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Abstract. We consider a charged porous material that isat@i by two fluid phases that are
immiscible and continuous at the scale of a repritesige elementary volume. The wetting phase
for the grains is water and the non-wetting phasassumed to be an electrically insulating
viscous fluid. We use a volume averaging approadatetive the linear constitutive equations for
the electrical current density as well as and #epage velocities of the wetting and non-wetting
phases at the scale of a representative elemertdeyne. These macroscopic constitutive
equations are obtained by volume-averaging Ampéiais together with the Nernst-Planck
equation and the Stokes equations. The materiglepties entering the macroscopic constitutive
equations are explicitly described as a functiothefsaturation of the water phase, the electrical
formation factor, and parameters that describe dagillary pressure function, the relative
permeability function, and the variation of elecaticonductivity with saturation. New equations
are derived for the streaming potential and elessmosis coupling coefficients. A primary
drainage and imbibition experiment is simulated atically to demonstrate that the relative
streaming potential coupling coefficient dependsardy on the water saturation, but also on the
material properties of the sample as well as theraon history. We also compare the predicted
streaming potential coupling coefficients with espeental data from four dolomite core
samples. Measurements on these samples includeicgkeconductivity, capillary pressure, the
streaming potential coupling coefficient at varidasel of saturation, and the permeability at
saturation of the rock samples. We found a verydgagreement between these experimental data
and the model predictions.

Keywords: Electro-osmosis, streaming potential, Stokes egoatNernst-Planck equation,

porous media, clay, saturation, capillary pressure.



1. Introduction

In a recent paper, Revil and Linde [1] derived dineonstitutive equations of transport for a
multi-component electrolyte saturating a porousemalk that undergoes reversible deformation.
They used the excess of electrical charge in the ppace to model electrokinetic processes
rather than the zeta-potential as traditionallyedlby most authors. Modeling based on the excess
of charge has also been used to study the diffusioonic species in bentonite and clay-rocks,
and to understand the streaming potential sigmatee Callovo-Oxfordian clayrock of the Paris
basin [2].

The model by Revil and Linde [1] was restrictedfudy water-saturated materials. In this
paper, we extend the electrokinetic part of theadel to unsaturated porous materials under two
phase flow conditions. We neglect the filteringeeffassociated with the transport of the ionic
species, i.e., we model only the electrical curdentsity and the seepage velocities of the wetting
and non-wetting phases. We assume that the wettiage for the solid is water and that the non-
wetting phase is insulating (e.g., air or oil) antmiscible with the former. Both phases are
assumed to be continuous at the scale of a repatisenelementary volume of the porous
material.

There are many applications where models of elkictetic processes that occur in
unsaturated porous media are needed. In geoscjeagamples include water transport in
unsaturated parts of the porous soils [3, 4, 5lhitnang of the oil / water interface in reservoir
engineering [6, 7], remediation (by electro-osmqiiomping) of soils contaminated by non-
aqueous phase liquids (NAPLSs) [8], monitoring of £&ZB8quenstration in the ground, healing of
cracks of unsaturated clay-rocks by electro-osmatimping in civil engineering, and the study
of diffusion of ionic species in unsaturated clagks used as host formations for long-term

storage of toxic wastes. To the best of our knogéeaur model is the first rigorous attempt to



derive the governing equations that describe thiecefof water saturation upon streaming
potential and electro-osmosis. A less rigorousvadion of the governing equation for streaming
potentials in unsaturated media was recently ptedeby Linde et al. [9] who also compared
laboratory experiments from a primary drainage erpent of a saturated sand column to new
theory.

This paper is organized as follows. In Section 2 present the reference state of an
unsaturated porous material at rest in thermodyma&quilibrium. In Section 3, we describe the
local equations (Nernst-Planck equation, Amperais, land Stokes equations) that govern
transport of each fluid phase and electrical crathpeough the connected porous medium. In
Section 4, we volume-average these local equatibitbe scale of a representative elementary
volume. The final constitutive and continuity eqaas are summarized in Section 5. Hysteresis
of the streaming potential coupling coefficientligstrated in Section 6 by simulating a synthetic
primary drainage and imbibition experiment. In 8&tt7, the predicted variation of the
streaming potential coupling coefficients for diffat water saturations are compared with a set

of experimental data made on dolomite rock samples.

2. The Reference State

We consider a charged stress-free porous mateitedie the surface of the grains has a
fixed electrical charge. This fixed charge is cenbalanced by a countercharge located in the
water saturated portion of the pore space (Figlwr@He charged porous medium is assumed to
under thermodynamic equilibrium conditions. Thequs material is saturated by two immiscible
phases, a wetting phase (assumed to be water) andnavetting phase (assumed to an
electrically insulating phase, such as air or oifhe water phase is assumed to be in
thermodynamic equilibrium with an infinite resemvaif ions. This reservoir of ions include

different species (including possibly non-ionic @ps). The saturation of the water phase is



defined by ) =V.?/V, where V. (in m®) denotes the volume of the water phase in the
representative elementary volumeé(in md). In the reference state, the volumetric fractiohs
wetting (v) and non-wetting phases) (with respect to the pore volume are writtgh and s’

respectively. As only two fluids are present, wgéhthe saturation condition:

Suts =1 (1)

The water content in the reference staté,is S.@, whereg is the porosity.

