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Abstract A central question addressed by the VERTIGO (VERtical Transport In the 

Global Ocean) study was ‘What controls the efficiency of particle export between the 

surface and subsurface ocean’?  Here, we present data from sites at ALOHA (N Central 

Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate 

them via a simple planktonic foodweb model, to subsurface particle export (150-500 m).  

Three key factors enable quantification of the surface-subsurface coupling:  a sampling 

design to overcome the temporal lag and spatial displacement between surface and 

subsurface processes; data on the size-partitioning of Net Primary Production (NPP) and 

subsequent transformations prior to export; estimates of the ratio of algal- to faecal-

mediated vertical export flux.  At ALOHA, phytoplankton were characterized by low 

stocks, NPP, Fv/Fm (N-limited), and were dominated by picoplankton.  The HNLC waters 

at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to 

low proportion of diatoms) between deployment 1 and 2.   Prediction of export exiting 

the euphotic zone was based on size-partitioning of NPP, a copepod-dominated foodweb 

and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export 

was 20-22 mg POC m-2 d-1 at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2 x export flux 

at 150 m (E150).  At K2, export was 111 mg C m-2 d-1 (21% NPP (0-50 m); 1.8 x E150) and 

33 mg POC m-2 d-1 (11% NPP, 0-55 m); 1.4 x E150) for deployments 1 and 2, respectively.  

This decrease in predicted export at K2 matches the observed trend for E150.  Also, the 

low attenuation of export flux from 60 to 150 m is consistent with that between 150 to 

500 m.  This strong surface-subsurface coupling suggests that phytoplankton productivity 

and floristics play a key role at K2 in setting export flux, and moreover that pelagic 
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particle transformations by  grazers strongly influence to what extent sinking particles are 

further broken down in the underlying waters of the Twilight Zone. 

 

Introduction 
 The biological pump is one of several (such as the solubility pump) that sequester 

carbon to the oceans interior (Volk and Hoffert, 1985).  The source of particles, for the 

biological pump, is primary production within the euphotic zone.  Here, phytoplankton 

may exit both directly, for example as sinking algal aggregates (Lampitt, 1985), and 

indirectly, for example settling faecal pellets produced during herbivory (Small et al., 

1983; Lampitt et al., 1993).  The main region for particle production is often within 

and/or just below the euphotic zone (Buesseler et al., 2001; Pike et al., 2006).  

Quantification of this link between the surface ocean and the ocean’s interior has 

therefore been the focus of many studies.   

Early approaches to examine this biogeochemical coupling were restricted to surface 

waters and the deep ocean.  They investigated the nature of the relationship between Net 

Primary Production (NPP) and downward export fluxes of Particulate Organic Carbon 

(POC) into deep-moored sediment traps (Suess, 1980; Pace et al., 1987).  Subsequent 

studies focussed on a comparison between J100 (an integral of particle transformations at 

100 m depth) and export fluxes obtained from surface-tethered free-drifting trap arrays 

and/or deep-moored trap time-series (Martin et al., 1987; Bender et al., 1992).  The use of 

J100, rather than NPP, resulted in a more robust relationship with downward export fluxes 

(Bishop, 1989).   The accuracy of export fluxes derived from traps deployed at shallower 

than 1 km depth was subsequently questioned (Yu, 1994), leading to more emphasis on 

downward POC export derived from Thorium-Uranium disequilibria in conjunction with 
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C:Th particulate ratios (Buesseler, 1998).  This enabled the comparison of the ratio of 

NPP to Thorium-derived POC export fluxes (see ThE ratio in Buesseler 1998).   

During this period, modelling studies also attempted to better understand the relative role 

of the particle transformation processes that set J100, such as algal size and particle 

transformations by the pelagic foodweb (Michaels and Silver, 1988). Subsequent global-

scale models now include algal properties such as large versus small algal cells (Laws et 

al., 2000). 

In several regions, attempts have been made to link distinct biogeochemical 

signatures, such as the spring bloom, in the surface and deep ocean (e.g. Asper et al., 

1992; Boyd and Newton, 1995; 1999; Stemmann et al., 2000).  However, assessment of 

the coupling between surface and deep ocean fluxes involves many uncertainties.  These 

include temporal and spatial mismatches between datasets, due to particle sinking rates 

(see discussion in Boyd and Newton, 1999), and statistical funnels (of large areal extent, 

10 km’s) for sinking particles (Siegel et al., 1990; Siegel and Deuser, 1997), respectively.   

Moreover, to assess the coupling between the surface and the subsurface ocean (the 

Twilight Zone, defined as the base of the euphotic zone to 1000 m (VERTIGO, 2008)) 

requires the interpolation of export fluxes at depth (150 m to 1000 m) towards the surface 

ocean (for example, to estimate J100, see Bender et al., 1992).  Such interpolation, in 

regions such as the NE Atlantic (Bender et al., 1992) has often used the exponent of the 

power law curve (i.e. the b value for the particle flux attenuation curve from the N Pacific 

(Martin et al., 1987)).  However, it has now been established that such b values vary 

regionally (see review, Boyd and Trull, 2006).   
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Thus, to make more robust assessment of the surface-subsurface coupling requires 

methodological improvements to obtain site-specific b values from the subsurface ocean, 

and to define the temporal and spatial relationships between surface productivity events 

and their subsequent ‘sedimentation trajectory’ through subsurface waters. 

 The VERTIGO program was of two years duration and one of its aims was to 

determine “What controls the efficiency of particle export between the surface and 

subsurface ocean?  (VERTIGO, 2008; Buesseler et al., this volume).  VERTIGO has 

overcome many of the issues that restricted progress in examining both the nature and 

degree of coupling between surface and subsurface biogeochemical processes.  

Specifically, it used real-time physical modelling and observations to better predict the 

trajectory of sinking particles, in the Twilight Zone, that originated in the mixed layer 

(Siegel et al., 2007).  During VERTIGO, this led to specific sampling programmes for 

surface waters, and sampling downstream for subsurface processes.  Also VERTIGO 

employed Neutrally Buoyant Sediment Traps (NBSTs, Valdes and Price, 2000; Stanley et 

al., 2003) deployed at depths between 150 m and 500 m.  NBSTs minimise 

hydrodynamic biases (Gust et al., 1996), and have enabled more robust estimates of both 

elemental (e.g. POC) and biological (e.g. algal pigments) sinking fluxes, and their 

attenuance with depth (b values, Buesseler et al., 2007) to be made in the subsurface 

ocean.  Together, these novel approaches provide a platform necessary to better assess 

the nature of the surface-subsurface coupling of biogeochemical processes in the open 

ocean.  

The present study explored the surface-subsurface coupling using both conventional 

and new approaches.  Data on the size-partitioning of NPP, and observations on foodweb 
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structure were used in conjunction a foodweb/export flux model (Michaels and Silver, 

1988).  This approach has been used in the past to obtain more accurate predictions’ of 

export flux, than other methods, for a range of oceanic provinces (Boyd and Newton, 

1995; 1999).  Although uncertainties exist regarding the selection of trophic transfer 

efficiencies in such a foodweb/export model (Straile, 1997), the largest unknown in 

estimating export fluxes is in assigning a ratio of the proportion of NPP that is exported 

directly (settling as algal aggregates) versus indirectly  (settling as faecal pellets).  To 

overcome this issue, quantification of the proportion of algal versus faecal flux to 150 m 

depth was estimated by a variety of approaches – including pigment fluxes, microscopy 

of NBST samples and faecal pellet enumeration.  Together, they provide a better estimate 

of the proportion of NPP exported from the base of the euphotic zone at the two 

VERTIGO sites.   

