TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEEL

PDF Version Also Available for Download.

Description

The fracture toughness properties of Type 21-6-9 stainless steel were measured for forgings in the unexposed, hydrogen-exposed, and tritium-exposed-and-aged conditions. Fracture toughness samples were cut from conventionally-forged and high-energy-rate-forged forward-extruded cylinders and mechanically tested at room temperature using ASTM fracture-toughness testing procedures. Some of the samples were exposed to either hydrogen or tritium gas (340 MPa, 623 K) prior to testing. Tritium-exposed samples were aged for up to seven years and tested periodically in order to measure the effect on fracture toughness of {sup 3}He from radioactive tritium decay. The results show that hydrogen-exposed and tritium-exposed samples had lower fracture- ... continued below

Creation Information

Morgan, M April 14, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The fracture toughness properties of Type 21-6-9 stainless steel were measured for forgings in the unexposed, hydrogen-exposed, and tritium-exposed-and-aged conditions. Fracture toughness samples were cut from conventionally-forged and high-energy-rate-forged forward-extruded cylinders and mechanically tested at room temperature using ASTM fracture-toughness testing procedures. Some of the samples were exposed to either hydrogen or tritium gas (340 MPa, 623 K) prior to testing. Tritium-exposed samples were aged for up to seven years and tested periodically in order to measure the effect on fracture toughness of {sup 3}He from radioactive tritium decay. The results show that hydrogen-exposed and tritium-exposed samples had lower fracture- toughness values than unexposed samples and that fracture toughness decreased with increasing decay {sup 3}He content. Forged steels were more resistant to the embrittling effects of tritium and decay {sup 3}He than annealed steels, although their fracture-toughness properties depended on the degree of sensitization that occurred during processing. The fracture process was dominated by microvoid nucleation, growth and coalescence; however, the size and spacing of microvoids on the fracture surfaces were affected by hydrogen and tritium with the lowest-toughness samples having the smallest microvoids and finest spacing.

Notes

available

Source

  • Materials Innovations in an Emerging Hydrogen Economy

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-STI-2007-00571
  • Grant Number: DE-AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 928070
  • Archival Resource Key: ark:/67531/metadc902376

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 14, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 12, 2016, 1:40 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Morgan, M. TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEEL, article, April 14, 2008; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc902376/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.