
SANDIA REPORT
SAND2004-6440
Unlimited Release
Printed February 2005

LDRD Final Report on Massively-Parallel
Linear Programming: the parPCx System

Erik G. Boman, Sandia National Laboratories
Ojas Parekh, Emory University
Cynthia A. Phillips, Sandia National Laboratories

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

2

SAND2004-6440
Unlimited Release

Printed February 2005

LDRD Final Report on Massively-Parallel
Linear Programming: the parPCx System

Erik G. Boman and Cynthia A. Phillips
Algorithms and Discrete Math Department

Sandia National Laboratories
Mail Stop 1110
P.O. Box 5800

Albuquerque, NM 87185-1110

Ojas Parekh
Emory University

Math/Computer Science Department
400 Downman Drive
Atlanta, GA 30322

Abstract

This report summarizes the research and development performed from October
2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed
Research and Development (LDRD) project “Massively-Parallel Linear Programming”.
We developed a linear programming (LP) solver designed to use a large number of
processors. LP is the optimization of a linear objective function subject to linear con-
straints. Companies and universities have expended huge efforts over decades to pro-
duce fast, stable serial LP solvers. Previous parallel codes run on shared-memory
systems and have little or no distribution of the constraint matrix. We have seen no
reports of general LP solver runs on large numbers of processors.

Our parallel LP code is based on an efficient serial implementation of Mehrotra’s
interior-point predictor-corrector algorithm (PCx). The computational core of this al-
gorithm is the assembly and solution of a sparse linear system. We have substantially
rewritten the PCx code and based it on Trilinos, the parallel linear algebra library de-
veloped at Sandia. Our interior-point method can use either direct or iterative solvers

3

for the linear system. To achieve a good parallel data distribution of the constraint
matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan par-
titioning library.

We describe the design and implementation of our new LP solver called parPCx
and give preliminary computational results. We summarize a number of issues related
to efficient parallel solution of LPs with interior-point methods including data distri-
bution, numerical stability, and solving the core linear system using both direct and
iterative methods. We describe a number of applications of LP specific to US Depart-
ment of Energy mission areas and we summarize our efforts to integrate parPCx (and
parallel LP solvers in general) into Sandia’s massively-parallel integer programming
solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with di-
rections for long-term future algorithmic research and for near-term development that
could improve the performance of parPCx.

4

Acknowledgment

We thank Professor Steven Wright (University of Wisconsin) for his collaboration on this
LDRD project. He provided useful insight on interior-point methods and the PCx code.
We thank Vicki Howle (Sandia) for assistance with preconditioners. Jonathan Eckstein
(Rutgers) designed and implemented the core portion of the PICO ramp up. We thank
Mike Heroux and Robert Hoekstra for help with Trilinos and Epetra, and Ken Stanley
and Padma Raghavan for the DSCPACK/Amesos integration. We also acknowledge Rob
Bisseling, David Day, Bruce Hendrickson, Marzio Sala, and Michael Saunders for helpful
discussions.

5

6

Contents

1 Introduction . 9
2 Linear Programming Applications . 12
3 parPCx Design Issues . 15
4 Iterative Methods and Preconditioning . 17

4.1 Numerical results for preconditioning . 18
4.2 Support preconditioners . 21
4.3 Preconditioning the augmented system . 21
4.4 Parallel preconditioning . 22

5 Data distribution . 23
6 Code Overview . 24

6.1 PCx . 24
6.2 Trilinos . 24
6.3 parPCx . 25
6.4 How to use the code . 27
6.5 PICO modifi cations . 27

7 Parallel Results . 28
8 Future Work . 29
References . 34

7

8

LDRD Final Report on
Massively-Parallel Linear

Programming: the parPCx System

1 Introduction

A linear program (LP) problem is the minimization or maximization of a linear function
of rational variables subject to linear equalities and inequalities. More specifi cally, the
standard form of a linear program is

mincT x subject to Ax = b,x ≥ 0,

where A is an m× n constraint matrix, c and x are vectors of length n and b is a vector
of length m. The problem is theoretically tractable, and large problems (n up to tens of
thousands) can be solved quite effi ciently with current technology. When special structure
is present, problems with millions or even billions of variables have been solved.

Linear programming has been a workhorse optimization technology since the 1940s.
Largely it is used in approximations for more complex nonlinear systems and for sys-
tems with integrality constraints (integer programs). Sandia National Laboratories needs a
massively-parallel linear programming solver for two main applications: fi nding approx-
imate solutions to huge graph problems arising in homeland defense and infrastructure
surety, and fast computation of lower bounds in the PICO (Parallel Integer and Combi-
natorial Optimizer) massively-parallel integer programming code. There are currently no
general parallel linear-programming codes that can scale to the level we require. Current
general parallel linear-programming solvers scale only to tens of processors. We have seen
no results reported for runs on more than sixteen processors.

There are two practical serial strategies for solving linear programs: simplex methods
and interior-point methods. The simplex method begins at a vertex of the polytope of fea-
sible solutions and progressively moves to better vertices till it fi nds an optimal solution
(there will always be a vertex with the optimal solution). There are no known polynomial-
time simplex algorithms, but in practice, simplex solves many linear-programming prob-
lems in time approximately linear in the size of the input. This matches the smoothed
complexity result of Spielman and Teng[36]. The computational core of a sparse simplex
method (designed to keep the working set of data comparable in size to the original number
of nonzeros in constraint matrix A) is diffi cult to parallelize.

Practical interior-point methods generate iterates that solve both the linear program and
its dual (the problem maxbT y subject to AT y+s = c, s≥ 0) simultaneously. Each iterate of
the method satisfi es the inequality constraints strictly; that is, x > 0 and s > 0. (This is the
meaning of the term “interior”.) The iterates approach a point at which the other conditions

9

necessary for optimality—the equality constraints Ax = b and AT y+s = c, and the comple-
mentarity condition x′s = 0—are satisfi ed. Steps generated by these interior-point methods
typically have two components: an “affi ne scaling” component which aims to satisfy the
optimality conditions directly, and a “centering” component that stabilizes the algorithm
and ensures steady progress toward a solution. Mehrotra’s algorithm includes systematic
and well tested heuristics for combining the affi ne scaling and centering directions and for
choosing the step length at each iteration.

The computational core of this algorithm is the solution of a sparse system of linear
equations with the matrix ADAT , where A is the original constraint matrix and D is a pos-
itive diagonal matrix which varies with each iteration. The main technical challenge in
this LDRD project was to determine and implement methods that use thousands of pro-
cessors effectively in the assembly and solution of sparse symmetric matrices of this type.
There are three main research thrusts: fi nding scalable direct methods based on Cholesky
decomposition, fi nding effective iterative methods, and implementing methods where the
constraint matrix is so large it must be distributed. We are not aware of any previous parallel
linear-programming code where the constraint matrix is distributed.

There are a few parallel commercial interior-point (barrier) solvers available today,
most notably CPLEX (from ILOG) and parallel OSL (from IBM). They both parallelize
the linear algebra (Cholesky factorization). CPLEX’s parallel barrier solver only runs on
shared-memory computers and a modest number of processors. Parallel OSL is, as far as
we know, only available for IBM SP computers.

The fi rst parallel interior-point LP solver we are aware of, was developed by Bisseling
et al. [4] at Shell in the early 1990’s. The code was specially written for a network of
transputers (distributed memory). They achieved a remarkable speedup of up to a factor 88
on 400 processors for large sparse LPs from the oil industry.

Since it is diffi cult to achieve good parallel speed up on sparse Cholesky Factorization
on general systems, much research has focused on LPs with special structure, especially
staircase and block-angular structure. Grigoriadis and Khachiyan [22] and Schultz and
Meyer [33] have developed parallel research codes specialized for such systems. OOPS by
Gondzio and Sarkassian [21] is a recent LP and QP solver, not currently available to the
public as source code. OOPS shows good parallel performance on up to 16 processors for
large, sparse problems with block structure, like multicommodity network problems. It has
solved systems with up to tens of millions of variables and constraints.

