A novel method to develop an otolith microchemistry model to determine striped bass habitat use in the San Francisco Estuary

PDF Version Also Available for Download.

Description

Otolith Sr/Ca has become a popular tool for hind casting habitat utilization and migration histories of euryhaline fish. It can readily identify habitat shifts of diadromous fish in most systems. Inferring movements of fish within estuarine habitat, however, requires a model of that accounts of the local water chemistry and the response of individual species to that water chemistry, which is poorly understood. Modeling is further complicated by the fact that high marine Sr and Ca concentrations results in a rapid, nonlinear increase in water Sr/Ca and {sup 87}Sr/{sup 86}Sr between fresh and marine waters. Here we demonstrate a novel ... continued below

Physical Description

4 p. (0.1 MB)

Creation Information

Phillis, C C; Ostrach, D J; Gras, M; Yin, Q; Ingram, B L; Zinkl, J G et al. June 14, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Otolith Sr/Ca has become a popular tool for hind casting habitat utilization and migration histories of euryhaline fish. It can readily identify habitat shifts of diadromous fish in most systems. Inferring movements of fish within estuarine habitat, however, requires a model of that accounts of the local water chemistry and the response of individual species to that water chemistry, which is poorly understood. Modeling is further complicated by the fact that high marine Sr and Ca concentrations results in a rapid, nonlinear increase in water Sr/Ca and {sup 87}Sr/{sup 86}Sr between fresh and marine waters. Here we demonstrate a novel method for developing a salinity-otolith Sr/Ca model for the purpose of reconstructing striped bass (Morone saxatilis) habitat use in the San Francisco Bay estuary. We used correlated Sr/Ca and {sup 87}Sr/{sup 86}Sr ratios measurements from adult otoliths from striped bass that experienced a range of salinities to infer striped bass otolith Sr/Ca response to changes in salinity and water Sr/Ca ratio. Otolith {sup 87}Sr/{sup 86}Sr can be assumed to accurately record water {sup 87}Sr/{sup 86}Sr because there is no biological fractionation of Sr isotopes. Water {sup 87}Sr/{sup 86}Sr can in turn be used to estimate water salinity based on the mixing of fresh and marine water with known {sup 87}Sr/{sup 86}Sr ratios. The relationship between adjacent analyses on otoliths of Sr/Ca and {sup 87}Sr/{sup 86}Sr by LA-ICP-MS and MC-ICP-MS (r{sup 2} = 0.65, n = 66) is used to predict water salinity from a measured Sr/Ca ratio. The nature of this non-linear model lends itself well to identifying residence in the Delta and to a lesser extent Suisun Bay, but does not do well locating residence within the more saline bays west of Carquinez Strait. An increase in the number of analyses would improve model confidence, but ultimately the precision of the model is limited by the variability in the response of individual fish to water Sr/Ca.

Physical Description

4 p. (0.1 MB)

Notes

PDF-file: 4 pages; size: 0.1 Mbytes

Source

  • Presented at: 4th Biennial CalFed Science Conference, Sacramento, CA, United States, Oct 23 - Oct 25, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-222294
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 929162
  • Archival Resource Key: ark:/67531/metadc902021

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 14, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • April 13, 2017, 6:05 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Phillis, C C; Ostrach, D J; Gras, M; Yin, Q; Ingram, B L; Zinkl, J G et al. A novel method to develop an otolith microchemistry model to determine striped bass habitat use in the San Francisco Estuary, article, June 14, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc902021/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.