Cable Damage Detection Using Time Domain Reflectometry and Model-Based Algorithms

G. A. Clark

March 27, 2008

Sixth Annual Sensors Workshop 2008
Livermore, CA, United States
April 1, 2008 through April 2, 2008
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
Cable Damage Detection Using Time Domain Reflectometry and Model-Based Algorithms

April 1-2, 2008

Grace A. Clark
Eng/NSED/Systems and Decision Sciences Section

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Auspices and Disclaimer

Auspices

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
We Have an Interdisciplinary Team

- Graham Thomas - ENG/MMED
 - Project Management
 - NDE, materials characterization

- Chris Robbins - ENG/NSED
 - Program Management
 - Data acquisition, hardware, signal processing software, NDE

- Grace Clark - ENG/NSED
 - Image/signal processing, target/pattern recognition,
 sensor data fusion, NDE

- Katherine Wade - ENG/NSED
 - Signal processing software and testing
Agenda

• Introduction
 - The Cable Damage Detection Problem
 - This is work in progress

• Technical Approach - *Model-Based Damage Detection*

• Damage Detection Processing Results
 - Real Measurements, Artificial Damage - *Reported Earlier*
 - Real measurements, real damage
 - Performance Measurements
 - *ROC Curves, Confidence Intervals*

• Discussion and Plans
We Are Testing Two-Conductor Flat Cables With Kapton Insulation - For Dielectric Anomalies

Two-Conductor Flat Cable With Kapton Insulation

Foil Simulating a Capacitive Discontinuity (Damage)

Adhesive

Copper foil

Kapton

Dielectric

Copper foil

Kapton

Red TDR Signal => Good Cable
Black TDR Signal => Damaged Cable

Expected Damage Types:
- Compressions
- Punctures
- Short Circuits
- Open Circuits
The Technical Challenges/Issues are Difficult, But We Do Not Know Yet Exactly How Difficult

- We have access to only one end of the cable
- We cannot “Hi-Pot” the cables in place
- We have no exemplars of “real” damaged cables
 - We must “insult” them artificially
- We have no archive signals from the cables “As-Built”
 - Only a “typical” signal for an undamaged cable
- Small sample size
 - Small number of available cables for “insulting” (~ 60)
 - Obviates using supervised learning pattern recognition algorithms
 - Makes it difficult to create ensembles for building ROC curves
- Repeatability of Measurements (A VERY IMPORTANT ISSUE)
 - Single cable - Test to test [Apparently solved to first order]
 - Cable to cable [Under current investigation - OK to first order]
- The signal shape changes significantly with the cable environment
 - We are building 2D and 3D “Mockups” for later use
The Key Hardware Component is the **Pulse Insertion Unit (PIU)**

Capacitive Coupling & Impedance Matching:
- PIU = Half of “The Capacitor”
- Cable = Half of “The Capacitor”

Lawrence Livermore National Laboratory

Grace A. Clark, Ph.D.
Our Focus is on a Binary Detection Decision (Yes/No), NOT Failure Mode Classification or “Reliability”

Three Possible Hierarchical Decision Levels:

1. Detection:
 - Decide whether or not an abnormality in the cable TDR response exists (yes or no)
 - Assume that an abnormal TDR response implies a flaw in the cable

2. Flaw or Failure Mode Classification:
 - Classify the type of failure mode or flaw detected, from among a fixed set of possible modes

3. Final Decision:
 - Using all of the information from the measurements and the previous two steps (fusion), decide whether the cable is “reliable or not reliable”
The Model-Based Damage Detection Approach:
Detect a Model Mismatch if Damage is Present

• Exploit the fact that the TDR measurements are reasonably repeatable.

• Build a forward model of the dynamic system (cable) for the case in which NO DAMAGE exists

• Whiteness Testing on the Innovations (Errors):
 Estimate the output of the actual system using measurements from a dynamic test.
 - If no damage exists, the model will match the measurements, so the “innovations” (errors) will be statistically white.
 - If a damage exists, the model will not match the measurements, so the “innovations” (errors) will not be statistically white.

• Weighted Sum Square Residuals (WSSR) Test:
The WSSR provides a single metric for the model mismatch
Step #1: System Identification to Estimate the Dynamic Model of the *Undamaged Cable*

System Identification:
- **Given:** \(s(n) \) and \(x_u(n) \)
- **Estimate:** \(\hat{h}_u(n) \)
- **Test Innovations for whiteness**

\[
x_u(n) = s(n) * h_u(n) + v(n)
\]

\[
e_u(n) = x_u(n) - \hat{x}_u(n)
\]

\[
\hat{x}_u(n)
\]

\[
x_u(n)
\]

Parameter Estimation Algorithm

Prediction Error Model (e.g. ARX)

Undamaged Cable

Replicant (Reference Signal)

Measurement Noise

Whiteness Test

Decision
Step 1 (System ID) is Done “Offline”
Step 2 (Damage Testing) is Done “Online”

Step 1 (System ID)