We developed two parallel interior-point LP codes based on the prexisting serial PCx
interior-point code. These two codes comprise the current parPCx system. The fi rst version
parallelizes only the linear solver within PCx. This is the most compute intensive part of the
code, and thus benefi ts the most from parallel solution. We developed a generic solver class
that can use either direct or iterative solvers. We access direct solvers through the Amesos
package and iterative solvers through the AztecOO package. Both of these packages are
in Trilinos [23], Sandia’s collection of compatible software packages to support parallel
linear algebra. Koka et. al. developed the IPS code during the timeframe of the research we

10

report. IPS also substitutes a parallel core within PCx, but its parallel linear-algebra core
is a fast small-scale (e.g. 4-processor) parallel Cholesky customized for a shared-memory
Intel platform [26].

The second version of our parallel LP code uses the same (parallel) solver class, but
in addition we have made the entire interior-point method fully data parallel using the
Epetra parallel matrix package. In this way, the constraint matrix is stored distributed
across processors, enabling us to solve very large problems that will not fi t on a single
processor. This version of the code is still not fully debugged as of this writing.

A crucial issue in the data distribution is how to distribute the sparse constraint matrix.
We use a hypergraph model of the matrix that accurately represents the communication cost
in matrix-vector multiplication. We use a hypergraph partitioner to fi nd a good distribution.
Note that we cannot directly use graph partitioners in his case because the constraint matrix
is rectangular. One can approximate the functionality by replacing each hyperedge with a
clique and using a graph partitioner, but it doesn’t work as well. Our code allows for both
row and column decomposition of the matrix. Our partitioning technique is also benefi cial
for certain types of preconditioning.

An advantage of using the Amesos library for direct solvers is that it is easy to switch
among several external sparse linear solver packages. One drawback is that we cannot
modify the external solvers, which prevents us from using specialized techniques for small
pivots as is customary for interior-point methods. This leads to numerical diffi culties for
some types of problems. We have found that we can partially avoid these problem using
regularization techniques, which are non-intrusive.

As anticipated, fi nding effective preconditioners for iterative solvers has proved chal-
lenging. The linear systems arising in the predictor-corrector method are extremely ill-
conditioned and standard preconditioning techniques (Jacobi, incomplete Cholesky) did
not work well. We generalized a class of support preconditioners. However, the linear sys-
tems from the LP iterations are also not normally symmetric diagonally dominant, where
support preconditioners work well theoretically and in practice. Therefore, this type of
support tree method also did not work well in general. We have the infrastructure to ex-
periment with new preconditioners and have begun research on new methods, but fi nding
effective new general preconditioning methods will require far more time and effort.

The fi nal major goal of the LDRD project was to incorporate parallel LP methods into
the PICO parallel integer programming solver. As mentioned above, one primary use of
linear programming technology is as a bounding subroutine within integer-programming
solvers. An integer program (IP) is a linear program with additional integrality constraints
on (a subset of) the variables. Addition of integrality constraints makes the problem for-
mally intractable, more challenging in practice, and far more useful. PICO is a parallel
branch-and-bound (branch-and-cut) system for intelligently searching the space of feasible
integer solutions. A key to practical performance of such a system is effi cient identifi cation
and elimination of subregions that provably contain no interesting solution (none that are
better than a feasible solution already in hand). Because a linear program is an effi ciently-

11

solvable relaxation of an integer program, it provides a lower bound for a minimization
problem or an upper bound for a maximization problem. If this bound is worse than a cur-
rent feasible solution, we can eliminate the entire subregion from further consideration. We
have made several modifi cations to PICO to allow the use of parallel LP solvers. However,
PICO can not use parPCx directly until parPCx (or another system) provides a cross-over
operation. This fi nds an optimal vertex solution to the LP from an optimal interior-point
solution. PICO uses vertex solutions to effi ciently resolve closely-related LPs later in the
search.

The remainder of this report is organized as follows: Section 2 describes some applica-
tions of linear programming to the mission of Sandia National Laboratories and describes
how a parallel linear programming solver can improve the performance of parallel inte-
ger programming solvers. Section 3 describes design issues for parallel interior-point LP
solvers and describes major design decisions for parPCx. Section 4 describes iterative
methods for solving the core linear system for an interior point method. In particular it dis-
cusses options for preconditioning the system. Section 5 discusses methods for solving LPs
when the constraint matrix is too large to fi t on a single processor. Section 6 gives details
of the implementation of parPCx and describes high-level modifi cations to PICO to allow
parallel LP bounding. Section 7 lists and discusses some empirical results for parPCx.
Finally Section 8 concludes by listing directions for future research and development.

2 Linear Programming Applications

In this section, we describe some of the linear-programming applications that motivated
this research. These are primarily problems in homeland security. We also discuss how
a parallel linear-programming solver can improve the performance of parallel integer pro-
gramming codes.

The fi rst LP application is the k-hurdle problem, which models a simple defense-
placement problem in networks. Given a network with a start point (or more generally
a “super” start point that simultaneously represents all possible network entry points) and
a target point, we wish to place a minimum number of “hurdles” so that an intruder going
from the start to the target must pass at least k hurdles. The hurdles can represent guards,
cameras, sensors, etc. We proved (prior to this work) that due to special structure, the vari-
ables for this linear program will always be integral at optimality. Therefore, we can solve
this problem with an LP. More complex versions involving costs for the sensors, failure
probabilities, etc, become integer programs. In particular, researchers at Sandia National
Laboratories have formulated a number of integer programs related to sensor placement in
municipal water networks [2, 3, 42]. Large instances can have diffi cult root problems. Thus
an IP code could benefi t from parallelized root solves. Furthermore, we’ve seen instances
for a real water network where the (diffi cult) root linear program returned an integral, and
therefore optimal, solution. Unfortunately, these problems tend to lose the network struc-
ture from the k-hurdle problem that would make preconditioning easier (see Section 4).

12

Another potential application of LP is mitigation planning for biowarfare. Los Alamos
has a unique population microsimulation capability, originally demonstrated in transporta-
tion applications, and more recently used in EPISIM for simulation of disease transmission.
Simulations of population interactions in a large city, such as those proposed for the Na-
tional Infrastructure Simulation and Analysis Center (NISAC), can produce graphs with 10
billion edges. We developed and justifi ed an IP model for allocating limited vaccinations.
Given the size of the graph and the uncertainty of data and modeling, one will likely need
only an approximate solution to this problem. One might, for example, fi nd a problem-
specifi c decomposition of the LP solution to fi nd a feasible approximately-optimal solution
to the IP. The quality of the approximation depends upon the quality of the decomposition
which in turn depends critically upon the quality of the IP formulation (how closely the LP
feasible region approximates the convex hull of the integer points). See [9] for the general
theory of decomposition-based approximation algorithms.

Another more direct application of LP is the computation of strategies to attack or
harden infrastructure networks. The analysis system envisioned by Carlson, Turnquist, and
Nozick [8] uses an LP to compute expected losses from particular types of attacks/attackers
in a network. They model attacks (e.g. success/failure of individual steps) with a hidden
Markov process and model the attacker with a Markov decision process. Standard post-
solution LP sensitivity analysis of the attack-loss computation can indicate good directions
for hardening the network. SCADA (supervisory control and data acquisition) networks
was a primary motivation for that work. SCADA networks control critical US infrastructure
such as the power grid and natural gas distribution. These LPs will become huge for the
analysis of large systems, and they directly retain network structure, making them good
candidates for support preconditioners (see Section 4).

A fi nal application of LP is as a bounding procedure in the solution of integer programs,
and therefore they can contribute to all the varied applications of integer programming. The
optimal solution to a linear program generally has rational (fractional) values. However, in
settings where the variables represent decisions, a fractional value is infeasible. For exam-
ple, in general one cannot build half an airplane (and gain half its utility). As described in
the introduction, an integer program is a linear program augmented with (nonlinear) inte-
grality constraints on some or all of the variables. Integer programs are far more powerful
than linear programs. We can represent decisions with binary variables (zero for no and
one for yes, for example). Thus integer programs can represent many resource allocation
problems or problems related to the study of natural systems. For some problems where
the values of the variables are very large (e.g. deciding how many dollars the US govern-
ment will spend in a year), rounding fractional variables to nearest integers is a reasonable
approximation, provided this rounded value satisfi es the other linear constraints. Generally
integer variables take on a tiny range of values and numerical rounding does not generally
even lead to a feasible solution, never mind a good solution. However, even in this case,
linear programs provide valuable bounds for searching as described in the introduction.