 
Study sites and Methods 
 

The two VERTIGO sites were in contrasting biogeochemical provinces – the 

ALOHA station in Low Nitrate Low Chlorophyll (LNLC) oligotrophic waters north of 

Hawaii (22°45' N 158°W, Karl et al., 2001) and the Japanese K2 time-series station in 

NW Pacific waters characterized by an early summer chlorophyll peak (ca. 1 µg L-1) and 

followed by High Nitrate Low Chlorophyll (HNLC) conditions (47°N, 161°W, Harrison 

et al., 1999; Honda, 2003; Honda et al., 2006).  The study in July 2004 was at ALOHA, 

and the K2 site was occupied in July and August 2005.  Both cruises were organized 

around two deployments of 3-5 day duration to estimate particle fluxes using multiple 

NBSTs and to obtain estimates of particle properties and sources.  Separated by 2-3 days, 

these successive occupations of ALOHA and K2 are referred to here as deployment 1 and 
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2.  For further details, see the overview by Buesseler et al. (this volume).   Unlike many 

previous studies in which surface processes and subsurface particle fluxes are obtained 

from the same geographical location (e.g. Asper et al., 1992), during VERTIGO the 

sampling sites for surface water processes were located in the predicted source region for 

particles i.e. upstream of the array of NBSTs which were subsequently (3 days) deployed 

at 150, 300 and 500 m depth (Siegel et al., 2007).  Siegel et al. (2007) derived trajectories 

of the sinking particles from statistical funnels based on upper ocean current velocities 

from shipboard ADCP and an assumed sinking rate for particles of 50 to 150 m d-1 (see 

Results). 

Phytoplankton stocks throughout the upper water column were estimated using 

size-fractionated chlorophyll (>20 µm, 5-20, 2-5 and 0.2-2 µm porosity  47 mm diameter 

polycarbonate filters, filtered in series after Gall et al. (2001)) at both sites.  Filtration was 

done under gravity, except for the 0.2-2 µm fraction (< 80 mm Hg vacuum).  Samples (3 

pseudo-replicates at each depth) were obtained from 10L acid-washed Niskin bottles on 

the SeaBird CTD rosette.  The physiological status of the resident phytoplankton (Fv/Fm, 

photosynthetic competence) was assessed using a Chelsea Instruments Fast Repetition 

Rate Fluorometer (FRRF) in benchtop mode and with discrete samples (4 pseudo-

replicates from each depth) from 6 depths within the mixed layer and Deep Chlorophyll 

Maximum (DCM) (ALOHA and K2) after Boyd and Abraham (2001).  In all cases, a 

dark adaptation time of > 30 minutes was used for discrete samples.   

At the K2 site, shipboard iron-enrichment experiments (1 nM Fe, added as 1:1.5 

Fe:EDTA; Boyd et al., 1996) were conducted on water from both the surface mixed layer 

and the DCM to establish whether low dissolved iron concentrations in the upper ocean 
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were responsible for the sub-maximal Fv/Fm evident in the resident phytoplankton.  

During these experiments, temporal changes in both Fv/Fm and chlorophyll concentrations 

were used to monitor the response of the cells to iron-enrichment.  The FRRF was also 

used to determine the physiological status of ‘dregs’ (sensu Gardner, 1977), i.e. cells or 

biogenic particles that have sunk (within 30 minutes) below the level of the water spigot 

in 10 L Niskin bottles. 

The size-partitioning of NPP was measured using the 14C technique and simulated 

in situ incubations of 24 h duration using six light levels (50% to 0.5%) after Boyd and 

Harrison (1999), but modified to take into consideration the 14C protocol used at Hawaii 

Ocean Time-series (HOT, Karl et al., 1996; Corno et al., 2006).  The size fractions 

employed, number of pseudo-replicates, and the filtration procedure for each fraction are 

as described above for chlorophyll. Radioisotope uptake in dark bottles was subtracted 

from those measured in the light bottles. The activity of both radioisotope primary stocks 

and on filters were both determined using the same liquid scintillation cocktail and 

scintillation counter fluid as used for the HOT program.  Water-column integrated NPP 

was estimated to the depth of ca. 1 mg C m-3 d-1 which was around 125 m (i.e. base of the 

DCM) and between 48 and 58 m at ALOHA and K2, respectively.  Note, the large site-

specific difference in the depth of column-integrated NPP has implications when 

comparing the POC export flux from the euphotic zone with that at 150 m depth where 

the shallowest NBST was deployed (see discussion in Boyd and Newton, 1999). 

Quantification of the degree of the surface-subsurface biogeochemical coupling 

required an assessment of the fate of NPP.   Thus, approaches were needed to track direct 

algal export to depth. At K2 only, samples - using the same size fractions employed for 
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NPP - were taken for both algal pigments and epi-fluorescence microscopy.  

Phytoplankton pigments were analysed using HPLC following Bidigare et al. (2005).  

The upper ocean phytoplankton community was examined at both ALOHA and K2 sites 

using a combination of sample types: (A) samples drawn both from Niskin water bottles 

closed at discrete depths within the euphotic zone, and (B) net tow samples obtained from 

a 1/4 m diameter , 20 µm net tow drawn vertically from ~15 m to the surface; details of 

the microscopy employed are presented in Appendix A.  This enabled a link to be 

established between the size-partitioning of NPP, pigments and floristics.  This 

subsequently was used to explore the relationship between upper ocean phytoplankton 

processes and the flux of algal pigments and algal cells in traps at 150 m depth. Also at 

K2 only, the size-partitioning of opal (>20 µm, 5-20 µm, 0.4-5.0 µm) was used to 

examine the relationship between sources of mineral ballast and phytoplankton 

community structure.  Samples for opal were obtained on polycarbonate filters from 

MULVFS pumps in the upper 150 m of the water column after Bishop et al. (1985).   

Data from size-fractionated NPP were used as input into a foodweb and export 

flux model (Michaels and Silver, 1988), as applied previously by Boyd and Newton 

(1995; 1999). The model output represents the potential export of particles from the base 

of the euphotic zone.  For more details on the trophic transfer efficiencies used in the 

model see Table 1a.  As both sites were characterized by DCM’s the export term 

represents export from the base of the euphotic zone, as opposed to the surface mixed 

layer. The structure of the pelagic foodweb used in model runs was selected using 

observations on the dominant upper ocean grazers at ALOHA/HOT and K2 (Table 1B).  

The ratio of how much algal carbon was exported directly or indirectly (after herbivory as 



 10

faecal pellets) was set based on observations of different particle types (algal versus 

faecal aggregates, See later). As there was no significant change in algal stocks over time 

at either site during the VERTIGO deployments, in the model it was assumed that all 

NPP was either grazed with subsequent sinking of faecal material to depth, or sank 

directly to depth. 