The charge densitﬁ,w (in units of C M) is defined as the excess of charge per unit
pore volume at full water saturation [9, 10, 11]Je Weglect the charge density that is associated
with the interface between the wetting and the wetting phases, since it is small in comparison
with the charge density associated with the poreemsolid interface [9]. The charge density
Q & is related to the concentration of spediger unit volume of waterC® by the following
relationship

N

ZQiCiO =Q\/,§1t/5\2’ ©)

i=1

where Q, /s, represents the excess of electrical charge pewvahime of water and; is the
charge (in C) of the ionic speciesThis means that the smaller the water saturati@higher
the volumetric charge density in the water sataratee space of the medium (see Figure 1). The

charge balance condition in the porous mediumy poi@ny disturbance, is

Q 1

Qé? .,.\WSSNQS =0, (3)
where Q, is the total surface charge density (in @)nat the solid-water interface. This charge
density consists of the fixed charge density ofsble surface of the solid and the charge density

of the Stern layer (see Figure 1). In Eq. (8), (in m?) denotes the surface area of the solid-



water interface and/. (in m®) denotes the volume of the water phase in theesemtative
elementary volume. The solid and the non-wettingsgls are assumed to be electrical insulators.
However, because we include the Stern layer asopahe solid phase (Figure 1), the surface of
the solid is conductive and is responsible fordbesalled "surface conductivity” (e.g., [12, 13]).
The ionic concentrations in the pore water of thedimm obeys the Boltzmann

distributions (e.g., [2]),

£0 = Coexpl — 4%
G =G exp( kaj, (4)

where C° is the average concentration of spedida the infinite reservoir of ions in local
equilibrium with the pore water contained in theuded porous mediun@, (in V) is the mean
electrical potential in the water phaggijs the Boltzmann constant (1.38110%° J K*%), andT is

the absolute temperature of the medium (in K). Deenotic pressure in the water phase is

defined by

Ty = I_J\?v - p\?\,, )]
where p_ is the pressure of the wetting phase (in Pa) afydis the pressure of the infinite

reservoir of ions (in Pa). The osmotic pressuigivsn by (e.g., [1, 2]),

7, = kai(c_:f’ -c?), (6)

The osmotic pressure is given by [1],

7= kT CE [1— ex{—%ﬂ , ™

i=1

where Eq. (7) results from Egs. (4) and (6). Thk bharge density is given by,
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Solving Eq. (8) for the mean electrical potentrathe pore space given the charge der@i;ym
and the concentration of the ions in the ionic masie implies that the strength of the electrical
potential @, when the water saturation decreases. In turn,@ease of the mean potential in Eq.
(7) implies an increase of the osmotic pressutbenvetting phase.

The local electrical field in the pore watEf, = -00@, is mainly tangential to the surface
of the grain surfacen xE> =0), wherens is the unit vector normal t§_, and directed from the
water to the solid phase. In the thermostatic sthiere is no gradient of the electrochemical

potentials of the ions in the pore space, i.e.,
k,T OC’ +qCE}, =0. 9
The equilibrium capillary pressure is defined py = p° - (p? - 7z,) and it is a function
of the water saturation and the water saturatistohy.
3. Local Equations
We now consider the non-equilibrium situation inieththe water and the non-wetting
phases are moving through the porous medium. \Begdnesent the local constitutive equations

in each phase’D{s,w, n}, wheres, w, andn represent the solid, wetting, and non-wetting phas

respectively.

3.1. Ampére’s Law

In the quasi-static limit of the Maxwell equatiotise local Ampeére's law is

OxH,=]j,, (10)

whereH is the magnetic field (in A M) andj¢is the current density in each phase (in Am



The current density in the water phage (in A m?) is determined from the Nernst-Planck

equation,

i, :ZNl:qi [— k,ThOC, +hqCE, + agtW] (11)
The mobilitiesb, (in N s n11) entering Eq. (11) are related to the mobilit@s(in m? s1V-1)
used by Revil and Leroy [10] by = 8 /|qi| and to the ionic self-diffusion coefficienf3 used
by Samson et al. [11] b, =k, Th.

The current density, of the solid phase is due to electrical conductiothe Stern layer
coating the insulating grains. For clay materiks,oy and Revil [12] and Leroy and Revil [13]
presented a double layer model to determine thetrelal conductivity associated with electro-
migration of the ions in the Stern layer.

The boundary conditions at the interfag are

n x(E,-E,)=0, (12)
nSX(HS_HW):QSVS’ (13)
ngWis-j.) =0, (14)

where v, =0du /0t is the instantaneous velocity of the solid phas# @& the displacement of
the solid phase.
The boundary conditions at the interfag, separating the non-wetting phase and water

are
n,x(E,-E,) =0, (15)
n,x(H,-H,)=QVv,, (16)

n, [, -j.) =0, (17)



where n, is the normal toS,, directed from the water to the non-wetting phases ou, /ot is
the instantaneous velocity of the non-wetting phaseé u, is the displacement of the non-
wetting phase. We assume that the surface charggtylat the interface between water and the
non-wetting phase is negligible (see [9]), andef@e Q; = Oandj, = O

The concentration of the ionic species in the wptease, the local electrical field in the

water phase, and the magnetic field in ph@aee written as the sum of two terms,

G :(_:io +C , (18)
E, =E +e,, (19)
H5=H?+hf, (20)

where the first term represents the state varigbtbe reference state (see Section 2), while the
second term represents a small deviation fromstiai® caused by a pressure or electrical current
disturbance.

As we neglect salt filtering associated with flak the water phase (see [2] for the
modeling of salt filtering effects at full watertseation), the average concentration perturbation
is ¢ =0. In addition, we assume that there is no magrfegid in the thermostatic case and
thereforeH? =0, Ampere’s law (Eq. 10) becomésxh, =j,.

