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Abstract 

Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the 

consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this 

context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely 

because tundra fires occur infrequently on the modern landscape. We present paleoecological data that 

indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and 



pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern 

boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate 

interpretations and data from modern tundra fires suggest that increased burning was aided by low effective 

moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an 

abundance of fine fuels.  These records suggest that greater fire activity will likely accompany temperature-

related increases in shrub-dominated tundra predicted for the 21st
 century and beyond. Increased tundra 

burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions 

in the Arctic, including the potential to release stored organic carbon to the atmosphere. 

 

Introduction 

Tundra and boreal ecosystems store one third of the world’s soil carbon [1]. The fate of this vast carbon 

stock has become a major concern to global-change scientists because its release to the atmosphere could 

exacerbate CO2–related climate change [2-6]. Unfortunately, uncertainty about a number of ecosystem 

processes hampers predictions of future tundra carbon cycling and the potential consequences to the climate 

system. One of the most important processes is how vegetation and climate change will alter fire regimes of 

tundra regions [2,6,7]. Available evidence suggests that ongoing vegetation and climate change could 

significantly increase the rate of burning in northern tundra [8], which is currently dominated by low-

biomass communities (graminoids, herbs, and dwarf shrubs) that seldom burn [e.g. only 3% of Alaskan 

tundra burned between CE 1950 and 2005; Fig. 1; 9]. In particular, a marked increase in shrub abundance 

and density, likely resulting from climate warming  [10], is changing the physiognomic structure of arctic 

and subarctic regions. Shrubby growth forms increase the abundance of fine fuels available for burning, and 

in light of 3-5 °C warming predicted over the next century [8] such fuel changes could result in fire regimes 

vastly different from those in modern tundra. Unfortunately, short observational fire records [e.g. 48-57 

years in Alaska and Canada; 9,11], a lack of fire-history studies, and the possibility of novel future 

vegetation [12] result in little information to evaluate how tundra fire regimes may respond to future climate 



and vegetation change. The paleoecological approach circumvents these limitations and offers the only way 

to obtain long-term empirical records of fire and vegetation change relevant for understanding tundra fire 

regimes under future climate and vegetation scenarios. 
 

Here we present fire and vegetation reconstructions from northcentral Alaska that document frequent fires in 

shrub tundra during the late-glacial and early-Holocene periods (14-10 ka BP [ka BP = thousand years 

before present, CE 1950]). Vegetation and climate controls of these unusual fire regimes are inferred from 

paleo-vegetation records from each of two sites and from regional paleo-climate interpretations for this 

period. We also present an analysis of the climate space occupied by modern tundra vegetation and modern 

tundra fires in Alaska (CE 1950-2004; Fig. 1). This analysis provides additional support for the climate-fire 

relationships inferred from the paleo-data. 

 

Results 

Trends in charcoal accumulation rates (pieces cm-2
 yr-1, CHARs) correspond markedly with shifts in pollen 

assemblages at Xindi and Ruppert lakes (Fig. 2). Both records start in herb–dominated tundra (Herb Tundra 

Zone), indicated by high pollen percentages of Cyperaceae (sedge), Poaceae (grass), and minor herb taxa 

(e.g. Artemisia [wormwood], data not shown). Raw CHARs are low (medians = 0.01 and 0.00 pieces cm-2
 

yr–1) with few identified peaks in the detrended series (Fig. 2), suggesting little or no burning in the late-

glacial herb tundra near these sites. Increases in CHARs (medians = 0.05 and 0.02 pieces cm-2 yr-1) and the 

frequency of peaks in the detrended series coincide with a prominent rise in Betula pollen percentages (from 

< 5 to 50-75%; 14.3 and 13.3 ka BP at Xindi and Ruppert lakes, respectively), which marks the expansion of 