 

Results 

Phytoplankton stocks 

 Phytoplankton stocks were assessed at two pelagic stations, 12 days apart, at 

ALOHA, and 8 stations sampling during deployments 1 and 2 at the K2 site.  At 

ALOHA, community biomass was ca. 0.1 µg chl a L-1, and was dominated by 

picoplankton during both deployments, with cells > 20 µm contributing < 10% to algal 

stocks (Fig. 1).   In contrast, there were marked differences between the two deployments 

of  K2, with the first  (31 July to 6 August 2005) being dominated by both picoplankton 

and > 20 µm cells in the upper water column (total stocks 0.4 µg chl a L-1), with low 

biomass in both the 2-5 and 5-20 µm classes (Fig. 2).  There was evidence of a decrease 

in mixed layer chlorophyll concentrations in the > 20 µm fraction between 31 July and 2 

August (see Fig. 2a and 2b).  A DCM was present at both ALOHA (ca. 125 m depth) and 

K2 (ca. 55 m depth) and was always dominated by picoplankton (Figs. 1-3).  At K2, 

during the second deployment both the mixed layer and DCM were dominated by 

picoplankton, and the algal stocks were around 0.2 µg chl a L-1 over this period (Fig. 3). 

No floristic samples, that had been size-partitioning in the same manner as for 

chlorophyll and NPP, were taken during the ALOHA VERTIGO study.  Microscopy of 
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bulk samples revealed that the assemblage was dominated by picoplankton - both 

Synechococcus, as evidenced by the typical yellow auto-fluorescence of the 

appropriately-sized cells, and also unknown red-fluorescing picoplankton-sized cells that 

could have been either other light-capturing prokaryotes or tiny chl a containing 

eukaryotes. SEM preparations of the samples indicated that nanoplankton included 

several species of coccolithophorids, including Emiliani huxleyi.  Occasional colonies or 

single filaments of Trichodesmium were also noted.  At K2, microscopic examination of 

phytoplankton with each size fraction during the first station deployment 1 revealed that 

the >20 µm fraction was dominated by diatoms (mainly Pseudo-nitzschia and 

Chaetoceros spps, along with Coretheron), and with relatively few dinoflagellates (Table 

2).  The <5 µm fraction was mainly composed of yellow-fluorescent Synechococcus, with 

low abundances of autotrophic nanoflagellates.  Additionally, picoplankton included very 

small (<1 µm ) rapidly fading, deep red-fluorescing cells that were evident in 

preparations made at sea, and especially in digital images of the 0.2 µm filter 

preparations.  Our colleagues on the cruise later determined, via pigment analysis, that 

the populations included sizable populations of  Bchl a-containing cells ( N. Jiao, pers. 

comm.), and small quantities of divinyl Chl a containing Prochloroccus (R. Bidigare, 

pers. comm.).  Such cells were probably the very small, deep red fluorescing 

picoplankton.  Additionally, species of silica-walled Parmales were noted in SEM 

preparations of the nanoplankton-size fraction of the phytoplankton. 

Pigment analysis of the K2 samples revealed that the > 20 µm fraction comprised 

fucoxanthin (diatoms), and alloxanthin (cryptophytes), whereas the 5-20 µm fraction 

contained fucoxanthin, 19’-hexanoyloxyfucoxanthin (haptophytes) and 19’-
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butanoyloxyfucoxanthin (pelagophytes) (Fig. 4).  There was also a significant proportion 

of diatoms within the 5-20 µm size fraction (Fig. 4). In the < 2 µm fraction  only 

zeaxanthin (cyanobacteria) was evident.  Note, that these pigment data were from the end 

of deployment 1 at K2, when there a marked decrease in large cells had been observed 

(Fig. 2).  At K2, the size-partitioning of opal (i.e. lithogenic and biogenic silica) was as 

follows: > 20 µm cells comprised 80% of mixed-layer opal, with < 5% in the < 5 µm 

fraction, and 15% (calculated by difference) in the 5-20 µm fraction.  There were similar 

trends in size partitioning of opal in all samples to 150 m depth (data not shown). 

  

Algal physiological status 

 Cells at both ALOHA and K2 were resource-limited as evidenced by sub-optimal 

values of Fv/Fm in all profiles of around 0.2-0.3 (Fig. 5a and b); the theoretical maximum 

in Fv/Fm is 0.5 for cyanobacteria (Sandström et al., 2002), and 0.65 for diatoms (Kolber 

and Falkowski, 1993).  Values of Fv/Fm increased with depth and were around 0.4 in the 

DCM at ALOHA.  In contrast, there was no increase in Fv/Fm at the DCM at K2, nor was 

there any change in Fv/Fm over time at K2 even through shifts in algal community 

composition and stocks were evident between the two deployments (Figs. 2 and 3).  

Despite some spatial variability in chlorophyll (from satellite images; VERTIGO, 2008), 

underway mapping of the surrounding waters  (over 90 nautical miles) revealed sub-

maximal values of Fv/Fm that were similar to that measured routinely at K2 (Fig. 5c).  

Shipboard experiments in which iron was added to surface waters at K2 (incubated at 

30% Io) resulted in both increases in Fv/Fm and chlorophyll concentrations (Fig. 6) 

indicative of iron limitation of algal growth rate.  However, the addition of iron to 
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samples from the DCM at K2 (incubated at < 1% Io) resulted in no change in either of 

these properties (data not shown).   

Dreg samples (of sinking particles below the level of water sampler spigots) from 

depths of 50 to 90 m at K2 (i.e. up to 40 m below the depth of the seasonal mixed layer) 

revealed that Fv/Fm in biogenic particles was comparable to those in surface waters, and 

therefore that cells remained viable (Fig. 5d).  However, at depths greater than 90 m there 

was a marked decrease in Fv/Fm to low levels suggesting that cells were no longer viable.  

Such viable cells usually have relatively slow sinking rates (< 10 m d-1 Waite and 

Nodder, 2001) relative to heterogeneous particles at K2 which exhibited a wide range of 

sinking rate – with half of the particle populations sinking at rates of >100 m d-1 (Trull et 

al., this volume).   

 

Primary production 

At ALOHA, column-integrated NPP was similar during both stations with rates of 

180+15 and 220+18 mg C m-2 d-1 (Fig. 7).  On both occasions the size-partitioning of 

NPP was dominated by picoplankton (66-90%; Fig. 7), with the relatively rare cells > 20 

µm contributing 9% of column-integrated NPP.  The DCM made a relatively small 

contribution to column-integrated NPP.  At K2, as noted for algal stocks and community 

composition, there were pronounced differences in NPP between the two  deployments.  

The first deployment was characterised by rates of  450+37 to 603+49 mg C m-2 d-1, and 

NPP was dominated by cells < 2 µm (>40%) and >20 µm (30%) (Fig. 8).  The DCM was 

relatively unproductive at this station during either deployment (Figs. 8 and 9).  During 

the second deployment, NPP rates were lower, and ranged from 302+34 to  478+44 mg C 



 14

m-2 d-1 (Fig. 9), with picoplankton contributing > 55%, and with increases in NPP over 

time being due to picoplankton.  Throughout this period, NPP by cells > 20 µm was 

constant at 50-70 mg C m-2 d-1 (Fig. 9). 