By keeping only the first-order leading terms insE¢18)-(20) and using Eqg. (9), the

constitutive equation for the electrical currentsity in the pore fluid (see Eq. 11) becomes,

=Y o[-k THOC? +hgCo(ES +e,) +Cov,), (21)
i=1 y B B
Jw :Zqi (blqicioew +Ci0Vw)- (22)
=

The boundary conditions for the electric and maigrfetids at the solid-water interfac®,, are:

n x(e,-e,) =0, (23)
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n.x(h,-h,)=Q5v,. (24)

The boundary conditions for the electric and magrfelds at the interface of the two viscous

phasesS,, are

n,x(e,-e,) =0, (25)

n,x(,-h,)=0. (26)
3.2. Mechanical Equations

The Stokes equations for the two fluid phases are

nJ0%v,, - 0p; + 0,9+ (Q, o /8,)€, =0, (27)

17,0%v, —0p, + p,g =0, (28)

whereg is the gravitational acceleration vectq, is the pressure of the wetting phase including
the osmotic pressur@, p, is the pressure of the non-wetting phase, gnds the dynamic
viscosity of phaseé. The termsp,g and (@,w/%)ew represent the gravitational and
electrostatic body forces acting on the water phékere is no electrostatic body force acting on
the non-wetting phase since this phase is assumbd tnsulating. The boundary condition for
the displacement isi;—u, = ®n S, where u, is the displacement of phage On the
interface S, , the boundary condition, —u, = 0@olds. We havep, = p, —(p,, + 77 Where p,

is the capillary pressure.

4. Averaging the Local Equations

4.1. Volume-averaging approach

The local equations are now averaged at the sdaderepresentative elementary volume

(REV) of the porous material. We define the REMhasvolume of the porous material between
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two large-parallel circular disks of arée (in m2) separated by the distange(in m). This
corresponds to the case of a jacketed cylindrigaipde in the laboratory. We assume that there
are macroscopic potential differences between W énd-faces of the REV. The potential
difference across the sample may be either a peesgisfierenceAp of the two fluid phases or an
electrical potential differencA¢ . The unit vector normal to the end faces is dehbigz. By
dividing this potential difference byH, one obtains the equivalent macroscopic field
perpendicular to the end-faces of the REV. We mate unit vector normal to the end faces. The
electrical field at the pore or grain scale obéys e, =0, so the electrical fieldg, can be
derived from scalar electrical potentias=-[1¢, (we use the symbap to represent electrical
potentials within the diffuse layer and the symigofor the electrical potentials associated with

the macroscopic electrical fields). The macroscejectrical field is written as,

=__Ay
z2[E=-=", (29)
AY =¢,(H)-¢:0). (30)

In water, the fundamental Laplace problem is defipg (e.g., [14]),

0%, =0, in Vy, (31)

n r, =0, onS, (32)

n, Or, =0, onSw, (33)
H,onz=H

r,= . (34)
0,onz=0

The electrical potential in the water phase carwb#ten as¢, =F'A¢/H and the electrical
field by e, =-00 AY/H.
A similar boundary-value problem of the normalizdtective potentiall, can be defined in

the non-wetting phase by,
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DZI'n =0, inV,, (35)

n, mr, =0, onSyw, (36)
H,onz=H

r,= . (37)
0,onz=0

The volume average of a quantay (a, is a scalar, a vector, or possibly a tensor) is,

(a) :% [aav, (38)

whereV, is the volume of thé-phase within the REV. Slattery's theorem [14]estahat

1 1
(Oa,) =0(a,) +vs£nsawds+vs{vnnawd8, (39)
1
(Da,) = O(a,) —vsj'nsasds, (40)
- _1
(Oa,) =0O(a,) v S.H[Wnnands, (41)

where dS is an infinitesimal surface volume element. Théuwwetric phase average and the

volumetric total average are defined by (e.g.,)J14]

a, =(ay)/ f,, (42)

A=Y (a)=> fa, (43)
¢ é
where f, is the volumetric fraction of phasg(f, =1-¢ is the volume fraction of the solid

phase,f, = s, is the volume fraction of water, anf] = (1-s,)¢@ is the volume fraction of the
non-wetting phase). This gives,
A=(Q1-9a +s4m,+(1-S,)aE, (44)

4.2. Volume-averaging Ampeére's law
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The macroscopic laws of transport are obtained sigguthe following procedure (see [1,
14]): (1) volume-average the local equations, &) 8lattery's theorem, (3) add the contributions

from the solid and fluid phases, (4) apply boundeoyditions, (5) introduce flow velocities

relative to the water phase,

Vs =V, —vs’ (45)
wn = w _vn 1 (46)

and (6) apply the charge balance condition,
(47)

Qa1
sty =g Q. =0.
V SNQS

w

The microscopic Ampere law xh, =, derived in Section 3.1 is now volume-averaged

in each phase of the porous continuum. This yields

1 .
Dx@k)‘ggﬁkxhﬁs=<k% (48)
Saw
1 1 .
DXGM>+VJﬁSXmﬂS+VJﬁnxmﬂS—OW% (49)
1 _
Dx@%>—v!hnxngs_o. (50)
Summing these three contributions yields
xH+ [noxth, =h)ds=(1,)+ (). 51
Sew
H (52)

OxH=J,

whereJ is the total current density. It is given by
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3=(j,)+ (i) - R, (53)

Eq. (53) follows from Eq. (51) by applying the baany condition Eqg. (24) and using the
electroneutrality condition Eq. (47). The total ramt densityJ can be separated in two

contributions,

3=3,+73,, (54)

where J_ is the conductive current density associated &lt#ttro-migration of ions in pore
water, while J is the streaming current density associated withdrag of the excess charge

contained in the pore water by the flow (see [1] Hi#] for the saturated case).

