal distortion
 - 24.5 – 25 at.% Sn
- Strain
- Alloying (Ti, Ta, …)
- Dislocations
- Anti-site disorder

All affect Nb chain integrity (‘Long Range Order’)

- And thus $N(E_F)$ and λ_{ep}
- And thus T_c and H_{c2}
T_c and H_{c2} versus Sn content

Single crystal, bulk and thin film samples

$$T_c(\beta) = \frac{-12.3}{1 + \exp\left(\frac{\beta - 0.22}{0.009}\right)} + 18.3$$

$$\mu_0 H_{c2}(\beta) = -10^{-30} \exp\left(\frac{\beta}{0.00348}\right) + 577 \beta - 107$$
\(H_{c2}(T) \) versus Sn content

- Jewell, ACE 2004, bulk samples

- Sn richer A15 has higher \(H_{c2}(T) \) (until \(\sim 24.5 \) at.% Sn)
$H_{c2}(T)$ in wires

- $H_{c2}(T)$ from small current, resistive transitions

Graphs showing the upper critical field H_{c2} as a function of temperature for different materials:

- SMI Binary PIT
 - 10-90%: $H_{c2}(T_{c}) = 0.8T$
 - $T_{c}(0) = 26.6-27.4T$

- SMI Reinforced ternary PIT
 - 10-90%: $H_{c2}(T_{c}) = 0.9T$
 - $T_{c}(0) = 28.2-29.1T$

- Funakawa Ternary bronze
 - 10-90%: $H_{c2}(T_{c}) = 0.9T$
 - $T_{c}(0) = 28.0-28.9T$

- UW-ASC Binary bulk
 - 10-90%: $H_{c2}(T_{c}) = 1.8T$
 - $T_{c}(0) = 26.5-28.3T$

Inset diagram showing the resistivity $\rho(H)$ with 99% and 1% normal state at μ_0H.
Normalized $H_{c2}(T)$ all available results

- **Shape $H_{c2}(T)$ independent of**
 - Composition
 - Morphology
 - Strain state
 - Applied critical state criterion

\[\ln \left(\frac{T}{T_c(0)} \right) = \psi \left(\frac{1}{2} \right) - \psi \left(\frac{1}{2} + \frac{hD\mu_0H_{c2}(T)}{2\phi_0k_BT} \right) \]

Approximation:
\[\frac{H_{c2}(t)}{H_{c2}(0)} \approx 1 - t^{1.52}, \quad t = \frac{T}{T_c(0)} \]
Highest $H_{c2}(T)$ in wires

$\mu_0 H_{c2}(0) = 30 \, \text{T}, \ T_c(0) = 18 \, \text{K}$ is upper limit
Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects
Pinning: Why does Nb$_3$Sn need it?

- Nb$_3$Sn slab in $H_{c1} < H < H_{c2}$
- Field quanta $\phi_0 = h / 2e$ (flux-lines) penetrate slab

Transport current ($\nabla \times B = \mu_0 J$) causes gradient B_x

Flux-lines repel → move ($\nabla \times E = -dB/dt$) → E_y → Loss
 - Need to be ‘pinned’ at ‘pinning centers’ by ‘pinning force’ F_p

Optimal pinning at 1 pinning center / flux-line
What determines pinning capacity?

Pinning centers

- Positions with minima in SC wave function
 - Normal regions
 - Grain boundaries
 - Lattice imperfections
 - …

- Nb_3Sn
 - Grain boundaries
 - Main pinning centers
 - Grain size determines F_{Pmax}
What determines grain size?

- Presence of grain nucleation points
- Reaction time and temperature
What is an optimal grain size?