We now describe in more detail how a parallel LP solver can accelerate parallel integer
programming codes. In particular, in this project, we targeted the PICO (Parallel Integer

13

and Combinatorial Optimization) integer programming solver developed by researchers at
Sandia National Laboratories and Rutgers University [16]. The search for an optimal solu-
tion to an IP starts with a single root “subproblem”, namely the original full IP. Whenever
we cannot eliminate a problem by bounding or other methods such as adding constraints
and inferring variable restrictions, we partition the feasible region represented by that sub-
problem into a small number of subproblems, usually two. Though one could burst the
feasible region into a large number of independent pieces from the start, in practice this
leads to performance so poor there can even be slowdown anomalies [15]. Therefore, a
practical search requires careful early evaluation of gradients and other information asso-
ciated with the branching (partitioning). In particular, we must build the search tree by
carefully bounding and partitioning each unresolved subproblem. Parallel LP can be par-
ticularly useful early in the search when there are fewer independent subregions to evaluate
than there are processors. In this case, the excess processors might search for feasible so-
lutions to improve the pruning. However, the search cannot proceed until the bounding is
complete, so allowing more processors to actively speed the bounding could signifi cantly
improve early search performance. Even in settings with modest parallelism, where fewer
processors are “wasted” with a serial bounding process, a parallel LP solver can signifi -
cantly improve bounding at the root. Solving the LP represented by the root problem typi-
cally requires one to two orders of magnitude more time than solving subsequent (related)
LPs.

After the root LP solve, most subsequent solves are closely related to some previous LP
solve. Partitioning usually narrows the bounds on a single variable or related set of vari-
ables. When bounding a single node, we frequently resolve the LP after adding additional
constraints (called cuts). Even in a serial solve, these related LPs cannot all be processed
consecutively (for example, only one of the two regions created in a branch can imme-
diately follow the processing of the parent region). However, if we save some structural
information about that previous solution, it signifi cantly speeds solution of the new related
problem. Specifi cally, the basis of the previous optimal solution specifi es a particular ver-
tex of the feasible polytope. This point is infeasible for the original (primal) problem by
design, but it is feasible for the dual problem. If we start from that point in a dual simplex
LP algorithm, we generally only have to travel through a few vertices to arrive at a new
optimal solution. Unfortunately, interior-point methods do not generally return a basis,
since they do not generally give a vertex solution (this is also an advantage for a single
LP solve, since it gives information on all optimal solutions). There is still no accepted
effi cient method for fi nding an optimal basis from an interior-point solution. Current meth-
ods could take as long as a primal simplex solve in the worst case, though in practice one
can expect signifi cantly better performance. parPCx does not have this crossover operation
implemented at this time.

14

3 parPCx Design Issues

In this section, we discuss the parallel interior-point computations in a little more detail,
discuss design parallelization issues, and explain our design decisions.

Although simplex methods are classic LP solvers and still widely used, interior-point
methods (IPM) have become increasingly popular the last 20 years. They have some nice
theoetical properties. For example, they simultaneously compute both the primal and the
dual solution. This gives a concise, easily-checkable proof of optimality since the objective
values of the primal and dual solution are equal precisely when they are both optimal.
Also, when there are multiple optimal solutions, one can derive structural information about
the full set of optimal solutions from the single solution returned from an IPM. They (or
variants thereof) provably run in time polynomial in the input size. Futhermore, with the
introduction of primal-dual methods [44] they became effi cient and useful in practice. In
fact, in practice, IPM converge in a constant number of iterations (independent of problem
size). Sparse simplex methods are diffi cult to parallelize, while IPM involve a lot of linear
algebra that can be parallelized. Therefore, most parallel LP solvers are based on IPM and
we follow this strategy too.

Recall that an LP in standard form is

mincT x (1)

s.t. Ax = b (2)

x ≥ 0 (3)

where typically the constraint matrix A is large but sparse. IPMs generate a sequence of
points that are strictly interior to the polytope defi ned by the constraints Ax = b and x ≥ 0.
Only in the limit are all constraints satisfi ed (with equality) at an optimal solution. We did
not attempt to develop new IPM algorithms. See [43, 44] for a full description of interior
point algorithms for linear programming.

The most time consuming part (typically 80-90%) of an IPM, is to solve the linear
system for computing the search directions. This involves solving linear systems with
matrices of the form (−D−1 AT

A 0

)

where D−1 > 0 is diagonal. This matrix is symmetric but indefi nite, and is known as the
augmented system. Most people prefer solving the Schur complement system, which gives
the matrix ADAT . This system is known as the normal equations. The matrix for the normal
equations is symmetric positive defi nite and has lower dimension than the matrix for the
augmented system. However the matrix is often more dense, and more ill-conditioned.

Good parallel performance depends critically on effi cient parallel solution of these
large, sparse, symmetric, linear systems of equations (either the normal equations or the
augmented system). Writing a complete LP solver from scratch is a major undertaking, and

15

not necessary. To allow us to concentrate on parallelizing this most critical computation,
we based our parallel solver on the existing serial code PCx [13]. This is a open-source LP
solver that implements an IPM and Mehrotra’s predictor-corrector method in about 5000
lines of C code. PCx is robust and has successfully solved many challenging test problems.

PCx isolates the linear solver in a separate module, so with a modest amount of effort,
one can use any linear solver package. Therefore, we built our parallel version of PCx,
called parPCx, on top of Sandia’s linear algebra framework Trilinos. This provides maxi-
mum flexibility in testing current and future linear systems solvers. Trilinos contains many
parts, called packages. The packages most relevant to this project are:

Epetra: Basic linear algebra classes for matrices and vectors.

EpetraExt: Extensions to Epetra.

Amesos: Common interface to third party sparse direct solvers.

AztecOO: Contains iterative solvers like CG and GMRES and some basic preconditioners.

Ifpack: Incomplete factorization preconditioners.

Although our goal is a single unifi ed parallel code, parPCx currently has two versions.
In the fi rst version we replaced the linear solver in PCx with a parallel solver based on
Trilinos objects, but the rest of the PCx code remains serial. For purposes of discussion
in this report only, we will call this version qPCx1. The second version is designed for
problems too large for a serial solver. Memory is a limiting resource. Therefore, we im-
plemented a fully distributed version, where all the data is distributed among processors.
This required a major rewrite of the PCx code to convert all vectors and matrices to Epetra
objects (classes). We also converted the code from C to C++. We call the second version
PCy1. Section 6 contains a more detailed description of the code.

With this framework, We can use either direct or iterative methods to solve the lin-
ear systems. All previous IPM codes we are aware of use direct solvers, with good rea-
son. As the IPM converges to a solution, the diagonal matrix D becomes increasingly
ill-conditioned and so does the matrix ADAT . Iterative methods converge slowly or not at
all. In theory, the convergence can be accelerated using preconditioners, but IPM systems
are notoriously diffi cult to precondition.

Direct solvers are quite robust even on ill-conditioned problems. For the normal equa-
tions, the system is symmetric positive defi nite so a Cholesky factorization exists. We need

1These seemingly obscure names come from the history of the PCx name itself. PCx stands for Predictor-
Corrector version x. The authors intended to replace the x with a version number. Therefore PCy is the
successor of PCx. Our qPCx code has the same behavior as the initial pPCx code described in Section 6,
but instead of using a single solver, it has a flexible solver interface with access to all solvers that match the
Trilinos framework interface. Therefore, in some sense, qPCx is a successor to pPCx. Since these names are
internal to this document only, we hope the reader will forgive us.

16

to explicitly form B = ADAT , which is usually smaller in dimension but denser than A. The
Cholesky factors are even denser due to fi ll. We remark that PCx handles dense columns in
the matrix A separately, because otherwise B would become completely dense.