4.3. Volume-averaging the Conductive Current Densjt

We denotecg,, and g, the electrical conductivity of the pore water ahe electrical
conductivity of a ionic reservoir in local equiliom with the pore space of the medium,

respectively. These two conductivities are defibgd

O = Z qizhcio . (55)
ﬁw = Zqizqc_:io ' (56)

The difference between these electrical condu@wis given by Eqg. (4).

The average conductive current density is

1_ 1
=15 (eav+ia, [e,av 7
v Vf v vaw e, v, (57)
J.=(-9Tg +s90.8,, (58)

By generalizing the analysis of Pride [14] and Rawxd Linde [1], the tortuosity of the water
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phase is defined by

W

e = iE, (59)
aw

1

=1+ [2 T dS+ 4 [zm,r,ds, (60)
a, Vs V,

w sﬂW

where g, is the phase average of the local electrical fielthe water phase anl = -zA¢//H
is the macroscopic electrical field. This macroscapectrical field is also given by
E=le)+(a)+(e), (61)

E=(-9)' + &8, +ol-S,)8,. (62)

The phase average of the electrical fieldcan also be related to the macroscopic electiil

via the tortuosity of the non-wetting phase,

én=iE, (63)
an
1 1
— =1-—|z[h [.dS. 64
. wi T (64)

We now connect the tortuosity of the pore spacéelated to the definition of the electrical
formation factorF at saturation byr = a/¢) with the tortuosities of the wetting and non-uegt
phases. We define, as the local electrical field of the fluid phasehich is given by the
weighted phase average of the electrical fielch wetting phas&, and the phase average of

the electrical field in the non-wetting phageby

& =58, +(1-5)8,. (65)
The electric fieldg, is related to the macroscopic fiekdl by

5 = 1€ (66)
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Combining Egs. (59), (63), (65), and (66), we abtai

Sy 178 (67)

It is seen that the tortuosity of the pore spacisal to the harmonic average of the tortuosities
of each phase weighted by their relative saturation
if we multiply Eq. (67) with the porosity, we caow relate the electrical formation factor

to the tortuosities of the two fluid phases by,

lom/,elos) (68)
F a, a,

The electrical formation factor is often relatedthe porosity by a power-law functiof= ¢ "
(refereed to as Archie's first law [15]), and whé&re m < 3 is called the cementation exponent
[15]. This cementation exponent can be considese@ &ndamental textural property of the

porous medium. The conductive current is written as

J, =0 E-@mpe, - o1-5)8]+sO.8,, (69)
J,=0E+@w,(0,-0.)8, - 1-5,)08,, (70)
= | ms oy Qs e =

‘]c - {Js + aw (UW Us) an a-si|E . (71)

J.=0E, (72)

(0,-0,)- L5 (73)
a,

n

In the conditions where surface conductivity cambglected in Eq. (73), Eq. (73) is equivalent
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to the Archie’s second law,

. 1

imo=%g =2g" 74

limo=""0,=—5]0, (74)
wheren > 1 is called the second Archie’s exponent or theration exponent (e.g., [16] and
references therein). We introduce now the seconthifls exponent in the expression of the

electrical conductivity by using the following clgmof variables

B Lor (75)

We expect that a critical water saturation exatsvhich the water phase is no longer
continuous. In this case, the tortuosity of theavghase goes to infinity and the transport of the
ionic species through the pore water is no longessible. To account for this phenomenon, we
introduce a percolation threshold in the expreseiathe tortuosity of the water phase, which can
be written as a function of the saturation of wated the tortuosity of the pore space according
to Va,=(s,-s;)"'/a ass, 25, and g/a, = Oas s, <s;. Note that this critical water
saturation is not related to the residual wateurséibn, s,,, to be introduced later, which has a
hydrodynamic meaning.

By using Egs. (68), (73), and (75), we obtain fillowing expression for the electrical

conductivity of the porous medium
1 eNn = _
o==[s,~s)a, +(F-1a.] (76)

This equation predicts that as long as the sol@sphs continuous, the influence of the surface
conductivity at the scale of the REV is not semsitio the saturation of water. Eq. [76] (with
s,, =0) was recently used by Linde et al. [17] to intetgointly inverted cross-borehole radar

and electrical resistivity geophysical data to detee transport properties of the sediments
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between boreholes.

The Dukhin number is the ratio of the surface catdity to the pore water conductivity
[18]. We use Eq. (76) to define an effective Dukhimber at unsaturated conditions, Du*, as
the ratio of the surface conductivity to the eleetrconductivity of the pore space, which yields

(F -1)7,
(S, =S8)"00

* =

(77)

Here, the Dukhin number, Du*, is a power-law fuantof the water saturatiors, . It increases
strongly when the water saturation decreases, wiédtribes the growing influence of surface
conductivity at low water saturations. If we dend@ea as the Dukhin number at full water

saturation, Du* is related to Du yu* = Du/(s, —s;,)" .

4.4. Volume-averaging the Streaming Current Density

An expression for the average streaming currensitiein Eq. (54) is now derived

3= 2 [ Y@ vV -, ., 79

35=0Q, a7, -V,). (79)

3, = Qe (80)
Sw

whereU , =¢85, (v, -V, =¢8V,. is the Darcy or seepage velocity of the watersph&q. (80)
predicts that the streaming current density is g the excess charge density in the water
phase times the seepage velocity of this phase. fohnulation avoids the introduction of the
zeta potential in describing the electrokinetic gendies of porous media as done in most
alternative models [3-7]. Our formulation emphasittee role of the velocity of the water phase

in playing a key-role in the electrokinetic propestof the porous material rather than focusing
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on the pressure field of the water phase.