Betula shrubs in the study area (Fig. 2). These pollen assemblages (Shrub Tundra Zone) have higher Betula 

percentages than pollen assemblages from modern tundra in North America [13] (e.g. 70% vs. 40%) and are 

thought to represent extensive thickets of tall (>1 m) Betula glandulosa [resin birch, inferred from 

measurement of pollen morphology, 14]. The inferred vegetation of the Shrub Tundra Zone contrasts with 



modern circumarctic tundra, where only 12% of the area contains shrubs as tall as 0.4 m [i.e. Low-shrub 

tundra; 15]. However, the vegetation structure of the Shrub Tundra Zone may be analogous to future Arctic 

tundra, which is predicted to have a major component of > 0.5-m tall Betula, Salix (willow), and Alnus 

(alder) shrubs [10,16]. Deciduous woodlands (Deciduous Woodland Zone), identified by samples with >10-

20 % Populus pollen, characterized the vegetation from 10.5-9.0 ka BP (Fig. 2). As in the Herb Tundra 

Zone, the low raw CHARs (medians = 0.02 and 0.01 pieces cm-2 yr-1) and few peaks in the detrended series 

suggest less frequent fires as compared to the Shrub Tundra Zone. 
 

Estimated fire frequencies within the Shrub Tundra Zone (Figs. 2, 3) were much higher than in modern 

tundra [9,11] (Fig. 1). Fire events (i.e. CHAR peaks) occurred on average (95% CI) every 171 (134-212) 

years at Xindi Lake and 137 (107-171) years at Ruppert Lake, with high variability around these means 

(FRIs range from 30-360 yrs; Fig. 3). FRI distributions at these two lakes were statistically indistinguishable 

during this period (p = 0.60, n = 24, 20) and from FRI distributions in late-Holocene boreal forests at 

Ruppert, Code, and Wild Tussock lakes (p ranges from 0.29-0.99, n ranges from 20-39; Fig. 3)1. The fire-

vegetation relationships observed  at Ruppert and Xindi lakes during the Shrub Tundra Zone are likely 

regional in scale, as this tundra type is documented in a large network of pollen and macrofossil records in 

northcentral Alaska [12,13,17], and high fire activity has been qualitatively inferred from discontinuous 

charcoal records at other sites in interior Alaska [18,19] (Fig. 1b). 

 

Discussion  

High fire frequencies in the ancient shrub tundra prompt questions about the relative roles of vegetation 

(fuels) and climate (summer temperature and precipitation) in controlling fire regimes in the Shrub Tundra 

Zone and the implications of this natural experiment for understanding future environmental change in the 

Arctic. Climate is perhaps most often invoked to explain past changes in fire regimes. However, the 
                                                

1 Charcoal records from Ruppert, Code, and Wild Tussock lakes for the past 5.5 ka are presented in Supporting 
Information.  



influence of climate on the fire regime in the Shrub Tundra Zone is not straightforward. Near the end of 

Betula shrub dominance and afterwards (ca 11.5-9.0 ka BP), summer temperatures in northern Alaska may 

have approached or exceeded modern levels [20]. However, such a temperature rise cannot explain the 

increase in fire frequencies at the beginning of the Shrub Tundra Zone, ca 14.0-12.0 ka BP. In contrast, paleo 

climate proxies [13] suggest that this period was characterized by cooler-than-present summers. 

Furthermore, lowered lake levels in interior Alaska indicate effective moisture conditions that were drier 

than present throughout the Shrub Tundra Zone [21]. Because summer temperatures were cooler than 

modern, low effective moisture must have been a key factor facilitating the fuel drying necessary to maintain 

high fire activity within the ancient shrub tundra. The importance of low effective moisture for facilitating 

tundra burning is evident in the pattern of tundra fires that burned in Alaska between CE 1950-2005. These 

fires were significantly skewed to tundra regions with relatively dry and/or warm summer climate 

conditions, i.e. with mean June precipitation between 20-30 mm and mean June temperature between 6-10°C 

(Fig. 4). 