When B is nearly singular, the Cholesky factorization process may break down because
diagonal pivots become zero or near-zero [44]. One strategy to address this problem is to
replace very small pivot elements by a very large number, see [44, Ch. 11]. Unfortunately,
this requires a small but intrusive modifi cation to the Cholesky solver code. While PCx
comes with a customized version of the Ng-Peyton Cholesky solver, in parPCx we treat
Cholesky solvers as “black boxes” that cannot be modifi ed. This means that parPCx is
less robust than PCx. An alternative strategy to handle severe ill-conditioning is to apply
regularization. Regularization involves adding positive terms to the diagonal. This shifts
the smallest eigenvalue away from zero, but also changes the solution to the linear system
and thus also the search directions.

A main attraction of iterative solvers is that we don’t need to form B = ADAT . In-
stead we only need to multiply vectors by A and AT . The reduced memory requirement
potentially allows us to solve larger problems. A subtle point is that in order to construct
preconditioners, we may need to explicitly form all or parts of B anyway. For example,
(block) diagonal preconditioners require the (block) diagonal entries. For incomplete fac-
torizations, the obvious approach is to explicitly form B = ADAT , and then compute the
incomplete factor of B. In theory, one could save some memory by only computing a row
(or column) of B at a time (on demand). We did not pursue this option since this reduces the
memory requirement by at most a factor two, and Trilinos (AztecOO, IFPACK) does not
easily allow this strategy. Thus, we explicitly form B when using incomplete factorizations.

We could also apply a hybrid direct-iterative approach. For example, once we have
computed a Cholesky factor for Bk = ADkAT , we can use that factor as a preconditioner
at the next step for Bk+1 = ADk+1AT . This strategy works best when the change in the
diagonal is small. Several researchers have suggested improvements on this scheme [41, 1],
which all involve updating the Cholesky factors. Since our software is based on treating the
linear solver as a “black box” module, we don’t have direct access to the Cholesky factors
and cannot update them.

4 Iterative Methods and Preconditioning

Direct solvers do not scale well for large number of processors, so iterative methods are
essential for large-scale parallelism. Since parallelism is a main motivation, we do not
necessarily need to develop iterative solvers that are faster than direct solvers in serial.
We shall therefore revisit basic iterative methods even if they have been found lacking by
previous authors.

The fi rst decision is what system to solve and which iterative method to use. Since

17

PCx uses the normal equations, we began with this system. The matrix B = ADAT is
symmetric positive defi nite, so conjugate gradients (PCG) is the iterative method of choice.
One disadvantage of this approach is that the condition number of B can be very large.
Solving the corresponding least-squares system using LSQR or CGLS is more numerically
stable [5]. We have not yet pursued this option because currently there is no such iterative
method in Trilinos, but Saunders [31] has recently reported encouraging results with the
primal-dual code PDCO, which employs LSQR.

For preconditioning, there are many options. In preconditioning there is usually a trade-
off: Simple preconditioners are quick and easy to construct, but may not reduce the number
of iterations by much. More elaborate preconditioners take longer (more work) to construct
and to apply, but can signifi cantly reduce the number of iterations. In the fi rst category we
fi nd Jacobi and block Jacobi. As expected, these methods lead to poor convergence or
no convergence, see Section 4.1. The next method to try is incomplete Cholesky (IC).
In its simplest form, the (level-0 or no-fi ll) incomplete Cholesky factor L of B has the
sparsity pattern of the lower triangular part of B and satisfi es LLT ≈ B. When we allow
some fi ll in L, either based on the graph structure or by a numerical threshold, the resulting
preconditioners are of higher quality but require more storage.

4.1 Numerical results for preconditioning

We fi rst tried Jacobi and incomplete Cholesky in AztecOO. At every step in the IPM we
recompute ADAT and form the corresponding preconditioner. The results were quite dis-
couraging. As the LP solver moves towards the solution, the linear systems become more
ill-conditioned so we expect the number of iterations to increase. The preconditioner should
remedy this growth to some extent. Figure 1 lists the sizes of three LPs from the Netlib LP
data set [17]. Figures 2–4 present the results for these problems. For each test problem we
show the major iterations (IPM step) and the value of the barrier parameter µ, which is the
duality measure ∑n

i=1(xisi)/n. As we converge towards a solution, µ goes to zero, and the
linear systems become more ill-conditioned. We solve two linear systems (predictor and
corrector) in each major (IPM) iteration, and we give the CG iteration count for both. We
show results for three different preconditioners, and for completeness we show the value
of µ separately for each method, even though they should be the same. (In fact, the µ val-
ues are almost always identical for the same problem, a clear indication that we generated
identical sequences of iterates.)

The only problem we could successfully solve using PCG was afi ro (2). For this par-
ticular problem, the number of iterations stays almost constant. For all other problems, the
number of CG iterations increases as we move towards the solution. We observe that as
predicted, Jacobi preconditioning requires the most iterations while IC(0) requires more it-
erations than IC(1). For the modszk1 problem (Figure 3), the number of iterations increases
dramatically as the outer iteration progresses. Eventually the CG iteration fails to converge,
indicated by a dash. (We had a limit of 1000 iterations.) Increasing the fi ll (thereby also
the quality) in incomplete factorizations only helps temporarily; eventually the linear sys-

18

Problem Rows Columns
afi ro 27 51
modszk1 687 1620
maros-r7 3136 9408

Figure 1. Selected Netlib LP problems

IPM step Jacobi IC(0) IC(1)
log(µ) iter. log(µ) iter. log(µ) iter.

0 2.98 20+21 2.98 8+9 2.98 5+5
1 2.39 22+22 2.39 9+9 2.39 6+5
2 1.43 20+22 1.43 7+8 1.43 4+4
3 0.79 22+23 0.79 6+6 0.79 3+4
4 -0.04 24+24 -0.04 7+7 -0.04 4+4
5 -0.87 25+25 -0.87 7+7 -0.87 4+4
6 -3.40 26+26 -3.40 8+8 -3.40 4+5
7 -8.86 24+25 -9.21 7+7 -9.16 4+4
8 -10.4 21+24

Figure 2. CG iterations for Netlib problem afiro with Jacobi
and incomplete Cholesky preconditioners. For each interior point
method step we show the value of the barrier parameter µ (a du-
ality measure) and the number of CG iterations for calculating the
predictor and the corrector.

tem becomes almost singular and all the methods we tried will fail. For the maros-r7 test
problem (Figure 4), there is an extremely sharp transition between good convergence and
no convergence.

We used a fi xed residual tolerance of 10−6 in these experiments. One can argue that
less precision is needed initially, far from the solution. We did not experiment with adap-
tive tolerances because we require high accuracy close to the solution and the standard
preconditioners would likely fail under these conditions.

We conclude that diagonal and IC preconditioning are not suitable techniques for IPM.
This is consistent with conventional wisdom. Several variations may improve the precon-
ditioners. Adding diagonal pertubations is often a helpful approach, and has given rise
to modified and relaxed incomplete factorizations. These variations are numerically more
stable because adding a positive term to the diagonal shifts the eigenvalues away from
zero. We did limited experiments with such variations using the IFPACK package, but any
improvement was small. This is a direction that should be investigated further.

19

IPM step Jacobi IC(0) IC(1)
log(µ) iter. log(µ) iter. log(µ) iter.

0 5.85 87+89 5.85 20+19 5.85 7+8
1 5.73 145+154 5.73 34+36 5.73 11+11
2 5.28 136+138 5.28 29+29 5.28 13+13
3 4.91 234+242 4.91 37+38 4.91 25+26
4 4.49 341+364 4.49 57+59 4.49 28+33
5 3.52 413+488 3.52 79+80 3.52 58+58
6 3.19 800+802 3.19 135+141 3.19 89+90
7 – – 3.05 209+210 3.05 131+122
8 – – 2.70 257+266 2.70 162+157
9 – – 2.07 396+395 2.07 246+216

10 – – 1.42 577+634 1.42 555+559
11 – – – – – –

Figure 3. CG iterations for Netlib problem modszk1. See Fig-
ure 2 for further description.

IPM step Jacobi IC(0) IC(1)
log(µ) iter. log(µ) iter. log(µ) iter.