Ideal: One pinning center per flux-line → $a_\Delta \approx d_{av}$

- Flux-line spacing → field dependent
 - E.g. at 12 T $a_\Delta = (4/3)^{1/4}(\phi_0/\mu_0 H)^{1/2} = 14$ nm
 - Grain size in Nb₃Sn wires → 100 – 200 nm
 - Order of magnitude from optimal

- For any practical field $a_\Delta < d_{av}$
 - Collective pinning (‘shearing’ of FLL)
 - $a_\Delta \rightarrow d_{av}$ only for $\mu_0 H << 1$ T

- NbTi in contrast
 - Nano-scale distribution of α-Ti precipitates
 - $a_\Delta \approx \alpha$-Ti distribution for application fields
 - NbTi is fully optimized
What does $a_\Delta \ll d_{av}$ mean in practice?

- **De-pinning → Synchronous shearing of FLL**
- $F_{P_{\text{max}}}$ at $H/H_{c2} = 0.2$
 - About 6 T for Nb$_3$Sn
 - Far below application fields
- **Grain refinement / APC**
 - $F_{P_{\text{max}}}$ to higher field
 - $F_{P_{\text{max}}} \rightarrow H/H_{c2} > 0.4$ shown by Cooley, ACE 2002
 - Higher fields accessible with Nb$_3$Sn
- **Much room for improvement!**

- **Example: Bronze processed ITER wire (Furukawa)**

![Graph showing reduced pinning force vs. reduced magnetic field](image)
Alternative presentation $a_\Delta << d_{av}$

- Flux shear model
 - Kramer JAP 1973

\[
F_p(H) = 12.8 \frac{(\mu_0 H_{c2})^{2.5}}{\kappa_1^2} \frac{h^{0.5} (1-h)^2}{(1-a_\Delta(H)/d_{av})^2}, \quad h = \frac{H}{H_{c2}} \quad \text{[GN/m}^3]\]

\[
J_c^{0.5} (\mu_0 H)^{0.25} = \frac{1.1 \times 10^5}{\kappa_1} \frac{\mu_0 (H_{c2} - H)}{(1-a_\Delta(H)/d_{av})}
\]

- $a_\Delta << d_{av}$: Kramer plot

\[
f_K(H) \equiv J_c^{0.5} (\mu_0 H)^{0.25} \approx \frac{1.1 \times 10^5}{\kappa_1} \frac{\mu_0 (H_{c2} - H)}{\kappa_1} \mu_0 (H_{c2} - H) \quad \therefore \quad f_K(H) \propto H
\]

- Linear in H
‘Kramer’ plot

Plot of $f_K(H)$ at various temperatures
Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects
Are Kramer plots linear?

\[F_p(h) = 12.8 \left(\frac{\mu_0 H_{c2}}{\kappa_1^2} \right)^{2.5} h^{0.5} (1-h)^2 \quad a_\Delta \ll d_{av} \]

\[F_p(h) \approx F_{pmax} h^p (1-h)^q \quad p = 0.5, \quad q = 2 \]

- **Linearity from** \(h \approx 0.03 \) to 0.8
 - Confirmed by measurements
- \(a_\Delta \approx d_{av} \) only below \(h \approx 0.03 \)
- Different pinning mechanism?
 - only below \(h \approx 0.03 \)

- **Non-linearity below** \(h \approx 0.03 \)
 - Different pinning mechanism
- **Non-linearity above** \(h \approx 0.8 \)
 - Inhomogeneity artifacts
 - Averaging over \(H_{c2} \) distribution
Effective $H_{c2}(T)^*$ for J_c

J_c scales with ‘some’ average $H_{c2}(T)^*$

- J_c gain if all A15 is stoichiometric?

$J_c(12T,4.2K)$
- From 2250 A/mm² to 2900 A/mm²
Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and \(H_{c2}(T) \)
- Pinning capacity, grain boundary pinning, grain size
- Composition and \(J_c \)
- Strain dependence
- Present status and future prospects
Strain sensitivity of $H_{c2}(T)$

- Longitudinal strain effects on effective $H_{c2}(T)^*$

Strain and composition have similar effects
- Need for a separation of parameters
Strain sensitivity of $J_c(H, T)$

- $J_c(10 \text{T}, T, \varepsilon_{\text{axial}})$
- $J_c(H, 8 \text{K}, \varepsilon_{\text{axial}})$

Why is strain sensitivity increased at higher H and T?
Strain sensitivity versus composition

At higher H and T

- Low Sn A15 sections “die out”
 - Benefit PIT and IT vs Bronze:
 - Larger volume fraction high Sn
 - High Sn sections determine SC properties
- Increased strain sensitivity
 - Is Sn rich A15 more strain sensitive than Sn poor A15?

