Lean Burn Natural Gas Engine R&D

PDF Version Also Available for Download.

Description

The primary objective of this cooperative research is to develop and verify models of internal combustion engine spark ignition devices in order to improve combustion chamber fuel ignition characteristics and to improve spark plug durability. As a direct result of this joint research, a novel spark plug design was improved. A theory of spark arc motion was developed that explains experimentally observed effects not explained by other published theories. The knowledge developed by this research will be used to further improve spark plugs as well as improve the ignition process in a combustion chamber. The predictive models developed here are ... continued below

Physical Description

331 Kb

Creation Information

Creator: Unknown. September 12, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The primary objective of this cooperative research is to develop and verify models of internal combustion engine spark ignition devices in order to improve combustion chamber fuel ignition characteristics and to improve spark plug durability. As a direct result of this joint research, a novel spark plug design was improved. A theory of spark arc motion was developed that explains experimentally observed effects not explained by other published theories. The knowledge developed by this research will be used to further improve spark plugs as well as improve the ignition process in a combustion chamber. The predictive models developed here are compared with experimental measurements, including high-speed photographs, of the spark as it translates across the gap. Two different spark plug configurations were investigated: the conventional or J-gap plug, and a novel spark ignition device (the FANG plug) invented by Cummins, Inc., the CRADA partner. A description of the physics of arc dynamic motion in a spark plug gap, including the effects of an imposed transverse magnetic field, appears here in Appendix A as a result of the analytical effort. The theory proposed here does explain experimentally observed effects not completely explained by other research publications appearing in the scientific literature. These effects are due to pressure and ion, electron, and electrode interactions. A dominant mechanism for electrode erosion is presented for both spark plug configurations. Reversing the polarity of both types of spark plugs has verified this proposed erosion mechanism, according to data collected at Cummins. An extensive series of experiments measured the arc position, voltage, and current as a function of time during the approximately 2 millisecond spark discharge. FANG plug data, obtained with the fast-framing camera experimental apparatus operating at 200,000 frames per second, are presented that show the transverse arc velocity varying directly as the inverse square root of the elapsed time since arc initiation. At the request of Cummins, experiments were performed on three conventional spark plugs identical in design and having the same spark gap, but differing as follows: one was new, another had been used in an engine, and the third was new but had been sandblasted to simulate a used plug. Cummins had observed that only the used plug required a significantly higher breakdown voltage. Experiments at ORNL indicated that the used plug had a significantly higher breakdown voltage confirming the Cummins observations (although the sandblasted plug also exhibited a higher breakdown voltage than the new plug but lower than the used plug), and thus an apparent increase of the arc breakdown voltage results as the plug ages in use. Further analysis of this phenomenon is warranted.

Physical Description

331 Kb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL96-0260
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/940371 | External Link
  • Office of Scientific & Technical Information Report Number: 940371
  • Archival Resource Key: ark:/67531/metadc901937

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 12, 2005

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 21, 2017, 7:40 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lean Burn Natural Gas Engine R&D, report, September 12, 2005; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc901937/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.