- Reference Signal: $s(n)$
- "Undamaged" Signal: $x_U(n)$
- Pre-Processing:
 - Cutting
 - Mean/Trend Removal
 - Decimation
- System Identification (Model-Building): $\hat{x}_U(n)$
- "Undamaged" Innovations: $e_U(n) = x_U(n) - \hat{x}_U(n)$
- Tests:
 - Whiteness Test
 - WSSR Test

Step 2 (Damage Testing)

- "Damaged" Signal Under Test: $x_D(n)$
- Pre-Processing:
 - Cutting
 - Mean/Trend Removal
- Up-sample (Interpolate)
- "Damaged" Innovations: $e_D(n) = x_D(n) - \hat{x}_U(n)$
- Tests:
 - Whiteness Test (Optional)
 - WSSR Test
Scalar WSSR is Calculated Using a Sliding Window Over the Innovations Sequence $e(n)$

$WSSR = \text{“Weighted Sum Squared Residuals”}$

Scalar WSSR is a useful test statistic for detecting an abrupt change, or “jump” in the innovations.

$$WSSR = \sum_{j=n-W+1}^{n} \frac{e^2(j)}{V(j)}$$

for $n \geq W$
The Scalar WSSR Confidence Interval Threshold is parameterized by the Window Length W

Summary of the WSSR Test for Significance $\alpha = .05$:

$$\gamma(n) = \sum_{j=n-W+1}^{n} \frac{e^2(j)}{V(j)}, \text{ for } n \geq W$$

$$V(n) = \frac{1}{W} \sum_{j=n-W+1}^{n} \left[e^2(j) - \bar{e}(j) \right]^2, \text{ for } n \geq W$$

$$\bar{e}(n) = \frac{1}{W} \sum_{j=n-W+1}^{n} e(j), \text{ for } n \geq W$$

$$\tau = W + 1.96\sqrt{2W}$$

If $\gamma(n) \geq H_1$, Declare H_0 is true (innovations are white, no jump)
If $\gamma(n) < H_0$, τ, (\(\tau = \text{Decision Threshold}\))

In practice, we implement the WSSR test as follows:

- Let $F_E = \text{Fraction of samples of } \gamma(n) \text{ that exceed the threshold}$
- If $F_E \leq \alpha$, Declare H_0 is true (innovations are white, no jump)
- If $F_E > \alpha$, Declare H_1 is true (innovations are not white, jump)
We Acquired an Ensemble of Real Signals for Processing

The PIU was never disconnected between acquisitions

Experiment E1: Data from 2_13_07

UNDAMAGED
Reference Signals (Undamaged):
refa, refb, refc

MINOR DAMAGE
Minor Damage (pin hole, knife present, no short):
minor1a, minor1b, minor1c

Minor Damage (pin hole, knife removed, no short):
minor2a, minor2b, minor2c

Minor Damage (pin hole, knife removed, cable rubbed to remove short):
minor3a, minor3b, minor3c

MAJOR DAMAGE
Major Damage (pin hole, knife removed, conductors shorted):
major1a, major1b, major1c
Experiment 1: System Identification Results
System Identification: Preprocessed Signals

\[s(n) = \text{Reference Signal (Front Reflection)} \]

\[x_U(n) = \text{Unflawed Cable Output} \]

\[x_D(n) = \text{Damaged Cable Output} \]

Example: Major Damage
System Identification: The Model Fit is Good

\[x_U(n) \]

\[\hat{x}_U(n) \]
System Identification: Correlation Tests are Satisfactory

\[R_{ee}(n) \]

\[R_{se}(n) \]
System Identification Whiteness Test Result = White
System Identification WSSR Test Result = **No Model Mismatch!**
Experiment 1: “Minor3” Damage

Grace A. Clark
“Minor3 Damage”: Damage Is Difficult to Distinguish Visually
Minor3 Damage: *The Innovations are Small, But Correlated*

\[x_U(n) \]
\[e_D(n) \]
“Minor3 Damage” WSSR Result = Model Mismatch!

\[W = 61 \]
Minor3a,b,c Damage

Receiver Operating Characteristic (ROC) Curve = Perfect

Probability of Detection vs. Probability of False Alarm

Choose the Operating Point:

\[W^* = 60, 61 \]

Estimated Probability Of Correct Classification at \(W^* \) is:

\[
\hat{P}_{CC} = \frac{1}{2} \left\{ P_D + (1 - P_{FA}) \right\} = 1
\]

95% Confidence Interval on \(P_{CC} \) is:

\[
P\{0.6 \leq P_{CC} \leq 1.0\} = 0.95
\]
Conclusions & Future Work

- The damage effects are somewhat distributed about the signal
 - They are not necessarily localized in time/space
 - This gives *added value* to the model-based approach
 because it does not rely on localized damage effects

- Tests with real data validate the algorithms
 - “Minor3” and “Major” Damage give perfect ROC curves
 - “Minor1” and “Minor2” Damage give suboptimal ROC Curves

Future Work:

- Performance Tests using our *new Pulse Insertion Unit (PIU)*
- More repeatability studies:
 - Measurement-to-measurement for one cable
 - Cable-to-cable
- Cable “Insult Studies” with various types of damage
- Experiments in realistic cable environments - *2D Mockup, 3D Mockup*
- Build and test GUI’s
- Use algorithms with other applications
Lawrence Livermore National Laboratory