 

Given our current understanding of the late glaciation and early Holocene, increased burning in the Shrub 

Tundra Zone was not a simple function of climate change. The distinct increase in CHARs and CHAR peaks 

at the onset of the Shrub Tundra Zone suggests that vegetation was a key element facilitating fires. The tall 

growth form, small stem diameters, and highly resinous twigs of B. glandulosa [22] make it susceptible to 

fire on modern landscapes [23], and a widespread cover of B. glandulosa in the past would have created the 

continuity of flammable fuels necessary for fire spread. In addition, vigorous sprouting following fires [23] 

would have provided the regeneration necessary to sustain fire frequencies similar to those of modern boreal 

forests (Fig. 3). Based on paleo and modern evidence of tundra fire occurrence and corresponding climatic 

conditions, the role of fuels is central to understanding past and future shifts in fire regimes. In the case of 

the Shrub Tundra Zone, the combination of abundant flammable fuels and low effective moisture 

overwhelmed the mitigating effects of low temperatures on landscape flammability. 



 

Overall, paleo-records from northcentral Alaska imply that ongoing shrub expansion and climate change will 

result in greater burning within northern tundra ecosystems. The geographic extent of fire-regime changes 

could be quite large, as shrubs are expected to expand over the next century in both herb and low shrub 

tundra ecosystems, which comprise 67% of circumpolar Arctic tundra [10,15] (Fig. 1). Over this same 

period, annual temperatures in the Arctic are projected to increase between 3-5 °C over land, lengthening the 

growing season and likely decreasing effective moisture (in spite of increased summer precipitation) [8]. 

How long might it take for the current shrub expansion to trigger a significant change in fire frequencies? 

Within the chronological limitations of our records, past shrub expansion and fire-regime change occurred 

within a few centuries (Fig. 2). The duration of this shift is consistent with the estimated rate of shrub 

expansion within a large area of northern Alaska [0.4% yr-1 for ca 200,000 km2; 10]. Based on a simple 

logistic growth model and the assumption of a constant expansion rate, Tape et al. [10] hypothesize that the 

ongoing shrub expansion in this region started roughly 125 years ago and should reach 100% of the region in 

another 125 years. Thus, if fuels and low effective moisture are major limiting factors for tundra fires, we 

predict that fire frequencies will increase across modern tundra over the next several centuries. 

 

Although our fire-history records provide unique insights into the potential response of modern  tundra 

ecosystems to climate and vegetation change, they are imperfect analogs for future fire regimes. First, 

ongoing vegetation changes differ from those of the late-glacial period: several shrub taxa (Salix, Alnus, and 

Betula) are currently expanding into tundra, whereas Betula was the primary constituent of the ancient shrub 

tundra. The greater flammability of Betula compared to Alnus and Salix could make future shrub tundra less 

flammable than the ancient shrub tundra. Second, mechanisms of past and future climate change also differ. 

In the late-glacial and early Holocene periods, Alaskan climate was responding to shrinking continental ice 

volumes, sealevel changes, and amplified seasonality arising from changes in the seasonal cycle of insolation 

[13]; in the future, increased concentrations of atmospheric greenhouse gases are projected to cause year-



round arctic warming, but with a greater increase in winter months [8]. Finally, we know little about the 

potential effects of a variety of biological and physical processes on climate-vegetation-fire interactions. For 

example, permafrost melting as a result of future warming [8] and/or increased burning [24] could further 

facilitate fires by promoting shrub expansion [10], or inhibit fires by increasing soil moisture [24]. 

 

Despite these uncertainties, Alaskan paleo-records provide clear precedence of shrub-dominated tundra 

sustaining higher fire frequencies than observed in present-day tundra. The future expansion of tundra shrubs 

[10,16] coupled with decreased effective moisture [8] could thus enhance circumarctic burning and initiate 

feedbacks that are potentially important to the climate system. Feedbacks between increased tundra burning 

and climate are inherently complex [3-5], but studies of modern tundra fires suggest the possibility for both 

short and long term impacts from (1) increased summer soil temperatures and moisture levels from altered 

surface albedo and roughness [24], and (2) the release ancient soil carbon through increased permafrost thaw 

depths and the consumption of the organic layer [24,25]. Given the importance of land-atmosphere 

feedbacks in the Arctic [26-28], the precedence of a fire-prone tundra biome should motivate further 

research into the controls of tundra fire regimes and links between tundra burning and the climate system.  