 

Modelling particle production 

A foodweb modelling approach was used to explore the cumulative effects of 

observed changes in both NPP and algal size structure on downward POC export out of 

the euphotic zone (Fig. 10).  A foodweb scenario, that matched published observations 

from both ALOHA (and HOT) and K2,  was selected to derive the predicted export flux 

from the base of the euphotic zone (Table 1b).  In this scenario, the basic foodweb of 

Michael and Silver (1998) was employed, with one modification.  Bacterial production 

and NPP associated with pico- and nano-plankton passed through the microbial/metazoan 

foodweb.  However, based on a wide range of observations by other groups within 

VERTIGO (Table 3, see Discussion), the NPP associated with the micro-plankton was 

partitioned between direct algal sinking (0.2 at ALOHA; 0.1 at K2) and grazing by 

mesozooplankton (0.8 (ALOHA) and 0.9 (K2)).  Using this approach we obtained 

euphotic zone export fluxes of 20-22 mg C m-2 d-1 for the two stations at ALOHA (Fig. 

10a and b).  This export represents 10-11% of column-integrated NPP at this oligotrophic 

site.  At  K2, for deployment 1 we predict export fluxes of 111 mg C m-2 d-1 for 31 July 

2005 (Fig. 10c), with a range of 78-111 mg C m-2 d-1 for the 4 NPP profiles (31 July to 6 

August, Appendix B).  These represent 15-21% of column-integrated NPP at this HNLC 

site.  In contrast, during deployment 2 of K2, we predict significantly reduced export 
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fluxes of 33 mg C m-2 d-1 for 11 August 2005 (Fig. 10d), with a range of 27-33 mg C m-2 

d-1 for the 4 NPP profiles between 11 and 17 August (Appendix B). 

 

Discussion 

Temporal context of VERTIGO datasets: comparison with other studies 

Both of the VERTIGO locales are well-established oceanographic time-series 

sites, ALOHA is in the vicinity of the oligotrophic HOT site which has been sampled 

monthly for over a decade (Karl and Lukas, 1996), and at K2 a mooring site has been 

maintained since 2001 (Honda et al., 2006; Honda and Watanabe, 2007).  The trends in 

our dataset from ALOHA support those reported for HOT – with low and relatively 

constant phytoplankton stocks and rates of NPP (Karl et al., 1996; Letelier et al., 1998), 

sub-optimal values of Fv/Fm (due to N limitation) (Corno et al., accepted) and a 

community dominated by picophytoplankton with relatively few large diatoms (Letelier 

et al., 1993; Campbell et al., 1994; Scharek et al., 1999).  However, although the 

chlorophyll concentrations at ALOHA during VERTIGO were comparable to those 

reported at HOT, rates of column-integrated NPP during the VERTIGO study were > 1.5 

lower that commonly reported  at HOT (i.e. 400 mg C m-2 d-1, Karl et al., 1996; Corno et 

al., 2006).  Note, application of NPP estimates from such in situ incubations would result 

in around 1.5-fold higher export ratios (export from base of the euphotic zone (Ez)/export 

measured at 150 m depth (E150)) resulting in higher b values (> 2)  (see Discussion).   

All VERTIGO samples and standards were run on the same scintillation counter 

and using identical quench curves as the HOT programme, hence we can rule out this 

potential explanation, which has previously resulted in wide variations in NPP rates 
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during 14C methodological intercomparisons (Richardson, 1991), as the reason for the 

differing NPP rates.  Therefore, the most likely explanation for these different rates in 

NPP is that in VERTIGO a simulated in situ incubation technique (6 light levels, 0-125 

m) was used, whereas in situ incubations (6-8 depths, 5-175 m) are used routinely at 

HOT (Corno et al., 2006).  Significant disparities, for example due to mismatches in light 

climate between in situ and deckboard incubations, between these two different 

approaches have been reported (Smith Jr. et al., 2000).  Moreover, a comparison of rates 

of NPP rates from concurrent  in situ and deckboard incubations at the HOT site revealed 

that rates from the former (n=9 incubations) were consistently greater than those using 

the deckboard approach (Letelier et al., 1996). 

The K2 site is characterised by more seasonality, compared to ALOHA, in both 

chlorophyll concentration and NPP rates.  Measured surface chlorophyll concentrations 

during VERTIGO are comparable to those derived from 8-d SeaWiFS chlorophyll 

composites for July and August 2005 (0.2-0.3 µg chl a L-1; M. Honda unpublished data; 

Buesseler et al., this volume).  In contrast, 14C based column-integrated NPP rates are 

generally higher (Figs. 8 and 9) than those estimated using bio-optical approaches (i.e. 

based upon Ed555/Ed443) for K2 in July and August (150 – 400 mg C m-2 d-1; seasonal 

average 297+99 mg C m-2 d-1; Honda et al., 2006).  Other studies have reported an annual 

range of NPP for the Western Subarctic Gyre (WSG) of 300-1000 mg C m-2 d-1 for 

August in 1998-2000 (Saino et al., 2002) reflecting the widespread spatial variability in 

phytoplankton processes across this region.  Harrison et al. (1999) report an annual range 

for the WSG of 225-1198 mg C m-2 d-1 reflecting the spring phytoplankton productivity 

maximum in this region, followed by a return to HNLC conditions.  During VERTIGO at 
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K2, Elskens et al. (this volume) reported 13C based rates of NPP, of  523 mg C m-2 d-1 

(deployment 1) to 404 mg C m-2 d-1(deployment 2), that were comparable to those 

determined using the 14C technique (Figs. 8 and 9). 

 

Tracking the fate of photosynthetically fixed carbon  

Studies investigating the nature of the link between the magnitude of NPP and the 

consequent export flux have in general focused on either a direct or indirect connection.  

An example of a direct connection is the study of Pace et al. (1987) who obtained an 

export ratio using the NPP to export flux relationship.  An indirect link is where NPP is 

first scaled to algal community structure, and/or foodweb structure, then related to export 

flux, (see Boyd and Newton, 1999).  Export ratios, although widely used in global export 

flux models (see review, Boyd and Trull, 2006), have a > tenfold range across oceanic 

provinces (Buesseler, 1998).  Foodweb/export models have provided insights and partial 

explanations for this broad range of ratio’s, such as between different biogeochemical 

provinces (Boyd and Newton, 1999) or temporally – for example, interannual variability 

in the NE Atlantic spring bloom export signal (Boyd and Newton, 1995).  Recent 

advances in this field suggest that additional factors will impact the nature of this surface-

subsurface coupling, and include mineral ballast (Armstrong et al., 20002; Hedges et al., 

2001; Passow 2004), algal physiology and sinking rates (Waite and Nodder, 2001), and a 

re-evaluation of the role of small phytoplankton in export (Silver and Gowing, 1991) 

based on recent foodweb modeling studies (Richardson and Jackson, 2007).  

Algal markers, such as pigments and key species, provide a means to track (semi-

quantitatively) the fate of surface NPP.  The study by Scharek et al. (1999), at the HOT 



 18

site, is one of only a few which have attempted to track the fate of large cells (diatoms) 

from the base of the euphotic zone to depths > 2 km, – using diatom abundances for 

difference species throughout the water column.  During VERTIGO, the fate of algal 

carbon was tracked by linking the size-partitioning of NPP with concurrent information 

on the main algal species and key pigments in each size class.  Microscopic enumeration 

and/or quantification of pigment concentrations in sub-samples taken from the NBSTs 

and other sediment traps fluxes then provide an important link between these strands of 

information.  Observations on the extent and nature of particle transformations were 

available during VERTIGO from several sources – mesozooplankton grazing, analysis of 

mesozooplankton faecal pellets, and identification of the dominant particle types (i.e. 

aggregates versus single cells/animals, faecal versus algal aggregates) within sediment 

traps loaded with polyacrylamide gels (Table 3). Together such information informed the 

selection of the most apt version of the foodweb / particle flux model (Tables 1 and 3).  