0 4.68 43+41 4.68 3+3 4.68 2+2
1 4.11 41+46 4.11 3+3 4.11 2+2
2 4.05 63+67 4.05 3+3 4.05 2+2
3 3.84 56+56 3.84 3+3 3.84 2+2
4 3.59 58+57 3.59 4+4 3.59 2+2
5 3.02 61+64 3.02 4+4 3.02 2+2
6 2.39 63+72 2.39 4+5 2.39 2+2
7 1.87 109+125 1.87 7+8 1.87 2+3
8 1.45 222+248 1.45 120+126 1.45 3+3
9 0.92 437+497 – – 0.92 4+4

10 0.58 879+ – – – 0.58 10+12
11 – – – – 0.10 19+18
12 – – – – – –

Figure 4. CG iterations for Netlib problem maros-r7. See Fig-
ure 2 for further description.

20

The results above suggest that iterative methods work well in the beginning, even if they
show poor convergence later when the systems become ill-conditioned. One strategy may
therefore be to use iterative solvers as long as the iteration count is below a certain thresh-
old. When iteration count exceeds the threshold, we switch to a direct method. We have
not tested this strategy, but it should be easy to implement within the parPCx framework.

4.2 Support preconditioners

There are some preconditioners that have provably good quality, in the sense that the effec-
tive condition number (after preconditioning) is bounded. However, such preconditioners
rely on certain properties of the matrix and do not work in general. Support precondition-
ers [7, 35] is a promising class. They work for systems that are symmetric and diagonally
dominant. In particular they work for B = ADAT where the constraint matrix A has a
network structure. That is, each column has exactly two nonzeros of equal magnitude,
typically +1 and −1. As implied by their name, network LPs can represent graph or net-
work problems and they do arise in practice. The simplest support preconditioners are
spanning trees. Vaidya [38] fi rst proposed spanning tree preconditioners in unpublished
work [38]. Resende and Veiga [30] fi rst used them in network optimization. Several vari-
ations of spanning tree preconditioners have been proposed for network optimization, see
[25, 29, 27]. CG plus spanning tree preconditioners provably converges with total work
that is a low polynomial in the input size, independent of the condition number [38, 6].
Monteiro et al. [28] recently rediscovered this in the context of interior-point methods. In
recent work, Spielman and Teng [34] show that by using spanning subgraphs (denser than
trees) one can theoretically achieve optimal asymptotic performance, but this has not yet
been tested in practice.

Our strategy for support preconditioners is to build an interface between Trilinos and
TAUCS [37], a solver library developed at Tel-Aviv University that includes several types
of support-graph preconditioners. Vicki Howle (SNL-CA) has started this integration, but
it is not yet available for use in Trilinos or parPCx. A major diffi culty is what to do for
systems that do not have network structure. In these cases, support preconditioners do
not apply directly. Finding extensions to the general symmetric case is an area of active
research.

4.3 Preconditioning the augmented system

Alternatively, we can solve the augmented system. This is

K =
(−D AT

A 0

)
,

where D is diagonal but may be very ill-conditioned. As mentioned earlier, the augmented
system is usually better conditioned than the normal equations (reduced system). Diagonal

21

scaling can eliminate the ill-conditioning in D. Suppose we want to preserve symmetry. If
we choose D1 = D−1/2, then D1DD1 = I. A suitable scaling for K is then diag(D1, I), and
the scaled K is

K̄ =
(−I D1AT

AD1 0

)
.

Unfortunately, this only “moves” the ill-conditioning from the diagonal to the off-diagonal
blocks, so K̄ is often still ill-conditioned. In particular, the reduced system for K̄ is the same
as for K so nothing has been gained! (The Schur complements are AD1D1AT = AD−1AT .)
A possible remedy is to use a scaling of the type diag(D1,D2) and then we obtain

K̂ =
(−I D1AT D2

D2AD1 0

)
,

which for a suitable D2 may be better conditioned. We have not yet investigated this ap-
proach.

We remark that regularization can be effective on the augmented system. Several au-
thors (Vanderbei [39], Saunders and Tomlin [32]) have proposed solving the regularized
system

K̃ =
(−D− γ2I AT

A δ2I

)
,

for some scalars δ,γ. Such regularization may also allow K̃ to be factored into (sparse)
LD̃LT form with a Cholesky solver, even if D̃ is indefi nite. (We sayK̃ is quasi-defi nite.)

Some advanced preconditioning techniques try to identify the active constraints at the
solution, and use this information to construct good preconditioners, see e.g. [19]. Note
that the preconditioners in [19] were primarily developed for nonlinear programming, and
they require a (sparse) factorization, which may be problematic in parallel.

4.4 Parallel preconditioning

The discussions and results in the previous sections were concerned with preconditioning
in serial, not in parallel. Iterative solvers are generally well-suited for parallel processing,
since matrix-vector multiplication is easy to parallelize. However, many preconditioners
have no known parallel versions. Specifi cally, incomplete factorizations are diffi cult to
parallelize, though some progress has been made in recent years [24]. Therefore, such
preconditioners are usually applied within a domain decomposition method. The global
matrix B is partitioned among p processors, and each processor performs a local solve
on its submatrix Bp. This step involves a local preconditioner on each processor. This
functionality is already built into AztecOO and Ifpack. Clearly, the matrix partitioning
will affect the quality of the overall preconditioner. We propose a novel approach based
on hypergraph partitioning. This is the same approach we use for direct solvers, so the
technique is described in detail in Section 5.

22

5 Data distribution

Data distribution can signifi cantly impact parallel performance on distributed memory ma-
chines. In IPMs, the major parallel issue is how to distribute the constraint matrix A, and
also ADAT if it is formed explicitly. We restrict our attention to 1-dimensional data de-
compositions, that is, matrices are partitioned either by rows or columns. There are some
indications that 2-dimensional decompositions are better [4, 40] and this option should be
considered for future versions. We did not attempt 2-dimensional decompositions for the
current code because this is more diffi cult to implement and has not been well tested in
Epetra, our underlying parallel matrix library.

The explicit form of B = ADAT is a square symmetric matrix. One usually partitions
matrices by representing the matrix as a graph where each node is a row and two rows
r1 and r2 are connected if some column has a nonzero in both r1 and r2. One can then
use standard graph partitioning on this graph. This produces a row partitioning of matrix
B which is also a row partition of matrix A. Although graph partitioning is a good way
to reduce communication cost, it is not optimal. If we cannot explicitly represent B, but
instead must partition A directly, graph partitioning is suboptimal because A is rectangular.
Instead, we propose using hypergraph partitioning.

Hypergraph models [10] address many of the drawbacks of graph models. As in the
graph model, hypergraph vertices represent a row (or column) in the matrix. However, hy-
pergraph edges (hyperedges) are sets of two or more related vertices. For sparse matrices,
if a vertex is a matrix row, then the columns represent the hyperedges. The number of hy-
peredges cut by partition boundaries is an exact representation of communication volume,
not merely an approximation [10].

Although hypergraph partitioning is NP-hard, good heuristic algorithms have been de-
veloped. The dominant algorithms are extensions of the multilevel partitioning algorithms
for graph partitioning. Hypergraph partitioning’s effectiveness has been demonstrated in
many areas, including VLSI layout, sparse matrix decompositions, and database storage
and data mining. Several (serial) hypergraph partitioners are available (e.g., hMETIS, Pa-
ToH, Mondriaan). Devine et al [14] are developing a parallel hypergraph partitioner as
part of the Zoltan project for parallel load-balancing for scientifi c computing. With Rob
Hoekstra (SNL), we have developed an interface between EpetraExt and Zoltan for gen-
eral sparse matrices (hypergraphs). This code takes a sparse Epetra CrsMatrix as input and
returns a row map.

By reversing the role of nodes and hyperedges, a hypergraph partitioner can partition
the columns of a matrix rather than the rows. The cut sizes (communication volume) for the
column partition may be very different from that of the row partition (see [40, 10]), and it
is diffi cult to predict which is better a priori. Therefore, we allow both distributions. Since
Epetra is row-based, it is simplest to store matrices by rows. Our parPCx implementation
contains a matrix class AAT that stores either A or AT by rows. Note that AT partitioned by
rows corresponds to A partitioned by columns.