 

Materials and Methods 

Lake sediment cores 

We reconstructed fire and vegetation history from macroscopic charcoal and palynological data preserved in 

sediments from four lakes in the southern Brooks Range (Fig. 1b). Ruppert Lake (3 ha; N 67°04’16”, W 

154°14’45”; 230 m asl) and Xindi Lake (7 ha; N 67°04’42”, W 152°29’30”; 240 m asl) have records 

spanning the late-glaciation and early-Holocene (15-9 ka BP). Both sites are surrounded today by boreal 

forest. Additionally, late-Holocene (last 5.5 ka BP) charcoal records from Ruppert, Code (2 ha; N 67°09’29”, 

W 151°51’40”; 250 m asl), and Wild Tussock (15 ha; N 67°07’40”, W 151°22’55”; 290 m asl) lakes provide 

information about fire regimes from modern boreal forest [as defined by 17] for comparison with late-glacial 



and earlyHolocene records. 

 

Two parallel, overlapping sediment cores were collected from the center of each lake in summer 2001 

(Code), 2002 (Ruppert), and 2003 (Xindi, Wild Tussock) using a modified Livingstonetype piston corer [29] 

and sliced at 0.25-0.5 cm intervals in the laboratory. Subsamples of 1 cm3 were prepared at varying intervals 

for pollen analysis according to PALE protocols [30]. Pollen was counted to a terrestrial pollen sum > 300 at 

selected levels and assemblages are displayed as percentages of total terrestrial pollen. Pollen zone 

boundaries, which correspond to pollen zones previously recognized in the region [17], were delineated by 

visual inspection of pollen percentages of major tree, shrub, and herb taxa. For charcoal analysis, 3-5 cm3 

subsamples were taken from contiguous core slices, soaked in sodium metaphosphate for 72 hours, washed 

through a 150 µm sieve, and bleached with 8% H2O2 for 8 hours. Charcoal was identified at 1040 x 

magnification based on color, morphology, and texture [31]. 

 

Chronologies 

Chronologies are based on accelerator mass spectrometry (AMS) 
14

C-dates of Betula (birch) macrofossils, 

concentrated Picea (spruce) pollen grains, and/or concentrated charcoal particles, and all ages are expressed 

as calibrated 14C year before present2. AMS 14C ages were calibrated using CALIB 5.0 and the INTCAL 04 

dataset [32]. Calibrated dates and corresponding confidence intervals represent the 50th, 2.5th 

and 97.5th 

percentiles of the cumulative probability density function of calibrated ages, respectively [33]. Chronologies 

were developed using a weighted cubic smoothing spline in Matlab (The MathWorks, Inc.) with the 

smoothing parameter determined by the average distance (cm) between dates, such that greater sampling 

resulted in a more flexible spline. The inverse of the 95% confidence interval of the 14C date was used for 

weighting.  

Given the density of radiocarbon dates and that CHARs are sensitive to sedimentation rates, we evaluated 
                                                
2 Radiocarbon dates are presented in tabular form in Supporting Information. 



whether general features of the CHAR series at both sites varied significantly when using 5-7 alternative 

age-depth models. In no case did high CHARs or the distinct peaks of the Shrub Tundra Zone disappear. 

Charcoal concentrations (pieces cm-3) are also high in this period, giving us confidence that the high CHARs 

reflect increased charcoal accumulation and are not chronological artifacts. 

 

Statistical treatment of charcoal data 

Peaks in the charcoal accumulation rate (pieces cm-2 yr-1; CHAR) in lake sediment have been shown both 

empirically [34] and through mechanistic models [35] to be associated with the local (0.5-1.0 km) 

occurrence of individual or multiple high-severity fires (“fire events”). Local fires introduce charcoal to a 

lake via airborne fallout and create distinct CHAR peaks that exceed variability around a long-term trend. 