4.5. Volume-averaging the Stokes Equations

The boundary-value problem for the flow of the paater through the porous material is

defined by
n,2%v,, =0p, - 0,0~ (Q, o /S.)e,, (81)
otv, =0, (82)
v,=0,0nS,, (83)
_ {Ap, onz=H (84)
0,onz=0

We separate the fluid velocity into mechanica[;J and electrical ;) contributions and we

assume that the velocities can be superimposedl4peas

vV, = VotV . (85)

The mechanical contribution to fluid flow can beasted in terms of the fundamental Stokes

problem,
O%g,, =0h, (86)
O, =0, (87)
g,=0,onS,, andS,,, (88)
_ {H, al z=H 89
~ |0, atz=0 (89)

Both gm, (in n?) andh (in m) are independent of the fluid propertiese Eiectrical contribution
can be recast in terms of a similar fundamentakeioproblem wheredh is replaced by

(Q, «/s,)0r,,. The mechanical and the electrical contributioresgiven by
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m kw
Wy = _”_(Dpw - lowg) ’ (90)
ot = Xm g (91)
NSy

respectively. The permeability of the wetting phéisen?) is defined by,

Kk, =—%jz@mdv. (92)

The permeability of the wetting phase can be esaess the product of the dimensionless
relative permeabilityk;,, and the absolute permeability of the porous madilg, =k, k. The

Darcy velocity of the wetting phase is given by,

U :—”ﬁ(mpw—pwgwmﬁ. (93)

The last term of Eq. (93) accounts for electro-osis)dhat is; the flux of water moving through
the porous medium in response to an applied etetfiield. The ternkw@wlnw% is therefore
an electro-osmotic coupling term.

A similar analysis for the non-wetting phase y#ld

K
U,= -,7—“(DIOn = £:.9) - (94)

n

wherek, =k’ k, i.e., the permeability of the non-wetting phaBieere is no electro-osmotic term
in EQ. (94) because the non-wetting phase is asstorige insulating.

Parametric equations providing relationships betwk) and k' as the function of the
saturation of the water phase will be discusseskeictions 5 and 6 below. Note that if the medium
is anisotropic, the permeability of the porous material must be replaced by a skooder

symmetric permeability tensé.
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5. Final Form of the Constitutive Equations

We now summarize the derived linear constitutigaations that apply at the scale of a
REV of the porous medium. Using Egs. (54), (72D)(893), and (94), the generalized form of

the constitutive equations can be written in a mdétrm as follows:

‘]_(Q/,Sat/alv)uw _ D‘//
Uw =M Dpw , (95)
Un |]pn

whereM is a 3x3 square matrix of material properties,

B o 0 0
M=|Q ok /(0s) K0, 0O | (96)
0 0 k,/n,

We have alsop, = p, - (p, +77 ) If the osmotic pressure can be neglected, wevezcthe
classical relationship for the capillary pressyre= p, — p,,. In the linear constitutive equations
(95), we have separated the convective and thecaowective terms. Another possibility is to
explicitly write the convective terd in the first column of Eq. (95) in terms of pressgradient
alone, neglecting the influence of the other thetymamic forces in this convective term. This
approximation is valid near equilibrium where theegsure field is the leading term in the
convective fluxes appearing in the first columrigf (95). In this case, the constitutive equations
become

_|Hy

J
U, |=-L|Op, |, 97)
U, Up

n

where the matrix is a 3x3 square matrix of material properties,
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| Qak,/(0s,) O
0 0 K, /n,

The matrix L is symmetrical f=fT), a property known as Onsager's reciprocity [10{he
material is anisotropic, the tortuosity of the pemace and the permeability are second-order
tensors with the same eigenvectors and each compohﬁ is therefore a second-order tensor.
Two of the most popular parametric models to dbscthe influence of saturation on
capillary pressure and relative permeability in eudcal simulations are those of Brooks and
Corey [20] and Van Genuchten [21]. For example, Bheoks and Corey relationships for the

capillary pressure and the relative wetting and-wetting fluid permeabilities are:

P.(s) = pgs™”, (99)

kvrv(s) - S(2+3A)M ’ (100)

ki(s) = L-9)2(L-s®""1), (101)
s= S{V__;W , (102)

w

where p, is called the displacement or capillary entry pues,s denotes the effective water
saturation,s,, is the residual saturation of the wetting phase, Ais a curve-shape parameter
corresponding to an index for the pore space Higion [20]. Typical values of vary from 1.70

for sands to 0.10 for clays [20]. So there aredhextural exponents to consider in our model if
we wan to use the Brooks and Corey relationsimpsy, andA. A modified version of the van
Genuchten model will be described in the followssection. This model relies on additional
parameters to account for hysteresis in the capifjeessure curve. The Brooks and Corey model
is generally more adapted to porous materials avitlarrow pore space distribution and therefore

a finite displacement pressure while the Van Getarcimodel is more appropriate to porous

materials with a wide range of pore sizes.
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In our model, the term. =Q, K, /(7,S,) corresponds to the streaming current coupling
coefficient. Because the permeability of the watease is hysteretic and depends non-linearly on
the water saturation, a hysteretic behavior is abgoected for the streaming current coupling
coefficient. This is in contrast with the model posed earlier by Revil and Cerepi [22], in which
L was assumed to be independent of saturation ashthration history of the wetting phase.