23

In the case where we explicitly form B = ADAT , the row map (distribution) of B should
equal the row map of A. Computing a column map (distribution) for A is not helpful,
because it does not provide a way to distribute B.

We used parPCx for all the numerical experiments in this report. That version of the
code uses a simple linear row map (that is, no hypergraph partitioning). The upcoming PCy
version employs the EpetraExt/Zoltan hypergraph partitioning and will thus be much more
communication effi cient.

6 Code Overview

6.1 PCx

Joe Czyzyk (Argonne), Sanjay Mehrotra (Northwestern), Michael Wagner (Cornell), and
Stephen Wright (Argonne, later Wisconsin) developed PCx [13] in 1996. It implements an
interior-point method with predictor-corrector algorithm for linear programming. The code
consists of about 5000 lines of C code. In addition to the actual LP solver, there is a driver
program, an MPS reader, and a pre-solver. PCx uses direct factorization and therefore
needs a sparse Cholesky solver. PCx provides an abstract Cholesky solver interface. It
can use any external Cholesky solver with such an interface. In particular, PCx provides
interfaces for the Ng-Peyton and WSSMP (Gupta, IBM) direct solvers.

Michael Wagner at Cornell developed a partially parallel PCx version called pPCx [12].
It is based on the Psspd parallel Cholesky solver by Chunguang Sun 2.

Although pPCx has demonstrated good parallel performance on modest number of pro-
cessors, it does not meet Sandia’s needs. First, it does not have a clear path to large-scale
parallelism, because Cholesky solvers are not scalable on distributed-memory machines.
Second, it requires the storage of the entire constraint matrix on every processor. Third,
neither pPCX nor PSSPD is actively maintained.

6.2 Trilinos

Our parallel version of PCx is based on Trilinos [23], a state-of-the-art parallel library for
linear algebra. Trilinos is a collection of linear algebra packages developed at Sandia. It’s
written in C++ and provides both basic matrix and vector classes (Epetra), direct linear
solvers (Amesos), and iterative solvers (AztecOO). ParPCx may use several other Trilinos
packages in the future, including IFPACK for preconditioners, ML for multigrid solvers,
and Belos for block Krylov solvers.

2There is no obvious published description of Psspd, but as of this writing, one can download a user’s
guide from www.cs.cornell.edu/Info/People/csun/psspd/psspd guide.ps.

24

An important feature of Trilinos and, in particular, Epetra, is that the application can
control the parallel data layout via so-called maps. Maps may also replicate data over some
or all processors; a feature we used heavily.

6.3 parPCx

6.3.1 FY03 code development

During FY03 we developed an initial parallel code by interfacing pPCx with a collection
of modern parallel linear solvers. This included IBM’s PWSMP, using pPCx’s native in-
terface, as well an array of both direct and iterative solvers provided by the Trilinos suite,
including Padma Ragavan’s DSCPACK. The latter proved more challenging than initially
expected, primarly because the Epetra component of Trilinos was undergoing heavy devel-
opment and documentation and certain features useful to our application were sparse. We
developed a generic Solver interface for Trilinos. Only the linear solves are parallelized.
This code is referred to as qPCx.

6.3.2 FY04 code development

We improved the FY03 version, which evolved into parPCx. In FY04 we also began work-
ing on a fully-distributed-memory version, codenamed PCy. The PCy code is not based on
pPCx. Rather, we started all over again with a clean and current version of PCx. (Many
bug fi xes had been made in PCx after pPCx split off.) The PCy code development required
signifi cant amounts of resources spent on software engineering to rewrite the PCx code.
First, we had to convert the code from C to C++. Second, we had to replace all arrays
representing vectors and matrices with the appropriate Epetra parallel vector and matrix
classes. This was an intrusive, nontrivial process. We quickly realized that we were among
the fi rst applications to stress or even use certain Epetra features (e.g. rectangular matrics
and local maps).

The current status (October 2004) is that PCy code is mostly fi nished, except a few fea-
tures like dense column handling. Unfortunately, the code has not been debugged enough
to produce reliable results yet, but it is close to being completed.

6.3.3 Solver interface

Both the fully distributed version of our code (PCy) and the version which only parallelizes
the linear solves (qPCx) leverage the same linear solver interface. This dynamic object-
oriented interface revolves around a generic Solver class, which encapsulates both direct
and iterative solvers. Each suite of solvers requires a subclass derived from the generic
solver. This subclass specifi es solver-specifi c implementations of the generic methods.

25

The interface was designed to provide rapid integration of new linear solvers and precon-
ditioners as they become available. This mechanism also allows parPCx to dynamically
choose an appropriate linear solver. That feature is not available in PCx or Coleman et al.’s
pPCx.

Interfacing a new solver package only requires the concrete implementation of a few
methods in a Solver-derived class: SetupSolve, which given the D matrix corresponding
to the current iteration of the PCx algorithm prepares the solver for subsequent solves,
and Solve, which is used to perform repeated linear solves for a fi xed D matrix. This
generic interface works for both direct and iterative solvers; for example, during a call to
SetupSolve, a direct solver might perform a Cholesky factorization, while an iterative solver
might construct a preconditioner. The Solver class provides this level of flexibility via an
abstract representation of the ADAT matrix over which the solves occur. This representation
is the other major component of our solver interface.

The AATtype class builds upon the abstract matrix representation facilities provided
by Epetra. Matrices can be stored in a variety of ways. Direct solvers need an explicit
ADAT matrix to factor, while iterative solver only requires the means to multiply ADAT by
a vector. The latter can easily be achieved by three separate matrix-vector multiplications
using AT , A, and D. This can be further optimized since multiplications using both A and
AT can use the same set of data. AATtype addresses exactly this issue, by providing a
multiplication interface to both A and AT while relying on a single stored Epetra matrix
object. We optimize the storage of this single matrix, which represents both A and AT ,
during the partitioning phase of our code.

6.3.4 Aztec ADAT and Aztec Op

As mentioned earlier, iterative solvers do not necessarily need to explicitly construct ADAT ;
however in this case, the construction of an effective preconditioner relies on an approxi-
mation of ADAT . Such an approximation may lie anywhere in the spectrum between what
is considered a trivial approximation, such as the diagonal of ADAT to ADAT in its entirety.
Selecting a suitable approximation to ADAT and designing a preconditioner based on this
approximation are intimately related tasks, which are often problem-specifi c and seem to
draw upon elements of art as well as science.

To facilitate experimentation in this vein, we have developed two interface classes to
AztecOO, Trilinos’s primary iterative linear solver. One version of the AztecOO interface
class explicitly constructs ADAT , much like its counterpart for direct solvers. This ver-
sion, Solver Aztec ADAT, is designed mainly to serve as a platform for rapid experimenta-
tion, as once an appropriate approximation and preconditioner are chosen, ADAT need not
be computed explicitly. On the other hand of the spectrum, we provide another version,
Solver Aztec Op, that performs multiplications over ADAT by storing just the data for A
and D; this version approximates ADAT by using only its diagonal, which is relatively easy
to compute and is space effi cient. Both classes are designed to support user-defi ned precon-

26

ditioners and endow one with the flexibility of choosing between a top-down or bottom-up
approach to preconditioner design.

6.4 How to use the code

The parPCx codes (qPCx and PCy) are fully backwards compatible with PCx, and can be
used as a direct replacement for PCx. One can either use the driver program, which reads
a problem from an MPS fi le, or one can use the subroutine interface. In the latter case,
the application must construct the specifi c data structures PCx uses. The PCy version also
contains a parallel interface such that if the application already has data in distributed form,
these can be passed directly. This option requires the application to create the LP data using
Epetra data types.