This characteristic can be taken advantage of in many charcoal records to infer when local fires occurred in 

the past. We estimated the timing of fire events in our charcoal records by removing low-frequency trends 

(reflecting changes in the rates of charcoal production, secondary transport, sediment mixing, and sediment 

sampling) and applying a locally-defined threshold value that separates fire-related CHAR peaks (“signal”) 

from non-fire-related variability in CHARs (“noise”). Our approach accounts for both changes in the mean 

and variance in charcoal accumulation through time and the statistical nature of charcoal counts. 

 

Prior to quantitative analysis, charcoal data were interpolated to constant 15-yr time steps, approximating the 

median temporal resolution of each record. Low-frequency trends in CHARs, Clow-frequency, were 

estimated by the 500-yr running median, smoothed with locally-weighted regression (also with a 500-yr 

window). We subtracted Clow-frequency from the raw charcoal series to obtain a residual “peak” series, Cpeak. 

For each record, we selected a threshold value t that identifies charcoal peaks when Cpeak > t. Our threshold 

criterion assumes that fires create charcoal peaks that exceed Cpeak variations related to sediment mixing, 

sediment sampling, and analytical noise, and that this variability changes on time scales > 500 years. Thus, 

for each 500yr period, we assume that the distribution of Cpeak values contains two sub-populations, Cnoise 



and Cfire. Cnoise is a normally distributed population centered near 0 (i.e. Clow-frequency); Cfire samples are the 

high CHARs caused by local fires and consist of positive Cpeak values exceeding the variation in Cnoise. We 

used a Gaussian mixture model to identify the mean and variance of the Cnoise distribution [36] and used the 

99th percentile of this distribution as the threshold value. For all records, this procedure was done for each 

overlapping 500-yr period, producing a unique threshold for each sample. Individual thresholds for each 

sample were smoothed with a locallyweighted regression (to 500 yr). Finally, all peaks exceeding the 

locally-defined threshold were screened based on the original charcoal counts contributing to each peak. If 

the maximum count contributing to a CHAR peak had a > 5% chance of coming from the same Poisson-

distributed population as the minimum charcoal count within the proceeding 75 years, then the “peak” was 

not identified [e.g. Charster user’s guide, accessed September 2007, 

http://geography.uoregon.edu/gavin/charster/Analysis.html; 37]. Our charcoal analysis methods are 

contained within the program CharAnalysis, written by PEH and available online at 

http://CharAnalysis.googlepages.com. 

 

Quantifying fire regimes 

We used dates of estimated fire events to calculate fire return intervals (years between fire events; FRIs) and 

fit a two-parameter Weibull model to the distribution of FRIs within each vegetation zone using maximum 

likelihood techniques [38]. Each Weibull model passed a Kolmogorov-Smirnov goodness-of-fit-test (p > 

0.10), and we estimated 95% confidence intervals for the Weibull scale, b, and shape, c, parameters based on 

1000 bootstrapped samples from each population. Confidence intervals for the mean FRI were calculated in 

the same manner. 

 

We used a likelihood ratio test, based on likelihood values of the Weibull model fit to the FRI data, to test 

the null hypothesis that two FRI distributions were similar [38,39]. The probability of Type I Error, p, was 

estimated using a permutation test, and the null hypothesis was rejected if p < 0.05. 



 

Climate space of modern tundra and tundra fires 

The climate space occupied by modern tundra vegetation and tundra fires was quantified using tundra 

classification data from the Circumpolar Arctic Vegetation Map [15], temperature and precipitation data 

from the Global Historical Climatology Network [W. Cramer, W. University of California-

Berkeley/Integrative Biology and U.S. Geological Survey/Alaska Geographic Science Office. (2006) 

accessed on-line in January 2007: http://agdc.usgs.gov/data/projects/hlct/hlct.html#A], and area burned data 

from the Alaska Fire Service [accessed on-line in January 2007: 

http://agdc.usgs.gov/data/blm/fire/index.html]. Each dataset was imported into a raster-based geographic 

information system with a 1 km2 cell size. Climate space was determined based on the average June 

precipitation and average June temperature values from all cells with: (1) CAVM classification of tundra, 

and (2) burned cells with a CAVM classification of tundra. 
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Figure Captions 

Figure 1. (a) Distribution of modern circumpolar Arctic tundra [15]. Black rectangles indicate regions 

showing increases in modern shrub densities and/or extent [10]. (b) Alaskan fires from  1950-2005 (red 

polygons) in tundra and boreal forest. Fires occurred in only 3% percent of Alaskan tundra, representing 6% 

of the total area burned in the state. Blue dots identify study lakes: Ruppert (RP), Xindi (XI), Code (CO), and 

Wild Tussock (WK). Charcoal from Sithylemenkat Lake [19] (1) and Lost Lake [18] (2) also show 

qualitative evidence of increased fire activity within the Shrub Tundra Zone.  