The streaming potential (or voltage) coupling ¢icesnt is defined by,

C= (a—[/jj = —L, (103)
Py /50 o
__Qaki(s) o
UNACHER

The hysteretic behavior of the streaming coeffiti@upling coefficient is explored in the next
section. Note that the dependence of the coupligficient on saturation implied by Eq. (104)
is somewhat similar to the equation empirically pmsed by Perrier and Morat [4], who
suggested thak is proportional tok,, (s, )/ o(s,) -

To complete the set of equations, we specify thdicuity equations for the charge and

the mass of each fluid phase. These macroscoptmnody equations are:

J 3 0 I
0 UW = _E Sv¥Pw 0y | (105)
U, L-s,)@w,] |G,

wherel andgs are the impressed electrical current and masseaoate of phasé, respectively.
The combination of Eqgs. (97) and (105) yields thevegning equations to solve for any
applications based on this theory. They yields @Iheear diffusion equation for the flow and a

Poisson equation for the electrical potential.
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6. Numerical Simulations

To illustrate the model developed in the previsestions, we simulate numerically a
primary drainage and secondary imbibition experimeh a horizontal sand column. This
simulation will illustrate the relationship betwetre streaming potential coupling coefficient and
water saturation. It will also demonstrate how agssis in the relative permeability function
results in hysteresis in the streaming potentialpting coefficient. In this example, we only
model the water phase by assuming that the nonnggthase (air) is a passive bystander. We
neglect the influence of entrapped air on the iredapermeability of the non-wetting phase,
which is in accordance with the assumption that weiting and non-wetting phases are
continuous at the scale of every representativeneatéary volumes of the system. However,
entrapped air may have, in many real applicatiengapped air will have a significant influence
on transport (see [23]).

Rather than using the Brooks and Corey model testrin Section 5, the capillary
pressure is modeled with a slightly modified vemsaf the capillary pressure function of van

Genuchten [21] as described in [23]:

' -1/m”
p, = 1 {MJ -1 (106)

where g, ands;* are the residual water and satiated wate satnsatiespectivelyg , m, andn
are curve shape parameters, and the supersenipters to drying (d) or wetting (w). The
saturation s;* is assumed to be dependent on the water saturatiomhich reversal from
drainage to imbibition occurs, :

A
gbzqo_ 17Sw (107)
" TR, 0 s)
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1 1
- - , 108
R, T 1o (108)

where minimal satiated water saturatics),™, is an input parameter. We use this model to

max

create a hysteretic capillary pressure functionchgosing s7**<1, and by assigning different
values fora” and ", andn® andn". The hysteresis in the relative permeability fiorctis
assumed to be a result of entrapment of air anmdodelled with the modified Mualem model
[24]. The amount of entrapped air is assumed ty \matween zero an($§r with a linear
dependence on the effective water saturation.

We consider a horizontally oriented cylinder wéh inner diameter of 35 mm and a
length of 1.27 m. This tube is open only at its ®vml-faces and filled with a porous sand, which
is initially fully water-saturated. During the fir8.33 hours, we simulate a pumping of water at a
constant rate of 54 ml/minute. Air is free to erftem the opposite end-face of the tube. This
pumping phase is followed by a phase during whiettewis injected at the same steady rate
during 2.22 additional hours.

The material properties of the material are tatehe relatively similar to the sand used
for the experiment reported by [9]. The intrinsiermeability,k, is set to 8x 102 m? and the
porosity, ¢ is 0.34. The relative electrical conductivity wasdeled with a non-hysteretic
Archie’s second law, Eqg. (74), with Archie’s secagonenn equal to 1. Significant hysteresis
in the relative electrical conductivity function séndstones has been reported from laboratory
experiments when using deionized pore water [29jjciwv may be explained by surface
conductivity at the air-water interface. Usimg, = 0.051 S m. For the simulation, this effect
can be neglected. We will also neglect surface gotindty. We assigneds, and s,;™ equal to
0.2, 16 and 14" equal to 70 kPa and 35 kPa, respectivefyand n" equal to 6 and 3,
respectively. We made the common assumption invaheGenuchten model that = 1-1 /n".

The experiment was simulated with the TOUGH2 an@UGH2 codes (see [26] and
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[27], respectively). We discretized the tube witgral cell spacing of 0.5 mm and we neglected
gravitational effects. The variation of relative@rical conductivity, capillary pressure, relative
permeability, and the relative streaming poterd@lpling coefficient are displayed as a function
of water saturation on Figure 2. In reference [2BE relative streaming potential coupling
coefficient,C;, is defined by,

C =—. (109)
st
whereC is the coupling coefficient at saturatigpand C_, is the streaming potential coupling
coefficient at full water saturation. We observattlthe variation of the streaming potential
coupling coefficient with the saturation of watdasmlays an hysteresis. The relative coupling
coefficient decreases almost linearly with the dase of the water saturation and is equal to zero
at the irreducible water saturation. We will shawSection 7 that this behavior agrees with the
experimental data.

Using the previous material properties and thepehdence with the saturation of the
wetting phase, we simulate the distribution of streaming potentia§y along the tube. We use
the procedure described in [9] that is now sumredriz\Ve first simulate the hydraulic problem
by neglecting the electro-osmotic contribution he seepage velocity of the water phase. Then
we solve the Poisson equation for the electricaémtcal ¢/ and resulting from Eqgs. (95) and
(105). Figure 3a shows profiles of the streaminggpiial 1 s after the drainage was initiated, 50 s
before the drainage ended, and 500 s after théitidmn phase was initiated. The evolution of the
streaming potential at the end of the tube is showfigure 3b (the reference electrode is placed
at the opposite end-face of the tube). This shdas the polarity of the streaming potential is

directly sensitive to the direction of flow at tetrance of the tube.
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7. Comparison with Experimental Data

In this section, we tested the derived equatiamsttie streaming potential coefficient.
According to Egs. (99) to (104), the shape of theve of the streaming potential coupling
coefficient as a function of saturation is entirelgtermined (1) by the shape of the relative
permeability versus saturation curve, (2) by theapghof the electrical conductivity versus
saturation curve, and (3) by the saturation its€lierefore, by measuring these parameters
independently and inserting the results in Eq. (1@4e can independently determine the
saturation curve of the streaming potential cogptaefficient. This curve can then be compared
with independent experimental evaluation of theeastting potential coupling coefficient at

various saturations of the wetting phase.

