Friction Anisotropy: A unique and intrinsic property of decagonal quasicrystals

PDF Version Also Available for Download.

Description

We show that friction anisotropy is an intrinsic property of the atomic structure of Al-Ni-Co decagonal quasicrystals and not only of clean and well-ordered surfaces that can be prepared in vacuum [J.Y. Park et al., Science (2005)]. Friction anisotropy is manifested both in nanometer size contacts obtained with sharp atomic force microscope (AFM) tips as well as in macroscopic contacts produced in pin-on-disc tribometers. We show that the friction anisotropy, which is not observed when an amorphous oxide film covers the surface, is recovered when the film is removed due to wear. Equally important is the loss of the friction ... continued below

Creation Information

Mulleregan, Alice; Park, Jeong Young; Salmeron, Miquel; Ogetree, D.F.; Jenks, C.J.; Thiel, P.A. et al. June 25, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We show that friction anisotropy is an intrinsic property of the atomic structure of Al-Ni-Co decagonal quasicrystals and not only of clean and well-ordered surfaces that can be prepared in vacuum [J.Y. Park et al., Science (2005)]. Friction anisotropy is manifested both in nanometer size contacts obtained with sharp atomic force microscope (AFM) tips as well as in macroscopic contacts produced in pin-on-disc tribometers. We show that the friction anisotropy, which is not observed when an amorphous oxide film covers the surface, is recovered when the film is removed due to wear. Equally important is the loss of the friction anisotropy when the quasicrystalline order is destroyed due to cumulative wear. These results reveal the intimate connection between the mechanical properties of these materials and their peculiar atomic structure.

Subjects

Keywords

STI Subject Categories

Source

  • Journal Name: Journal of Chemical Physics; Journal Volume: 128

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-848E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 936525
  • Archival Resource Key: ark:/67531/metadc902347

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 25, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 2, 2017, 5:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 14

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mulleregan, Alice; Park, Jeong Young; Salmeron, Miquel; Ogetree, D.F.; Jenks, C.J.; Thiel, P.A. et al. Friction Anisotropy: A unique and intrinsic property of decagonal quasicrystals, article, June 25, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc902347/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.