During VERTIGO, upper ocean profiles of Thorium disequilibria indicate that the 

main zone of particle production was within the seasonal mixed layer (there was also 

some evidence of particles losses down to the DCM at both sites), and particle 

remineralisation immediately below the DCM at K2 (60 m depth, mixed layer depth 49-

54 m) and ALOHA (130 m depth; mixed layer depth  26-31 m) (Pike et al., 2006).  The 

upper ocean was where the highest rates of NPP (i.e. particle production, Figs. 7-9), 

mesozooplankton stocks and heterotrophic bacterial activity (i.e. particle destruction) 

were observed (Steinberg et al., in press).  Moreover, at K2 indirect estimates of grazing 

by mesozooplankton point to low rates of herbivory on mixed-layer phytoplankton (14-

20% of NPP, Kobari et al., this volume) with mesozooplankton mainly grazing large 
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phytoplankton (> 20 µm NPP was 12->30% of total NPP, Figs. 8 and 9) , yet chlorophyll 

concentrations remained constant. This strongly suggests that microzooplankton were 

both the main herbivores, and an important prey source for copepods, consistent with the 

structure used in the standard foodweb/export model (Table 1).    

The predictions from the foodweb model, resulted in a ca. three-fold range of 

export fluxes for K2, but a negligible range for ALOHA (Fig. 10).  At K2, data from 

microscopy, algal pigments, faecal pellet analysis processes and observations of particle 

characteristics using polyacrylamide gels all suggest that faecal rather than algal 

aggregates were dominant between 60 m and 150 m depth (Table 3).   Interestingly, the 

algal aggregates were mainly diatom-based at K2, but dominated by small cells (such as 

cyanobacteria) at ALOHA (Lamborg et al., this volume).  The reasons behind these 

trends are beyond the scope of the present study, but are being further investigated using 

a range of modelling simulations (Richardson et al., in prep.). 

 There are differences in the ratio of algal to faecal-mediated export, at both the 

K2 and ALOHA sites, due to the range of methodological approaches used (Table 3).  

Microscopic observations of polyacrylamide  gels from K2 reveal that 80-90% of 

intercepted particles at 150 m depth were faecal aggregates (Trull et al., this volume), 

fourfold higher than estimated by Wilson et al. (this volume) from analysis of individual 

faecal pellets (i.e. amorphous faecal aggregates were excluded from this enumeration) 

from NBSTs (see Table 3).  Data on algal export flux support the observations of Trull et 

al. (this volume).  The flux of intact diatoms (derived from fucoxanthin) intercepted by 

the NBST at 150 m (Lamborg et al., this volume), was a small proportion of the mixed-

layer fucoxanthin inventory (Table 3), and was relatively insignificant  compared to the 
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POC export flux (Buesseler et al., this volume). Microscopic enumeration of diatoms 

intercepted by the 150 m trap also revealed relatively few intact cells at both ALOHA 

and K2 (M. W. Silver, unpublished data).  Some of this subsurface population probably 

remained viable (Fig. 5d) for several days (see Berges and Falkowski, 1998) prior to 

sinking to depths.   

The majority of observations in Table 3 suggest that the ratio of large 

phytoplankton cells that sank directly versus indirectly (i.e. faecal pellets), from the base 

of the euphotic zone, was around 0.1:0.9 at K2, but slightly higher at ALOHA (0.2:0.8).  

Applying this ratio to the model, to define the fate of algal cells > 20 µm, yields predicted 

export fluxes of 20-22 mg POC m-2 d-1 at ALOHA (i.e. >10% of column integrated NPP), 

and at K2 (deployment 1) 111 mg POC m-2 d-1 (i.e. 15-21 % of column integrated NPP 

during deployment 1 (Appendix B)) followed by a significantly reduced export flux of 33 

mg C m-2 d-1 (i.e. (8-9% of column integrated NPP during deployment 2 (Appendix B)).  

These give export ratios (Ez /E150 of 1.3 (ALOHA (125 m depth), K2 deployment 1 (55 m 

depth)) and 1.2 (K2 deployment 2, 60 m depth).  This suggests that after initial particle 

transformations in the euphotic zone, there is 10-20% attenuation of the particle export 

flux between 125 and 150 m depth at ALOHA (i.e. equivalent to a b value of 1.2).  In 

contrast at K2 there is 20-25% attenuation of the export signal between ca. 60 m and 150 

m depth - i.e. lower b values (0.55 for deployment 1; 0.41 for deployment 2) at K2 

relative to ALOHA.  This is consistent with reports of lower b values at K2 (0.4-0.5) 

relative to ALOHA (1.2-1.3) for the particle export flux between 150 and 500 m depth 

(see Appendix for E500 data) as estimated from NBSTs during VERTIGO (Buesseler et 

al., 2007). 
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Relative role of surface versus subsurface processes in setting export flux 

 One of the central questions addressed by VERTIGO was to what extent particle 

processes in the upper ocean, versus those in the subsurface ocean, controlled export 

fluxes (VERTIGO, 2008).  A recent review of datasets from the JGOFS programme 

indicate that both the surface (i.e. Eez, 2-20% NPP exported) and deep ocean (i.e. 1000 m 

and deeper, 6-25% of Eez exported) ocean contribute equally to setting the attenuation of 

the NPP signal (Boyd and Trull, 2006).  However, this conclusion is based on a 

comparison of observations from disparate sources, including NPP, export ratios, ThE 

ratio’s in the upper ocean, and many deep-moored trap observations (Boyd and Trull, 

2006).  VERTIGO provided an opportunity to compare the attenuation of the NPP signal 

at two depth horizons, the upper ocean (to the base of the euphotic zone), and the 150 – 

500 m stratum within the Twilight Zone.    

  There was a four-fold range of export fluxes at 150 m depth observed during 

VERTIGO between ALOHA and K2, and a threefold range between the two site 

deployments at K2 (Buesseler et al., 2007).  Such a wide range of export fluxes provides 

an opportunity to explore whether the surface horizon was more influential than the 

subsurface horizon in setting export flux.  If this was so, the attenuation of NPP in the 

upper ocean should exceed the attenuation of Eez to 500 m depth.  At ALOHA, 10-11% 

NPP exited the euphotic zone, whereas at K2, 16-21% (deployment 1) and 8-11% NPP 

(deployment 2) settled below this light depth (i.e. Eez).  The export flux from the surface 

ocean was attenuated such that 16% of Eez sank beyond 500 m depth at ALOHA, 

suggesting that the surface and subsurface ocean have comparable influence of the 
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attenuation of NPP at this site.  In contrast, at K2 33% (deployment 1) and 48% 

(deployment 2) of Eez sank beyond 500 m depth, suggesting that the surface ocean had a 

greater impact on the attenuance of NPP.   

At K2 there was a marked difference between export fluxes (150 m to 500 m) 

during deployment 1 and 2, yet this appeared to have no impact on the attenuance of 

particle flux with similar b values for each deployment period (Buesseler et al., 2007).  