 

Figure 2: Chronology, pollen stratigraphy, inferred vegetation, and high-frequency variations in charcoal 

accumulation rates (CHARs) for (a) Xindi Lake and (b) Ruppert Lake. Pollen percentage curves are 

smoothed to 500 years and color coded. CHAR records represent residuals after removing 500-year trends. 

Red lines around CHAR = 0 are thresholds identifying noiserelated variations in CHARs; red plus marks 

identify CHAR peaks exceeding this noise-related threshold and are interpreted as local fire events. CHARs 

and CHAR peaks increase distinctly with the rise in Betula pollen percentages, marking the transition from 

the Herb Tundra Zone to the Shrub Tundra Zone. 

 

Figure 3: Fire return intervals (FRIs) from the Shrub Tundra Zone at (a) Xindi and (b) Ruppert lakes with 

Weibull models (blue lines). Weibull b (yr) and c (unitless) parameters, and the mean FRI (mFRI; yr) all 

include 95% confidence intervals. (c) Weibull models from the Shrub Tundra Zone (blue solid lines) and the 

conifer-dominated Boreal Forest Zone (black dashed lines). The Weibull b and c parameters, and mFRI for 

Ruppert (boreal forest), Code, and Wild Tussock lakes are 188 (147-239), 150 (123-178), and 149 (123-

174); 1.53 (1.31-2.06), 1.85 (1.52-2.60), and 1.96 (1.61-2.75); 171 (135-216), 135 (113-160), and 135 (113-



157). 

 

Figure 4: Climate space occupied by all Alaskan tundra in the circumpolar Arctic vegetation map [15] 

(CAVM, gray) and area burned (red) within the same region from CE 1950-2005. Darker colors represent a 

greater proportion of total tundra vegetation (gray) or total area burned (red) within the climate space. Mean 

June temperature and precipitation distributions associated with tundra vegetation and area burned are shown 

as histograms and box plots. For both temperature and precipitation, distributions for vegetation and area 

burned differ significantly based on a Kolmogorov Smirnov test with Nfires = 232 degrees of freedom (p < 

0.01).  
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Supporting Information  

  

Table S1. Radiocarbon dates and calibrated ages for Ruppert, Xindi, Code, and Wild Tussock  

lakes.  

  

  
Material Dated Laboratory ID1

Calibrated 
date3 

16.60 - 17.60 concentrated charcoal CAMS 106161 600 ± 100 594 475 - 743
26.48 - 27.20 concentrated charcoal CAMS 110400 1170 ± 35 1088 1002 - 1190

30.5 - 31.5 concentrated charcoal CAMS 106160 1150 ± 60 1065 904 - 1175
41.17 - 42.13 concentrated charcoal CAMS 111400 1505 ± 40 1388 1266 - 1461
45.98 - 46.71 concentrated charcoal CAMS 110401 1740 ± 35 1648 1542 - 1739
57.78 - 58.75 con. charcoal & Picea  needle CAMS 111401 2185 ± 40 2210 2104 - 2352

78.5 - 79.5 concentrated charcoal CAMS 110948 3000 ± 60 3185 3029 - 3379
86.5 - 87.0 concentrated charcoal CAMS 111402 3145 ± 35 3369 3285 - 3466
99.0 - 100.0 concentrated Picea  pollen CAMS 100063 3860 ± 45 4281 4155 - 4429