Does wire optimization through Sn enrichment cause higher strain sensitivity?
Strain sensitivity versus LRO

- $S \rightarrow$ Bragg-Williams order parameter

- Higher LRO (\wedge more Sn) \rightarrow larger strain sensitivity

Flükiger, ACE 1984
Strain in ternary and binary wires

- Alloyed → more disorder → reduced strain sensitivity?
Outline

- Critical current density and critical current
- Composition variation in Nb$_3$Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects
Prospects for critical current density

Simulations on SMI-PIT Nb(Ta)\textsubscript{3}Sn assuming all have same pinning

- **Pinning?**
 - SMI-PIT grains ~ 140 nm
 - OST-IT grains ~ 170 nm
 - 12 T $\rightarrow a_\Delta = 14$ nm
- **Large gains possible**

- 5000 A/mm2 (+65%) physical limit with present wire designs?
 - Unless pinning is improved
- 4000 A/mm2 realistic optimization goal?
Summary

Wire optimizations past decade

- Sn enrichment
- A15 fraction in non-Cu optimization
- Physical limit 5 kA/mm², realistic limit 4 kA/mm²

Grain refinement / APC

- The next big step?
- Grain size one order above optimal
- Grain 10 – 20 nm desired → nano technology

Strain

- Strain and composition parameter separation needed
- Sn enrichment = more strain sensitivity?
- Much work to be done (3D, theory, bulk, film, …)
More information

Available on request → agodeke@lbl.gov
Optional theory section
\[N(E_F) \text{ and } \lambda_{ep} \rightarrow T_c \text{ and } H_{c2} \]

- **Weak coupling (BCS based)**

 \[T_c(0) \approx \frac{2e^{\gamma_E}}{k_B} \hbar \omega_c \exp \left[-\frac{1}{V_0 N(E_F)} \right] \quad \therefore \quad T_c(0) \approx 1.134 \Theta_D \exp \left[-\frac{1}{\lambda_{ep}} \right] \]

 \[\mu_0 H_{c2}(0) \approx k_B e N(E_F) \rho_n T_c(0) = \frac{3e}{\pi^2 k_B} \gamma \rho_n T_c(0) \]

- **Interaction strength independent (Eliashberg based)**

 \[\lambda_{ep} = 2 \int \frac{\alpha^2(\omega)F(\omega)}{\omega} d\omega \quad \lambda_{eff} = \frac{\left(\lambda_{ep} - \mu^* \right)}{\left(1 + 2\mu^* + 1.5\lambda_{ep}\mu^* e^{-0.28\lambda_{ep}} \right)} \]

 \[T_c = \frac{0.25 \langle \omega^2 \rangle^{\frac{1}{2}}}{\left(e^{2/\lambda_{eff}} - 1 \right)^{\frac{1}{2}}} \quad \mu_0 H_{c2} = \ldots \]
Is Nb₃Sn weak or strong coupling?

- Moore, PRB 1979, thin film samples

Weak coupling below 23 – 24 at.% Sn
Strong coupling approaching stoichiometry
Applicable theory

\[N(E_F) \text{ and } \lambda_{ep} \rightarrow T_c \text{ and } H_{c2} \]

- Wires \(\rightarrow 18 \text{ – } 25 \text{ at.\% Sn, polycrystalline} \)
- Interaction strength independent theory
- Not done for entire composition range
- \(N(E_F) \text{ and } \lambda_{ep} \rightarrow T_c \text{ and } H_{c2} \) remains empirical

Promising recent work

- Eliashberg-based description of \(T_c(\varepsilon) \text{ and } H_{c2}(\varepsilon) \)
 - Markiewicz, Cryogenics 2004
 - Oh, JAP 2006