Similarly, the b values estimated for E150/Eez showed little change between deployments, 

and were comparable to those computed by Buesseler et al. (2007) for E500/E150 

(Appendix B)  Thus, attenuation of particle export at K2, from 60 m to 500 m depth, does 

not scale to NPP, or Eez , but remains invariant.  However, the magnitude of E150 does 

reflect changes in the predicted Eez.  The decrease in Eez was mainly driven by 

combination of a decrease in column-integrated NPP and a floristic shift (which was 

driven by either bottom-up and/or top down controls) towards small cells.  This was 

probably responsible for a fourfold and threefold decrease, between deployments 1 and 2, 

in fucoxanthin and chlorophyll export fluxes at 150 m, respectively (Lamborg et al., this 

volume).  Marked decreases in biogenic silica flux were also recorded between 

deployments 1 and 2 at K2 (Lamborg et al., this volume), consistent a decrease in the 

abundance of cells > 20 µm between deployments 1 and 2; 80% of the opal was 

associated with the > 20 µm class in surface waters. 

In order to reconcile the invariance in b values between deployment 1 and 2 at 

K2, with large changes in export flux for both Eez (predicted) and E150 (observed), 

requires that most of the water column particle transformations take place within the 

upper ocean, such that the sinking material is similar in composition and physical 



 23

properties (size, geometry) i.e. faecal pellets (see Wilson et al., this volume).  Thus, 

particle attenuance should not alter as the same processes are acting on particle source 

material (phytoplankton) in the upper ocean.  Therefore, the observed changes in NPP 

and floristic shifts will not alter the b value since the same vector (grazing by neocalanoid 

copepods which are present in surface waters due to their ontogenetic migration (Kobari 

et al., this volume)) is producing faecal aggregates.  This explanation is made more 

compelling by i) low algal compared faecal aggregate abundances (Table 2), and ii) no 

change in b values between 60-150 m and 150 to 500 m between deployments.   

 

Reasons for temporal shift in  phytoplankton processes at K2 

 If surface processes are more important in setting export flux than subsurface 

processes at K2, then what mechanism(s) is controlling phytoplankton processes (NPP, 

community composition) in this region?  The K2 site is characterized by a late spring 

maximum in chlorophyll concentrations, NPP and E150 that may coincide with the annual 

maximum in surface irradiance (Honda et al., 2006), and the WSG in general has higher 

mean rates of NPP and algal stocks than the NE subarctic Pacific (Harrison et al., 1999).  

This is probably due to its proximity to dust source regions such as the Gobi desert, and 

hence higher dust inputs into this region (Harrison et al., 1999), however lateral iron 

inputs may also be important in the NW Pacific (Nishioka et al., 2007; Lam and Bishop, 

in review).  Although there are no dissolved iron data available for station K2, mixed 

layer concentrations at the nearest available site (50°N, 167°E) in May 2002 (i.e. prior to 

the main bloom event – see Honda et al. (2006)) were 0.23 nmol Fe L-1 i.e. non-limiting 

to phytoplankton growth in the subarctic Pacific (Kudo et al., 2006).  However, following 
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the late spring (June) productivity maximum at K2, algal stocks and NPP are relatively 

constant over the remainder of the growth season (Honda et al., 2006), even though 

macronutrient concentrations remain high (Harrison et al., 1999) indicative of a shift 

from iron-replete to iron-deplete conditions.  Shipboard observations and a perturbation 

experiment at K2 during VERTIGO exhibit suboptimal values of Fv/Fm, consistent with 

algal iron stress in waters with high concentrations of macronutrients, as demonstrated by 

iron enrichment experiments at K2 (Fig. 5).  This is consistent with other shipboard and 

in situ iron enrichments conducted in the WSG (Harrison et al., 1999; Takeda, 1998; 

Tsuda et al., 2003). 

 The higher rates of column-integrated NPP and greater proportion of diatoms 

observed during deployment 1 at K2 are consistent with either the seasonal decline in 

phytoplankton processes after the June maximum, or a transient and minor alleviation of 

algal iron stress prior to our site deployment.  Bio-optical data on the seasonal cycle of 

NPP at K2 in 2005 reveal a marked increase in NPP in June, followed by a rapid decrease 

to ambient summer NPP values by mid July (Honda et al., 2006), i.e. several weeks prior 

to our deployment of the K2 site for deployment 1.  Thus, a transient event, is the more 

likely explanation for the observed floristic shift.  Such transient events (characterized by 

more diatoms, slightly higher algal stocks and higher NPP rates) have been reported in 

the HNLC waters of the NE Pacific (Boyd and Harrison, 1999).  Bishop et al. (2003) 

have also used robotic observations to capture such a transient event, with a threefold 

increase in upper ocean POC, following a dust event in the NE Pacific.  The observations 

from VERTIGO at K2 are indicative that even minor perturbations of a phytoplankton 
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community (at K2, such as an iron-mediated change in both community structure and 

carbon fixation) may alter the POC export flux at depth.   

 

Conclusions  

i) In the NW subarctic Pacific, decreases in NPP and a floristic shift to small 

phytoplankton cells together result in a two- to three-fold decrease in the 

predicted export flux at the base of the euphotic zone (Eez).  Such differences 

in phytoplankton processes between deployments 1 and 2 provide a useful test 

of the relative role of the surface and subsurface ocean on setting export 

fluxes, attenuance of particle export (i.e. b values). These trends in Eez at K2 

are consistent with those observed in NBSTs deployed at three depths 

between 150-500 m at K2, and point to control of the magnitude of export 

fluxes by surface processes at this site. 

ii) At K2, the attenuation of export flux (expressed as b values) from the base of 

the euphotic zone to 150 m (depth of shallowest NBST deployment) were 

comparable to those b values derived between 150 m and 500 m depth.  

Moreover, there was no difference in the b values between deployment 1 and 

2, whereas export flux decreased by threefold.  This suggests that the re-

packaging of particles in the surface ocean (observations suggest an 

algal:faecal flux ratio of 0.1; the algal flux was diatom-dominated) is 

significant in setting the degree of particle flux attenuation in subsurface 

waters (i.e. greater than 60 m depth).  Such upper ocean particle 

transformations are also consistent with the observed lack of change in 

particle flux attenuance with depth despite variations in export flux. 

iii) There were differences between ALOHA and K2 in the relative role of the 

upper versus the subsurface ocean in attenuating NPP.  At ALOHA, both 

depth horizons have a comparable influence of the attenuation of NPP, 

whereas at K2 the surface ocean had a greater impact on the attenuance of 

NPP.   



iv) At both sites the ratio of algal:faecal export flux was estimated to be low (i.e. 0.1-0.2). 

At K2, this algal flux was dominated by diatoms, but at ALOHA it was mainly due to 

picophytoplankton. 

 

v) The changes in both NPP and floristic shifts at K2 are consistent with the impact of 

episodic Fe supply to these HNLC waters. They demonstrate that even transient changes 

in phytoplankton processes appear to have a marked cumulative (NPP and floristics) 

effect on the magnitude of export fluxes to the subsurface ocean. 
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Table 1   Comparison of  A) Trophic Transfer Efficiencies (TTE; or gross growth 
efficiencies) used in the Michaels and Silver (1988) foodweb model in Fig. 10, with those 
from a review of experimental observations by Straile (1997); B) foodweb scenarios used 
by Michaels and Silver (1988) and foodweb structures reported in the literature for the 
two VERTIGO sites, ALOHA (references are in italics) and K2 (references in bold).  
Note, although the subpolar waters at K2 and the tropical ocean at ALOHA represent 
different environments, there was no dependency of TTE on either temperature or 
predator-prey weight ratio (Straile, 1997).  Food concentration was the most influential 
factor on TTE (based on multiple regression analysis – see Fig. 3 in Straile (1997)).  
Thus, we have applied the same TTE for each foodweb pathway in this model. 
 
