A general methodology and applications for conduction-like flow-channel design.

PDF Version Also Available for Download.

Description

A novel design methodology is developed for creating conduction devices in which fields are piecewise uniform. This methodology allows the normally analytically intractable problem of Lagrangian transport to be solved using algebraic and trigonometric equations. Low-dispersion turns, manifolds, and expansions are developed. In this methodology, regions of piece-wise constant specific permeability (permeability per unit width) border each other with straight, generally tilted interfaces. The fields within each region are made uniform by satisfying a simple compatibility relation between the tilt angle and ratio of specific permeability of adjacent regions. This methodology has particular promise in the rational design of quasi-planar ... continued below

Physical Description

120 p.

Creation Information

Cummings, Eric B. & Fiechtner, Gregory J. February 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A novel design methodology is developed for creating conduction devices in which fields are piecewise uniform. This methodology allows the normally analytically intractable problem of Lagrangian transport to be solved using algebraic and trigonometric equations. Low-dispersion turns, manifolds, and expansions are developed. In this methodology, regions of piece-wise constant specific permeability (permeability per unit width) border each other with straight, generally tilted interfaces. The fields within each region are made uniform by satisfying a simple compatibility relation between the tilt angle and ratio of specific permeability of adjacent regions. This methodology has particular promise in the rational design of quasi-planar devices, in which the specific permeability is proportional to the depth of the channel. For such devices, the methodology can be implemented by connecting channel facets having two or more depths, fabricated, e.g., using a simple two-etch process.

Physical Description

120 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2004-8032
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/921605 | External Link
  • Office of Scientific & Technical Information Report Number: 921605
  • Archival Resource Key: ark:/67531/metadc902159

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 2004

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 28, 2016, 6:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cummings, Eric B. & Fiechtner, Gregory J. A general methodology and applications for conduction-like flow-channel design., report, February 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc902159/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.