Contingency VG’s

Grace A. Clark
Step #2: Compare the Responses of the Undamaged and Damaged Cables => Damage Detection

Flaw Detection:
- Given: \(s(n) \) and \(\hat{h}_u(n) \)
- Detect flaws by testing the innovations (nonstationary) for whiteness using WSSR (Weighted Sum Squared Residuals) over a moving window.
E1: “Undamaged” Signals Were Cut for

Step 1: System Identification

- refs, refb, refc
- Ensemble Average
- Start time = 0. sec
- End Time = 24.975586e-9 sec
- # Points = 1024
- Ts = 0.0244147e-9 sec

Cut Reference Signal s(n)

s = REFavg_Cut.txt

Cut Undamaged Signal xu(n)

xu = xu_real.txt
The “Damage Signals” Were Cut for

Step 1: Damage Testing

Suboptimal Detection

Results for Minor1 and Minor2 Damage

- Minor1a-c: Cut
 - xd_m1a.txt
 - xd_m1b.txt
 - xd_m1c.txt

- Minor2a-c: Cut
 - xd_m2a.txt
 - xd_m2b.txt
 - xd_m2c.txt

Perfect Detection

Results for Minor3 and Major Damage

- Minor3a-c: Cut
 - xd_m3a.txt
 - xd_m3b.txt
 - xd_m3c.txt

- Major1a-c: Cut
 - xd_MM1a.txt
 - xd_MM1b.txt
 - xd_MM1c.txt

Processing Details for the Signals in Red are shown in this presentation
Experiment 1: *Major Damage*
“Major Damage” Signal Shows Obvious Damage
“Major Damage” Innovations *Are Large and Correlated*
“Major Damage” WSSR Test Result = Model Mismatch
Major Damage:

Receiver Operating Characteristic (ROC) Curve = Perfect

Probability of Detection vs. Probability of False Alarm

Choose the Operating Point:

\[W^* = 60, 61, 62, 70, 80 \]

Estimated Probability Of Correct Classification at \(W^* \) is:

\[
\hat{P}_{CC} = \frac{1}{2} \left\{ P_D + (1 - P_{FA}) \right\} \\
= 1
\]

95% Confidence Interval on \(P_{CC} \) is:

\[
P\left\{ .6 \leq P_{CC} \leq 1.0 \right\} = .95
\]
Experiment 1: ROC Curves for Minor1, Minor2, and All 12 Damage Signals
Minor1a,b,c Damage

Receiver Operating Characteristic (ROC) Curve

<table>
<thead>
<tr>
<th>W</th>
<th>(P_{FA})</th>
<th>(P_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>0.33333</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>0.33333</td>
</tr>
<tr>
<td>58</td>
<td>0</td>
<td>0.33333</td>
</tr>
<tr>
<td>59</td>
<td>0</td>
<td>0.33333</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>61</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Choose the Operating Point:
\(W^* = 56.57 \)

Estimated Probability Of Correct Classification at \(W^* \) is:

\[
\hat{P}_{CC} = \frac{1}{2} \left(P_D + \left(1 - P_{FA} \right) \right) = 0.83333
\]

95% Confidence Interval on \(P_{cc} \) is:

\[
P\left\{ 0.42 \leq P_{cc} \leq 0.97 \right\} = .95
\]
Minor2a,b,c Damage

Receiver Operating Characteristic (ROC) Curve

Choose the Operating Point:

\[W^* = 60 \]

Estimated Probability Of Correct Classification at \(W^* \) is:

\[
\hat{P}_{CC} = \frac{1}{2} \left[P_D + \left(1 - P_{FA}\right) \right]
\]

= 0.66667

95% Confidence Interval on \(P_{CC} \) is:

\[
P \left(0.294 \leq P_{CC} \leq 0.906 \right) = 0.95
\]
All 12 Signals: Minor1a,b,c, Minor2a,b,c, Minor3a,b,c, Majora,b,c

Receiver Operating Characteristic (ROC) Curve

<table>
<thead>
<tr>
<th>W</th>
<th>P_{FA}</th>
<th>P_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>0.33333</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>0.33333</td>
</tr>
<tr>
<td>50</td>
<td>0.66667</td>
<td>0.33333</td>
</tr>
<tr>
<td>59</td>
<td>0.33333</td>
<td>0.33333</td>
</tr>
<tr>
<td>60</td>
<td>0.33333</td>
<td>0</td>
</tr>
<tr>
<td>61</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>0.41667</td>
<td>0</td>
</tr>
<tr>
<td>63</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0.25</td>
<td>0</td>
</tr>
</tbody>
</table>

Choose the Operating Point:
$W^* = 60$

Estimated Probability Of Correct Classification at W^* is:

$$\hat{P}_{CC} = \frac{1}{2} \left(P_D + (1 - P_{FA}) \right)$$

$$= 0.79167$$

95% Confidence Interval on P_{CC} is:

$$P\{ \cdot59 \leq P_{CC} \leq .91 \} = .95$$