A) 
Foodweb 
Pathway 

Modela Observationsb 
mean 

Observationsb 
range 

Bacteria to small 
Protozoan 

0.4 0.32  0.1-0.6 

Small Protozoan 
to Large 
Protozoan  

0.3 0.30 0.07-0.7 

Phytoflagellate to 
Large Protozoan 

0.3 0.30 0.07-0.7 

Large Protozoan 
to 
Mesozooplankton 

0.3 0.29 0.02-0.7 

Diatom to 
Mesozooplankton 

0.3 0.29 0.02-0.7 

aMichaels and Silver (1988) 
bStraile (1997) 
 
B) 
Foodweb 
Scenarioa 

Description ALOHA K2 References 

Basic Microbial/Metazoan Applicable Applicable Campbell et al. 
(1997); 
Shinada et al. 
(2001); Selph 
et al. (2005)

Lean As above but with 
reduced TTE’s 

TTE’s lower 
than mean 
values 

TTE’s lower 
than mean 
values 

Landry and 
Calbet (2004); 
Straile (1997)

Algal As above but 
permits some direct 
algal sinking 

Applicable - 
some direct 
sinking 

Applicable - 
some direct 
sinking 

Scharek et al. 
(1999); 
Present Study

Two-level Each grazer preys 
on food items one 
size smaller than in 

Insufficient 
data available 
to comment 

Insufficient 
data available 
to comment 

Shinada et al. 
(2001) 
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Basic foodweb further further 
Generalist 
Grazer 

Such as Salps – can 
ingest all prey sizes 

Seldom 
reported 

Seldom 
reported 

Huntley et al. 
(2006); 
Shinada et al. 
(2001) 

adevised by Michaels and Silver (1988) 
 
 
Table 2 The main algal species and functional groups (qualitative) at K2 for mixed-layer 
samples within the size classes employed for size-fractionated NPP and chlorophyll (see 
Figs. 2, 3, 8, 9).  
 
 
  Size class  
Station > 20 µm 5-20 µm < 5 µm 
K2  
Deployment 1 

Pseudo-nitzschia spp., 
Chaetoceros spp. 
Corethron sp.  
Coscinodiscus cf 
marginatus.  
Few dinoflagellates 

Gymnodinium and 
Gyrodinium,   
Fragilariopsis 
present 

Synechoccocus , red-
fluorescing 
prokaryotes <1 µm, 
some autotrophic 
flagellates 

K2  
Deployment 2 

Mainly dinoflagellates, 
A few diatoms, mainly 
Chaetoceros spp.  

Diverse 
community of  
autotrophic 
flagellates, likely 
including 
coccolithophorids, 
Parmales 

Synechoccocus,  red-
fluorescing 
prokaryotes <1 µm, 
and a few 
autotrophic 
flagellates 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3  Estimates of the contribution of algal and faecal aggregates to export at 150 m 
depth at A) the ALOHA site during July 2004; B) the K2 site during deployments 1 and 2 
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in July and August 2005.  The impact of the selected ratio on predicted export flux from 
the base of the euphotic zone are provided in the last row of this Table.   
 
A) ALOHA 
Observations 
based on  

NPP  fate Algal flux  
(mg C m-2 d-1) 

Faecal flux 
(mg C m-2 d-1) 

Algal:faecal 
flux 

Observations 
from 
polyacrylamide 
gels (150 m)a 

Not available 
(na) 

na na 0.2-0.3.2:0.7-
0.8b 

Mesozooplankton 
egestion 
estimates (from 
OPC data)c 

na na na faecal flux (125 
m) is 90-95% 
of annual POC 
flux 

Faecal pellet 
analysisd 

  2.5 (150 m) flux of intact 
faecal pellets is 
14% of POC 
flux  

Fucoxanthin 
export flux 
(150 m)e/ mixed 
layer fucoxanthin 
inventoryf 

3-4% exported 
(150 m)^ 

  <0.1:>0.9 

Microscopy of 
large cellsg 

0.5% exported 
(150 m)h 

  <0.1:>0.9 

Foodweb model 
(present study)  

All consumed 
and/or exported

4-5 (125 m) 16-17 (125 m) 0.25:0.75 - 
0.29:0.71i 

adenotes Trull et al. (this volume); bestimated qualitatively from photomicrographs 
supplied by T. Trull; cHuntley et al. (2006); dWilson et al. (this volume); eLamborg et al. 
(this volume); fBuesseler et al. (this volume); gM. W. Silver, unpublished data;  
horganic C  of large algal cells in 150 m trap /organic C in the euphotic zone. 
ibased on ratio of 0.2:0.8 algal to faecal export in the model structure (i.e. 20% of 
microplankton NPP sinks out directly (see Fig. 9)) 
 
 
B) K2 
Observations 
based on  

NPP  fate Algal flux  
(mg C m-2 d-1) 

Faecal flux 
(mg C m-2 d-1) 

Algal:faecal 
flux 

Observations 
from 
polyacrylamide 
gels (150 m)a  

na na na 0.1-0.2:0.8-0.9b 

Mesozooplankton 
herbivory 
estimatesj 

14-20% 
grazing 

 18-27 (150 m) faecal flux is 
29-44% of 
POC flux 

Faecal pellet   12.4 (150 m) flux of intact 
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analysisd  faecal pellets is 
20% of POC 
flux  

Fucoxanthin 
export flux 
(150 m)e/ mixed 
layer fucoxanthin 
inventoryf 

1-2% exported 
(150 m)^ 

  <0.1:>0.9 

Microscopy of 
large cellsg  

0.5% exported 
(150 m)h 

  <0.1:>0.9 

Foodweb model 
(present study)  

All consumed 
and/or exported

5-25 (60 m) 28-86  (60 m) 0.17:0.83 to 
0.29:0.711 

jKobari et al. (this volume) 
horganic C  of large algal cells in 150 m trap /organic C in the euphotic zone. 
ibased on ratio of 0.1:0.9 algal to faecal export in the model structure (i.e. 10% of 
microplankton NPP sinks out directly (see Fig. 9)) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure Legends 
 
Fig. 1  Vertical profiles of the partitioning of chlorophyll between 4 size classes at  
ALOHA A) deployment 1, 25 June 2004;  B) deployment 2, 5 July 2004.  The error bars 
represent the standard error of the mean (n=3) of three pseudo-replicates from each depth.  
Error bars for each size class are not shown.  The maximum depth of the DCM (from 
chlorophyll fluorescence profiles) was 135 m on most profiles.   
 
Fig. 2 Vertical profiles of the partitioning of chlorophyll between 4 size classes at K2 
deployment  1 for A) 31 July,  B) 2 August, C) 4 August, and D) 6 August 2005 (i.e. 
from CTD casts 18, 23, 31, 39, respectively).  Symbols and error bars are as for Fig. 1.   
The maximum depth of the DCM was 62 m (from chlorophyll fluorescence profiles) on 
most profiles. 
 