100.0 - 101.0 con. charcoal & Picea  needle CAMS 110949 3770 ± 40 4137 4004 - 4275
115.2 - 115.6 concentrated charcoal CAMS 110402 5050 ± 45 5812 5720 - 5952
160.5 - 161.0 concentrated charcoal CAMS 110950 6350 ± 110 7266 7077 - 7556
206.5 - 207.5 concentrated charcoal CAMS 113762 7460 ± 110 8256 8082 - 8478
298.0 - 300.5 con. charcoal & Betula  leafs CAMS 122361 8710 ± 40 9654 9446 - 9750
324.5 - 326.5 concentrated charcoal CAMS 111403 10220 ± 160 11939 11159 - 12549
380.5 - 381.5 concentrated charcoal CAMS 110951 10740 ± 80 12820 12610 - 13239
423.9 - 427.4 concentrated charcoal CAMS 122362 10870 ± 80 12860 12749 - 12952

10.5 - 12.0 concentrated charcoal CAMS 113558 1240 ± 70 1159 1036 - 1323
24.0 - 25.5 concentrated charcoal CAMS 116226 3490 ± 35 3956 3940 - 3963
31.0 - 32.0 concentrated Picea  pollen CAMS 105876 4930 ± 90 5679 5472 - 5877
32.0 - 33.0 concentrated charcoal CAMS 112145 4560 ± 120 5208 4860 - 5527
43.0 - 43.5 concentrated charcoal CAMS 113559 4760 ± 70 5493 5377 - 5656
51.0 - 52.0 concentrated charcoal CAMS 116227 5960 ± 60 7153 7144 - 7156
85.5 - 87.5 wood macrofossil CAMS 106159 9585 ± 40 10907 10685 - 11083

127.0 - 127.5 concentrated charcoal CAMS 114331 10180 ± 120 11844 11332 - 12330
167.5 - 168.5 concentrated charcoal CAMS 114332 11800 ± 120 13648 13391 - 13903
183.5 - 184.5 concentrated charcoal CAMS 114333 11570 ± 300 13456 12833 - 13961

8.50 - 9.00 concentrated charcoal CAMS 116841 405 ± 40 534 513 - 537
31.00 - 31.50 concentrated charcoal CAMS 114723 1295 ± 35 1235 1182 - 1325
49.00 - 49.50 concentrated charcoal CAMS 114724 2275 ± 30 2305 2266 - 2443
59.25 - 60.00 concentrated charcoal CAMS 116840 2805 ± 40 3154 3104 - 3167
86.25 - 87.00 wood macrofossil CAMS 80792 4155 ± 40 4691 4560 - 4833
96.50 - 97.50 concentrated charcoal CAMS 116839 4875 ± 35 5742 5630 - 5746

123.00 - 123.50 wood macrofossil CAMS 80794 6555 ± 40 7462 7367 - 7552

31.00 - 31.25 concentrated charcoal CAMS 112143 1895 ± 45 1845 1737 - 1955
53.25 - 53.75 concentrated charcoal CAMS 113763 2880 ± 60 3012 2820 - 3167
69.25 - 70.75 concentrated charcoal CAMS 122363 3360 ± 35 3601 3516 - 3714

116.00 - 116.50 concentrated charcoal CAMS 112144 4920 ± 70 5671 5461 - 5831
111.75 - 113.75 concentrated charcoal CAMS 116228 4590 ± 50 5578 5572 - 5580
132.75 - 133.50 concentrated charcoal CAMS 116229 5660 ± 120 6991 6833 - 7013

Code Lake

1CAMS: Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA. 
2Conventional radiocarbon years before present (CE 1950) and standard deviation. 3See Methods.

95% CI

Xindi Lake

Wild Tussock Lake

Sample depth 
(cm)

Ruppert Lake

14C date2       

(yr BP)



 

 

Figure S1. High-frequency trends in the charcoal accumulation rate (CHAR), Cpeak, within the  
Boreal Forest Zone (5.5 ka BP – present) at Ruppert, Code, and Wild Tussock lakes. Red lines  
represent modeled variations in Cnoise, and plus marks identify peaks interpreted as local fire  
events. See Methods and Materials for details.  
  


