ECR plasma cleaning: an in-situ processing technique for RF cavities

PDF Version Also Available for Download.

Description

A condition for Electron Cyclotron Resonance (ECR) can be established inside a fully assembled RF cavity without the need for removing high-power couplers. As such, plasma generated by this process can be used as a final cleaning step, or as an alternative cleaning step in place of other techniques. Tests showed filtered dry air plasma can successfully remove sulfur particles on niobium surface while the surface oxygen content remains intact.

Physical Description

10 pages

Creation Information

Wu, G.; /Fermilab; Moeller, W-D.; /DESY; Antoine, C.; /Saclay et al. January 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A condition for Electron Cyclotron Resonance (ECR) can be established inside a fully assembled RF cavity without the need for removing high-power couplers. As such, plasma generated by this process can be used as a final cleaning step, or as an alternative cleaning step in place of other techniques. Tests showed filtered dry air plasma can successfully remove sulfur particles on niobium surface while the surface oxygen content remains intact.

Physical Description

10 pages

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-PUB-08-005-TD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 928093
  • Archival Resource Key: ark:/67531/metadc902114

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 5, 2016, 2:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wu, G.; /Fermilab; Moeller, W-D.; /DESY; Antoine, C.; /Saclay et al. ECR plasma cleaning: an in-situ processing technique for RF cavities, article, January 1, 2008; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc902114/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.