The code is built on Trilinos 4.0 (or later). The following Trilinos libraries are re-
quired: Epetra, EpetraExt, AztecOO, and Amesos. Parallel direct solution requires at least
one of the solvers DSCPACK, MUMPS, or SuperLU/SuperLUdist. The user must cor-
rectly confi gure Trilinos and Amesos. The parPCx code comes in a single source directory
with a makefi le, which has to be slightly adapted to local conditions. Typing ’make’ will
build both the library (libparPCx.a) and the driver (parPCx). The driver accepts two op-
tion: -s solver specifi es the desired solver, and -f file specifi es an MPS input fi le.
Valid solver options are currently Dscpack, Mumps, and Klu (direct), and Aztec adat and
Aztec op (iterative). Preconditioning options must currently be changed in the source code
(Solver AztecADAT) but this will change in the future. It is also fairly easy to add new
preconditioners that conform to the Epetra operator interface.

6.5 PICO modifications

We have modifi ed the core and integer programming modules of PICO to include a new
ramp-up procedure to exploit procedural (as opposed to subproblem) parallelism early in
the search. This is a natural way to integrate parallel (root) LP solves into PICO. We use
ramp up early in a branch-and-bound computation when there isn’t suffi cient subproblem
parallelism to keep a large number of processors busy. For example, at the root of the
search tree, there is only one problem. In this setting, it is best to evaluate subproblems in
parallel, parallelizing individual steps including bounding, cut generation, gradient calcu-
lations, searching for feasible solutions, etc. A parallel LP solver naturally fi ts into this new
ramp up, certainly for the root solve, and possibly even for early subproblems if there are
a signifi cant number of new cuts (additional constraints). When there are enough indepen-
dent subproblems relative to the number of processors (or there is insuffi cient parallelism at
the subproblem level), the computation switches to tree-level parallelism where processors
evaluate independent subproblems in parallel. Because processors stay in lock step during
ramp up, PICO makes this transition without communication and with an initially perfect
load balance.

27

Problem rows cols KLU (1) DSC (1) DSC (2) DSC (4) DSC (8) DSC (16)
25fv47 821 1571 3.26 3.36 4.03 3.99 4.21 4.46
maros-r7 3136 9408 48.5 20.2 16.7 13.8 11.6 11.7

Figure 5. Time (sec.) for parallel solution for different linear
solvers. Number of processors in parentheses.

To integrate parPCx into PICO, we also built an (IBM Open-Source Initiative) interface
for the solver and the extended PICO LP interface (of course, throwing exceptions for calls
to methods that are only applicable to simplex methods). The solver is not fully debugged
as of this writing, but likely will be before this report is published. Because parPCx uses
the PCx interface, the OSI solver interface now enables access to the PCx serial solver,
pPCx and parPCx for any code that uses this standard interface.

7 Parallel Results

The parPCx system is still under development so it is still too early to publish meaningful
parallel results. However, for the purpose of this status report we have done some parallel
runs. All results in this section were obtained with the qPCx code, where only the solver is
parallel. The fully distributed memory version (PCy) should outperform qPCx, but we are
still debugging this version.

All the results below use test problems from the Netlib LP collection [17], which despite
its age is still a dominant LP benchmark suite. We used a Compaq Alpha cluster with 32
processors, of which we could use up to 16.

We examine the results with direct solvers here, as we already discussed the perfor-
mance of iterative solvers in Section 4.1. Even though the only changes from PCx are the
formation of the ADAT matrix and the Cholesky solver, the solutions from parPCx some-
times differed slightly from PCx solutions. That is, parPCx did approach the same solution
as PCx but due to small numerical differences the status of the fi nal iterate was in a few
cases classifi ed as “unknown” or “infeasible” instead of “optimal”. Also, a few problems
did not converge or failed in other ways. There may be several causes, but the lack of
special treatment of very small pivots is a likely factor. We therefore focus on cases where
parPCx (qPCx) and PCx did produce the same answers. In Figure 5 we show the execution
time for two test problems with varying number of processors using the DSCPACK linear
solver.

For the 25fv47 problem there was no parallel speedup. This is a small problem, and it
appears that the parallel overhead and data redistribution cost cancelled the small savings
from computing the Cholesky factorization in parallel. For the larger maros-r7 problem,

28

there is some parallel speedup but it is poor. Clearly, we cannot expect linear speedup since
only the Cholesky solver is parallel, but we had hoped for better speedup. We are cur-
rently investigating the cause. One contributing factor is that vectors are replicated across
processors, and therefore require a lot of communication to update. There may also be
ineffi ciencies in the Amesos interface layer, which sits between parPCx and the third-party
linear solver (e.g., DSCPACK). We have also identifi ed the sparse matrix-matrix multipli-
cation as a slow part on some problems; apparently due to an ineffi cient implementation in
EpetraExt. (For some problems, computing ADAT took substantially longer than factoring
ADAT .)

We also attempted to run qPCx on some much larger problems (up to 100,000 vari-
ables), like CRE-B, but qPCx crashed with floating-point exception using parallel Cholesky
(DSCPACK) so we were only able to perform serial solves (using KLU). We did obtain the
optimal solution with the KLU solver and need to investigate why the code failed with
DSCPACK. This shows that robustness is a serious issue in interior-point methods, even
with direct solvers.

8 Future Work

Although many goals of this LDRD project have been accomplished, some work still re-
mains before the parPCx/PCy codes become truly useful. A continuation of the project
would need to tackle:

• Debug and test PCy. The fully distributed code still has bugs, and must be debugged
and verifi ed against the original PCx.

• Make all vectors distributed (parallel). Currently, most vectors are replicated across
processors but this is easy to change using Epetra. Important to get good parallel
speedup.

• Dense column handling using either the Sherman-Morrison-Woodbury formula or
column splitting. This feature is missing in parPCx and only partially implemented
in PCy. Important for performance.

• Profi ling and performance optimization. The current code is too slow.

• Debug and test PICO/OSI interface.

• Implement cross-over operation. Essential for use in the MIP solver PICO.

A wish list for future expansion might include:

• Expand solver class to optionally solve augmented system via direct or iterative
methods. This may be a better approach than the normal equations in many cases.

29

• Provide simpler methods to add new preconditioners.

• Implement LSQR for solving least-squares version of the augmented system. This
will almost surely work better (more robust) than the current method (CG on the
normal equations).

• Investigate better scalings to reduce condition number.

• Implement direct–iterative hybrid solver.

• Investigate new preconditioners. Good scalable parallel performance can only be
achieved with iterative methods.

• Parallel presolve. Currently, the presolver is serial.

Some of our parallel code (in particular, the Solver class) may be useful in other, more
general, interior-point method codes. For example, we could integrate our parallel solver
with the OOQP convex QP package. This would require some modifi cations since the
linear systems for QPs require the Hessian.

30

References

[1] V. Baryamureeba and T. Steihaug. Properties and computational issues of a precon-
ditioner for interior point methods. Technical Report 180, Dept. of Informatics, Univ.
of Bergen, Norway, 1999.

[2] J. Berry, L. Fleischer, W. E. Hart, and C. A. Phillips. Sensor placement in municipal
water networks. In Proceedings of the World Water and Environmental Resources
Congress (electronic proceedings). ASCE, 2003.

[3] J. Berry, W. E. Hart, C. A. Phillips, and J. Uber. A general integer-programming-
based framework for sensor placement in municipal water networks. In Proceedings
of the 6th Annual Symposium on Water Distribution System Analysis (electronic pro-
ceedings). ASCE, 2004.

[4] R. H. Bisseling, T. M. Doup, and L.D.J.C. Loyens. A parallel interior point algorithm
for linear programming on a network of transputers. Annals of Operations Research,
43:51–86, 1993.

[5] Åke Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,
PA, 1996.

[6] E. G. Boman, D. Chen, B. Hendrickson, and S. Toledo. Maximum-weight-basis pre-
conditioners. Numerical Linear Algebra with Appl., 11(8–9):695–721, 2004.

[7] E. G. Boman and B. Hendrickson. Support theory for preconditioning. SIAM J. on
Matrix Anal. and Appl., 25(3):694–717, 2004. (Published electronically on 17 Dec
2003.).

[8] R. E. Carlson, M. A. Turnquist, and L. K. Nozick. Expected losses, insurability, and
benefi ts from reducing vulnerability to attack. Technical Report SAND2004-0742,
Sandia National Laboratories, 2004.