7.1. Description of the Experiments

A set of four dolomite core samples (diameter 38, fength < 80 mm) were cored to
perform the test. The measurements of two of tkasgles (E3 and E39) were already reported
in [22] while the other measurements are new. Thuo $ections representative of the texture of
these samples are shown in Figure 4. They indeatemplex pattern of the pore space of these
rocks. The petrophysical properties determined lesdé samples include the permeability at
saturation, the resistivity index (at 1 kHz), thapitlary pressure curves, and the streaming
potential coupling coefficient at various saturatgiates. The “resistivity index” is defined by RI
= o(sw)! Psat = Osatl O(Sy) Where o(s,) is the resistivity at the saturatiasy and gs is the
resistivity when the porous medium is fully watettgated. Petrophysical data of the core
samples are reported in Table 1. The apparatus tasedaluate these properties is shown in

Figure 5. For the resistivity measurements, anyasfgpotential electrodes are located along the
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sample. In addition, two current electrodes paralle located at the end-faces of the sample. The
electrodes are connected to an HP-impedancemeRt2@3B) working in the frequency range
0.1-100 kHz.

Electrical resistivity measurements were perforraed kHz (4-electrode configuration).
The brine used for all the electrical resistivitydastreaming potential experiments contained 5 g
Lt NaCl (Cw = 8.6 - 10 Mol L™, brine conductivitya, = 0.93 S it at 25°C). The pH of the
solution in equilibrium with the medium was measubefore and during the experiment. The pH
is 8.0 at the beginning of the experiment and 8@2tduring the course of the experiment. The
electrical resistivity index (measured at 1 kHz)sveetermined using the desaturation technique
involving semi-permeable capillary diaphragms (o@camembranes). The main advantages of
this method are the reduction of capillary end @ffeand the ability to achieve a relatively
uniform saturation distribution along the core légmdrior to the experiments, each sample was
first dried for 48 hours at 50°C, then saturatethwvtihe brine under vacuum for 24 hours, and
finally inserted (along with its jacket and thea@tede pins into the pressurized cell (maximum
confining pressure +3.0 MPa). Resistivities wereasoeed at different saturations to determine
the resistivity index Rl at 1 kHz (Figure 5) .

In addition to the resistivity index, we also ma&a&sl the permeability at saturation (from
classical steady-state flow) and the irreducibléewsaturation from the capillary pressure curves
(see Table 1). Hg-pressure curves (not shown hiedsated a complex pore structure with a
wide spectrum of pore sizes. Finally, we measunedstreaming potential coupling coefficient at
different saturation states. The non-wetting phessal for the experiments is nitrogen.

In Figure 6, we report the dependence of the tregysindex, the capillary pressure, and
the relative streaming potential coupling coefiitgeversus the saturation of the brine for sample
#E3. We observe that the relative streaming pakrbupling coefficient decreases when the

water saturation decreases. The streaming poterdiglling coefficient falls to zero when the
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water saturation reaches the irreducible wateratm. Note the consistency of the irreducible
water saturation resulting from the streaming pidémmeasurements and from the capillary

pressure curves (compare Figures 6b and 6c).

7.2. Comparison with the Model

We adopt the Brooks and Corey relationship forpg@emeability of the wetting phase and
the capillary pressure (see Section 5). From E), (77), (100), (102), and (104), the streaming

potential coupling coefficient becomes,

— @
C= Q K (SW SW] . (110)

78,5, -56)"8, L+ Dur) 1-

From the electrical conductivity measurements, aa@fconductivity can be neglected, and
thereforeDu* << 1. As the mineral framework is well connectédygre 3), we can expect that
s, =0 (the water film around the grains is always abayercolation threshold even at very low

water saturations). From Eq. (110), the couplingfitcient at saturation is given by

~ 0
Co = - 2E, (111)

,7W0-W

and therefore from Egs. (110) and (111), the cogptioefficient at saturatios,, is related to

C, by

1 (s - (2+31)/ A
c= (W—SWJ C... (112)
1-s,

From Egs. (109) and (112), the relative streammigmtial coupling coefficient is therefore given

by,
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1 o (2+31)12

C =t (SW SWJ . (113)

1-s,
From Eqg. (113), we have

imC, =1, (114)
Sy—1
lim C, =0, (115)
Sw— Sw

as required for internal consistency of the model.Equation (113),n is independently
determined from the electrical conductivity curveld from the capillary pressure curve.

A comparison between the model and the experirheata is shown on Figure 6 for
sample E3. In Figure 6a, we observe that the seAoctiie’s law reproduces well the resistivity
data. This allows to determine the second Archgoagntn (2.7+0.2). In Figure 6b, we fit the
capillary pressure curve with the Brooks and Cqrasametric equation. This equation captures
very well the shape of the curve. This gives thries of capillary entry pressurp, (24+13
kPa), the residual saturation of the wetting phgs€0.36+02), and the index for the pore space
distributionA (0.87+0.32).

