Microearthquake moment tensors from the Coso Geothermal area

PDF Version Also Available for Download.

Description

The Coso geothermal area, California, has produced hot water and steam for electricity generation for more than 20 years, during which time there has been a substantial amount of microearthquake activity in the area. Seismicity is monitored by a high-quality permanent network of 16 three-component digital borehole seismometers operated by the US Navy and supplemented by a ~ 14-station portable array of surface three-component digital instruments. The portable stations improve focal sphere coverage, providing seismic-wave polarity and amplitude data sets sufficient for determining full moment-tensor microearthquake mechanisms by the linearprogramming inversion method. We have developed a GUI-based interface to this ... continued below

Creation Information

Julian, B.R.; Foulger, G.R. & Monastero, F. April 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Coso geothermal area, California, has produced hot water and steam for electricity generation for more than 20 years, during which time there has been a substantial amount of microearthquake activity in the area. Seismicity is monitored by a high-quality permanent network of 16 three-component digital borehole seismometers operated by the US Navy and supplemented by a ~ 14-station portable array of surface three-component digital instruments. The portable stations improve focal sphere coverage, providing seismic-wave polarity and amplitude data sets sufficient for determining full moment-tensor microearthquake mechanisms by the linearprogramming inversion method. We have developed a GUI-based interface to this inversion software that greatly increases its ease of use and makes feasible analyzing larger numbers of earthquakes than previously was practical. We show examples from an injection experiment conducted in well 34-9RD2, on the East Flank of the Coso geothermal area. This tight well was re-drilled February – March 2005 with the intention of hydrofracturing it, but instead, pervasive porosity and fractures were encountered at about 2660 m depth. Total drilling mud losses occurred, obviating the need to stimulate the well. These mud losses induced a 50-minute swarm of 44 microearthquakes, with magnitudes in the range -0.3 to 2.6. Most of the largest microearthquakes occurred in the first 2 minutes. Accurate relative relocations and moment tensors for the best-recorded subset reveal fine details of the fracture that was stimulated. This comprised a fault striking at N 20° E and dipping at 75° to the WNW, which propagated to the NNE and upward. Co-injection focal mechanisms reveal combined crack-opening and shear motion. Stress release and mode of failure differed between the pre-, co- and post-swarm periods. Some post-swarm events involved cavity collapse, suggesting that some of the cavity opening caused by the fluid injection was quickly reversed. Stress & mode of failure had not returned to pre-swarm conditions within 1 month following the injection, posing the question of how long stress perturbations persist following a stimulation experiment. This question may be answered by processing data spanning a longer postinjection period, work that is currently underway and will be reported in this presentation.

Source

  • Journal Volume: SGP-TR-183; Conference: Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 22-24, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: Final Report supplement 3
  • Grant Number: FG36-06GO16058
  • Office of Scientific & Technical Information Report Number: 926254
  • Archival Resource Key: ark:/67531/metadc902105

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Julian, B.R.; Foulger, G.R. & Monastero, F. Microearthquake moment tensors from the Coso Geothermal area, article, April 1, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc902105/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.