[9] R.D. Carr and G. Konjevod. Polyhedral combinatorics. In H.J. Greenberg, editor, Tu-
torials on Emerging Methodologies and Applications in Operations Research. Kluwer
Academic Press, 2004.

[10] Ü. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Dist. Systems,
10(7):673–693, 1999.

[11] D. Chen and S. Toledo. Vaidya’s preconditioners: Implementation and experimental
study. ETNA, 16, 2003. Available from http://etna.mcs.kent.edu.

[12] T. Coleman, J. Czyzyk, C. Sun, M. Wagner, and S.J. Wright. pPCx: parallel software
for linear programming. In Proc. Eighth SIAM Conference on Parallel Processing for
Scientific Computing. SIAM, 1997.

31

[13] J. Czyzyk, S. Mehrotra, and S.J. Wright. PCx user’s guide. Technical Report Tech. re-
port OTC 96/01, Argonne National Lab, 1996.

[14] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courte-
nay Vaughan. Zoltan data management services for parallel dynamic ap-
plications. Computing in Science and Engineering, 4(2):90–97, 2002.
http://www.cs.sandia.gov/Zoltan.

[15] J. Eckstein. Parallel branch-and-bound algorithms for general mixed integer program-
ming on the CM-5. SIAM Journal on Optimization, 4(4):794–814, 1994.

[16] Jonathan Eckstein, Cynthia A. Phillips, and William E. Hart. PICO: An object-
oriented framework for parallel branch-and-bound. In Proc Inherently Parallel Al-
gorithms in Feasibility and Optimization and Their Applications, Elsevier Scientifi c
Series on Studies in Computational Mathematics, pages 219–265, 2001.

[17] D.M. Gay. Electronic mail distribution of linear programming test problems. COAL
Newsletter, Math. Prog. Soc., 13:10–12, 2003.

[18] P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press, 1981.

[19] P.E. Gill, W. Murray, D.B. Ponceleon, and M.A. Saunders. Preconditioners for in-
defi nite systems arising in optimization. SIAM J. on Matrix Analysis, 13(1):292–311,
1992.

[20] P.E. Gill, W. Murray, D.B. Ponceleon, and M.A. Saunders. Primal-dual methods for
linear programming. Math. Prog., 70(3):251–277, 1995.

[21] J. Gondzio and R. Sarkissian. Parallel interior-point solver for structured linear pro-
grams. Mathematical Programming, 96(3):561–584, 2003.

[22] M.D. Grigoriadis and L.G. Khachiyan. An interior-point method for bordered block-
diagonal linear programs. SIAM J. Optim., 6(4):913–932, 1996.

[23] Michael Heroux, Roscoe Bartlett, Vicki Howle, Robert Hoekstra, Jonathan Hu,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, An-
drew Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan
Williams. An overview of Trilinos. Technical Report SAND2003-2927, Sandia Na-
tional Laboratories, Albuquerque, NM, 2003. http://software.sandia.gov/trilinos.

[24] D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor precon-
ditioning. SIAM J. Sci. Comp., 22(6):2194–, 2001.

[25] J.J. Judice, J. Patricio, L.F. Portugal, M.G.C. Recende, and G. Veiga. A study of
preconditioners for network interior point methods. Computational Optimization and
Applications, 24(1):5–35, 2003.

32

[26] P. Koka, T. Suh, M Smelyanskiy, R. Grzeszczuk, and C. Dulong. Construction and
performance characterization of parallel interior point solver on 4-way intel itanium 2
multiprocessor system. In IEEE Seventh Annual Workshop on Workload Characteri-
zation, 2004.

[27] S. Mehrotra and J. Wang. Conjugate gradient based implementation of interior point
methods for network flow problems. In L. Adams and J. Nazareth, editors, Linear
and Nonlinear Conjugate Gradient Related Methods, pages 124–142. SIAM, 1995.

[28] R.D.C. Monteiro, J.W. O’Neill, and T. Tsuchiya. Uniform boundedness of a precondi-
tioned normal matrix used in interior-point methods. SIAM J. Optim., 15(1):96–100,
2004.

[29] L.F. Portugal, M.G.C. Recende, G. Veiga, and J.J. Judice. A truncated primal-
infeasible dual-feasible interior point network flow method. Networks, 35:91–108,
2000.

[30] M. Resende and G. Veiga. An effi cient implementation of a network interior point
method. In D. Johnson and C. McGeoch, editors, Network Flow and Matching:
First DIMACS Implementation Challenge, volume 12, pages 299–384, Providence,
RI, 1993. AMS.

[31] M.A. Saunders. PDCO: primal-dual interior method for convex objectives. Software
available at http://www.stanford.edu/group/SOL/software/pdco.html.

[32] M.A. Saunders and J.A. Tomlin. Solving regularized linear programs using barrier
methods and KKT systems. Technical Report Report SOL 96-4, Dept. of EESOR,
Stanford University, 1996.

[33] G. Schultz and R.R. Meyer. An interior-point method for block angular optimization.
SIAM J. Optim., 1(1):583–602, 1991.

[34] D. Spielman and S-H. Teng. Nearly-linear time algorithms for graph partition-
ing, graph sparsifi cation, and solving linear systems. Manuscript available from
www.arxiv.org/abs/cs.DS/0310051, 2003.

[35] D. Spielman and S-H. Teng. Solving sparse, symmetric, diagonally-dominant linear
systems in time 0(m1.31). In Proc. of FOCS’03, pages 416–427, 2003.

[36] D.A. Spielman and S.H. Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. of the ACM, 51(3):385–463, May 2004.

[37] Sivan Toledo. TAUCS - a library of sparse linear solvers. Software available at
http://www.math.tau.ac/∼stoledo/taucs/.

[38] P. M. Vaidya. Solving linear equations with symmetric diagonally dominant matrices
by constructing good preconditioners. Unpublished manuscript. A talk based on this
manuscript was presented at the IMA Workshop on Graph Theory and Sparse Matrix
Computations, Minneapolis, October 1991.

33

[39] R. Vanderbei. Symmetrical quasidefi nite matrices. SIAM J. Optimization, 5(1):100–
113, Feb. 1995.

[40] Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication. Preprint 1238, Dept. Mathe-
matics, Utrecht University, May 2002. To appear in SIAM Review, 2005.

[41] W. Wang and D.P. O’Leary. Adaptive use of iterative methods in interior point meth-
ods for linear programming. Tech. report CS-3650, Univ. of Maryland, 1995.

[42] J.-P. Watson, H. J. Greenberg, and W. E. Hart. A multiple-objective analysis of sensor
placement optimization in water networks. In Proceedings of the 6th Annual Sympo-
sium on Water Distribution System Analysis (electronic proceedings). ASCE, 2004.

[43] M. H. Wright. Interior methods for constrained optimization. In A. Iserles, editor,
Acta Numerica 1992, pages 341–407. Cambridge University Press, 1992.

[44] S. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.

34

DISTRIBUTION:

3 Prof. Ojas Parekh
Math/CS Department
400 Downman Dr.
Atlanta, GA 30322

3 Prof. Stephen J. Wright
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706

1 MS 9018
Central Technical Files, 8945-1

3 MS 1110
Erik Boman, 09215

3 MS 1110
Cynthia Phillips, 09215

1 MS 1110
Michael Heroux, 09214

3 MS 9159
Victoria Howle, 08962

1 MS 1110
Suzanne L. K. Rountree, 09215

2 MS 0899
Technical Library, 9616

1 MS 0123
D. Chavez, LDRD Offi ce, 1011

35

	LDRD Final Report on Massively-Parallel Linear Programming: the parPCx System
	Abstract
	Acknowledgment
	Contents
	1. Introduction
	2. Linear Programming Applications
	3. parPCx Design Issues
	4. Iterative Methods and Preconditioning
	4.1 Numerical results for preconditioning
	4.2 Support preconditioners
	4.3 Preconditioning the augmented system
	4.4 Parallel preconditioning

	5. Data distribution
	6. Code Overview
	6.1 PCx
	6.2 Trilinos
	6.3 parPCx
	6.4 How to use the code
	6.5 PICO modifications

	7. Parallel Results
	8. Future Work
	References
	Distribution