Finally, we compare the prediction of Eq. (113) Which all the parameters have been
independently evaluated) with the experimental dat&igure 6c. The value of the coupling
coefficient at saturation was extrapolated from Wadue obtained at various saturations (see
Figure 7b). We obtaifts ~ -10° V Pa’. Using Eq. (111)g, = 0.93 S rit, and the values of the
parameters reported in Table 1, we obt@insat = 9x1G C mi®. Then we use Eq. (109) witby,
~ -10° V P& to determine the values of the relative couplingfficient as various saturation of
water. Eq. (113) agrees quite well with the expental data. In Figure 7, we reported the whole
data set of capillary pressure data and streamotgnpal coupling coefficients versus the
saturation of the water phase. Clearly, our modgehle to describe the sharp decrease of the

coupling coefficient (over four orders of magnitajlvith the decrease of the water saturation for
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full saturation to saturation close to the irrethliwater saturation.

8. Concluding Statements

The linear constitutive equations describing threcbkinetic coupling (streaming potential
and electro-osmosis) of a charged deformable pomaiterial under two-phase flow conditions
have been derived using a volume-averaging apprddehmodel was derived assuming that the
two fluid phases are continuous at the scale epaessentative elementary volume of the porous
material and that the viscous drag between theflivied phases is negligible. This formulation is
combined with classical parametric formulationscaiésng the capillary pressure and the relative
permeability functions as a function of the satiorabf the wetting phase. The saturation history
can be accounted for through the use of a modraer Genuchten formulation for the capillary
pressure curve.

The complete derivation presented in here complésnée experimental work reported by
Linde et al. [9], where it was shown that the pnédbeory can predict the fluctuation of the
streaming potential during the primary drainage afvertical sand column. In a future
contribution, we will use our model to assess fifieiency of electro-osmotic pumping contol
the migration of NAPLs in the saturated and unsdéa zone. In addition, we plan to extend this
model by incorporating diffusional effects in thenstitutive equations to study diffusion of ions

under unsaturated conditions (see also [11]).
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Table 1 Physical Properties of the Four Dolomite Samples.

35

Sample k (mD) F m n Si p (kg nT3) @

E3 48.4 21.8 1.93 2.7 0.42 1910 0.203
E39 23.8 96.1 2.49 3.5 0.40 2260 0.159
E35 - 52.1 2.12 2.6 0.54 2130 0.155
E24 - 19.67 1.55 4.2 0.62 2234 0.146
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Captions

Figure 1. Sketch of the distribution of the ionic specieshe pore space of a charged porous
medium. The Stern layer of sorbed counterions rsiciered to be part of the solid. We denote
Q, =Q, /s, the volumetric charge density of the pore spaod,mg andn, the unit vectors
normal to the solid/water interface and to the waieinterface, respectively. We denoté &k
the metal counterions and #e co-ions. The surface sites of both the sohtwand water/air
interfaces are negatively charged andcKrresponds to the negative sitas.At high water
saturations, the excess charge density of the pater is relatively low.b. At low water
saturations, the counterions are packed in a smadleme and therefore the effective excess

charge density of the pore water is higher.

Figure 2. Results from a synthetic primary drainage experinenan initially saturated sand
column followed by imbibitiona. Relative electrical conductivity (dimensionlesgrsus water
saturation.b. Capillary pressure curvee. Relative permeability curved. Resulting relative
streaming potential coupling coefficient versusevaaturation. The relative coupling coefficient
is defined byC, =C/C_, where C_, is the coupling coefficient of the porous matefialy

saturated.

Figure 3. Results from a synthetic primary drainage experinefna saturated sand column
followed by secondary imbibitiora. Sketch of the experiment. The streaming pote8&l) is
measured between a reference electrode (Ref) acdnming electrode along the inner surface of
a plastic tube in which flow in unsaturated cormais occurred.b. Examples of the SP

distributions throughout the tube at three timenmnalls.b. Evolution of the simulated SP signal
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between the end points of the column at three clexiatic times (drainage ends and imbibition

starts at 3.33 h).

Figure 4. Microstructure of the material (dolomite) invgstied in this study (thin sections of
Sample E39). Note the complex pattern of the mionoture and the wide distribution of pore

sizes. The total length of the micrographs is 160

Figure 5. Schematic diagram of the testing apparatus usedetasure the resistivity index, the
capillary pressure, and the streaming potentiahnd 12 are the current electrodes, P1 and P2 are
the potential electrodes, CE a current electrode, @A is a capillary plate, which corresponds to

a water-wet ceramic disc in epoxy resin, 5 mm-thwitk a pore size of 150m.

Figure 6. Comparison between the three parametric equatimtsigbed in the main text and
experimental data for sample E8.Resistivity index (RI) versus brine saturation &Hz. The
data are fitted with the second Archie’s ldw.Capillary pressure curve fitted with the Brooks
and Corey model. This curve is used to define ttegliicible water saturation. (the non-wetting
phase is nitrogenk. Variation of the relative streaming potential pig coefficientC, versus
the water saturation. The solid line representspiteglicted variation ofC. versus the water
saturation using the model developed in the maih téote that there is no free parameter to fit

here.

Figure 7. Capillary pressure and streaming potential cogptioefficient data for four samples

investigated in this study. capillary pressure dath. Streaming potential coupling coefficient
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versus the saturation of water. Note the sharpedser of the value of the coupling coefficient

over four orders of magnitude.
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Figure 1
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Figure 3
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Figure 4
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Figure 5
Gas inlet
[
1
A 4
11
—<4—1EC
[ = +—<41-P2
Sample
B +<1-PI
CA ” —EC
12
cef e

Brine outlet

43



Figure 6
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Figure 7
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