Dust Measurements in Tokamaks

PDF Version Also Available for Download.

Description

Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in ... continued below

Physical Description

PDF-file: 24 pages; size: 1.5 Mbytes

Creation Information

Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R et al. April 23, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

Physical Description

PDF-file: 24 pages; size: 1.5 Mbytes

Source

  • Presented at: 17th High Temperature Diagnostics Conference, Albuquerque, NM, United States, May 11 - May 15, 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-PROC-403213
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 938486
  • Archival Resource Key: ark:/67531/metadc901932

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 23, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 23, 2016, 5:02 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R et al. Dust Measurements in Tokamaks, article, April 23, 2008; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc901932/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.