MODELING THE UREX-PLUS-3A PROCESS USING ASPEN PLUS COUPLED WITH AMUSE

PDF Version Also Available for Download.

Description

A plant level simulation of the UREX+3a separations process has been developed using AMUSE for solvent extraction calculations coupled with Aspen Plus for other operations. AMUSE, an Excel based application developed at Argonne National Laboratory [1], performs a rigorous calculation of countercurrent solvent extraction processes using thermodynamically based distribution coefficients specifically designed for nuclear separations. Aspen Plus [2] models simulate other separations plant operations such as head end assembly chopping and dissolution, product solidification, acid recovery, off-gas treatment and waste water treatment. The model predicts that 55 feed streams and 14 output streams will be generated by separations plant operation. ... continued below

Creation Information

Smith, F & Richard Dimenna, R January 11, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A plant level simulation of the UREX+3a separations process has been developed using AMUSE for solvent extraction calculations coupled with Aspen Plus for other operations. AMUSE, an Excel based application developed at Argonne National Laboratory [1], performs a rigorous calculation of countercurrent solvent extraction processes using thermodynamically based distribution coefficients specifically designed for nuclear separations. Aspen Plus [2] models simulate other separations plant operations such as head end assembly chopping and dissolution, product solidification, acid recovery, off-gas treatment and waste water treatment. The model predicts that 55 feed streams and 14 output streams will be generated by separations plant operation. On the basis of one metric ton of initial reactor fuel, the model predicts a plant throughput of approximately 200 metric tonnes of material. Approximately half is treated waste water. Another 30% is gas emissions arising from feed to the calcination furnaces. The gas stream is treated for discharge to the environment. About 5% of the throughput is product material. Another 10% is recovered organics and acid that may be recycled. The remaining 5% is contaminated waste that requires disposal. While these results are preliminary, the model has successfully simulated operation of the UREX+3a separations process. Coupling AMUSE to Aspen Plus provides rigorous solvent extraction calculations directly within the plant simulation, greatly increasing the accuracy of the model. Many areas, such as acid recycle, can be optimized to improve performance and reduce material usage and waste generation. The rigorous plant simulation model resulting from this work provides a framework to conduct such studies. The model is easily modified to simulate other variations of the UREX+ process.

Notes

available

Source

  • ANS 2008 Annual Meeting

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-STI-2008-00013
  • Grant Number: DE-AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 922285
  • Archival Resource Key: ark:/67531/metadc902040

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 11, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 2, 2016, 5:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Smith, F & Richard Dimenna, R. MODELING THE UREX-PLUS-3A PROCESS USING ASPEN PLUS COUPLED WITH AMUSE, article, January 11, 2008; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc902040/: accessed May 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.