Fig. 3 Vertical profiles of the partitioning of chlorophyll between 4 size classes at K2 
deployment  2 for A) 11 August, B) 13 August, C) 15 August and D) 17 August 2005 
(i.e. from CTD casts 62, 66, 76, 84, respectively). Symbols and error bars are as for Fig. 
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1.   The maximum depth of the DCM was 66 m (from chlorophyll fluorescence profiles) 
on most profiles. 
 
Fig. 4  Partitioning of algal pigments within 4 size classes at K2 (10 m depth) on A) 5 
August 2005 (CTD 39, i.e. last profile from deployment 1); B) 17 August 2005 (CTD 84, 
last profile of deployment 2), for the main pigment groups 19’-butanoyloxyfucoxanthin 
(pelagophytes), fucoxanthin (diatoms), 19’-hexanoyloxyfucoxanthin (haptophytes), 
alloxanthin (cryptophytes), and total chlorophyll.  The other main pigment group 
zeaxanthin (cyanobacteria) was predominately observed in the < 2 µm fraction. 
 
Fig. 5 Typical vertical profiles of phytoplankton photosynthetic competence (Fv/Fm) at A) 
ALOHA (deployment 1, 25 June 2004 (CTD XX)); B) K2  (deployment 1, 2 August 
2005 (CTD 23)) ; C) K2 underway sampling (100 nautical miles around the central 
station) of surface waters ( 4 m depth, 10 knots) commencing 2000 h local time on 
August 8 2005; and D) denotes a vertical profile (solid line and solid symbols, CTD 34) 
in Fv/Fm in settling particles (referred to here as ‘dregs’).  Open symbols denote Fv/Fm in 
mixed-layer water samples from 20 m and from the DCM. 
 
Fig. 6  Time-series from deckboard iron-enrichment experiments using water sampled 
from 10 m depth at K2 (2 August 2005, CTD 23) for A) Fv/Fm; B) chlorophyll 
concentrations.  Solid and open symbols denote the iron-enriched and control treatments, 
respectively.  
 
Fig. 7 Vertical profiles of the partitioning of Net Primary Production (NPP) between 4 
size classes at  ALOHA A)deployment 1, 25 June 2004;  B) deployment 2, 5 July 2004.  
The error bars represent the standard error of the mean (n=3) of three pseudo-replicates 
from each depth.  Error bars for each size class are not shown. 
 
Fig. 8 Vertical profiles of the partitioning of NPP between 4 size classes at  K2 
deployment 1 for A) 31 July,  B) 2 August, C) 4 August, and D) 6 August 2005 (i.e. from 
CTD casts 18, 23, 31, 39, respectively). Symbols and error bars are as for Fig. 6. 
 
 
Fig. 9 Vertical profiles of the partitioning of NPP (NPP) between 4 size classes at K2 
deployment  2: A) 11 August, B) 13 August, C) 15 August and D) 17 August 2005 (i.e. 
from CTD casts 62, 66, 76, 84, respectively).  Symbols and error bars are as for Fig. 6. 
 
Fig. 10 Predictions of export flux (mg C m-2 d-1), from the base of the euphotic zone, to 
depth using the Michaels and Silver (1988) approach for A) ALOHA, 25 June 2004; B) 
K2, 5 July 2004; C) K2, 31 July 2005; D) 11 August 2005. Arrows denote the foodweb 
pathways (for carbon deriving from column-integrated NPP and heterotrophic bacterial 
production). Arrows above of M, N, P and B represent NPP by micro-, nano-, pico-
plankton, and heterotrophic bacterial production, (courtesy of B. van Mooy, unpublished 
data), respectively.  H, C and Me denote, heterotrophic flagellates, heterotrophic ciliates 
and mesozooplankton (copepods), respectively.  Fluxes within arrows between H, C and 
Me represent the trophic transfer of carbon through the foodweb, the transfer efficiencies 
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are based on Michaels and Silver (1988) – see Table 1A.  The export flux of algal and 
faecal carbon in represented by the arrows to the right of the M and Me boxes, 
respectively.  At ALOHA 20% of NPP from microphytoplankton was permitted to be 
exported directly, and the remainder was grazed by mesozooplankton (Table 3A), 
whereas 10% of microplankton NPP was exported directly at K2 (Table 3B).  Note this 
approach cannot take into account the effects of diurnal vertical migration on export out 
of the surface layers. 
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Appendix A  Methods for microscopy 

Samples were taken as follows: from the Niskin bottles, 100ml samples were 

drawn and then fixed with hexamine buffered formaldehyde (0.6%  final concentration) 

and stored un-concentrated in glass bottles for later viewing and cell counting.  

Additionally, filter preps were made for epi-fluorescent counts of organisms from water 

samples obtained from the Niskin bottles.  Aliquots were fixed with 0.5% gluteraldehyde, 

incubated for 1hour and then drawn by low vacuum pressure onto 0.8 and 5 µm 

polycarbonate membrane filters that were briefly incubated with DAPI.   These filters 
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were placed on glass slides between 2 drops of immersion oil, placed in a slide box, and 

frozen for later examination.   Initial viewing of large cells in net tow contents at sea (e.g. 

for Trichodesmium tufts at station ALOHA) was possible using a Cole Parmer trinocular 

Stereo Zoom microscope with a 10x eyepiece and 10-40x zoom objective. For net tow 

samples, live contents were viewed and photographed at sea using an Zeiss Axioskop 

with a 10x objective and  20x, 40x, 63x objectives (depending on the resolution required) 

either under brightfield or epiflourescence lighting conditions. Such samples were 

generally highly fluorescent and digital images of them provided useful information for 

species identification and cell condition,   Additionally, filters (both 0.8 and 5.0 µm pore-

sizes) with fixed cells (the quantitative preparations) were also examined briefly at sea.    

Back on land (at UCSC), samples for the larger cells (cells >20 µm) were counted 

using standard Utermöhl  methods and enumerated and sized using  an Olympus IX 70 

inverted microscope, with 10x oculars and 10x, 20x or 40 x objective, as appropriate, and 

viewed by fluorescence and phase contrast microscopy.  Only intact cells were counted.  

For the smaller cells, qualitative examinations of the dominant taxa were made on the 0.8 

and 5 µm filters using a Zeiss Axio Imager compound microscope with epi-fluorescent 

attachment. The autofluorescence of chlorophyll-a and biliprotein pigments was used to 

identify cells as photosynthetic. DAPI staining was useful for distinguishing 

dinoflagellates from other taxa.   Phytoplankton flux was measured at the various sites 

using trap contents that were available from the uppermost (150 m) trap, which was 

deployed below the euphotic zone.  A plankton splitter was used to obtain 500ml 

subsamples of trap material which was preserved with 0.6% hexamine buffered 

formaldehyde sea and then subsequently prepared for viewing and counting back in the 
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land-laboratories. Phytoplankton in the trap subsamples were sized and counted back in 

the laboratory as described above for the water samples. The abundance and biomass 

were determined using the methods of Garrison et al., 2005.  Modified Strathmann 

equations (Eppley  et al. 1970) were used to calculate cell carbon content.   

Additionally, for both ALOHA and K2 samples,  samples were prepared for 

scanning electron microscopy (SEM), in rder to check for the presence of small 

mineralized cells such as members of the Parmales and coccolithophorids.  For such 

samples, we used our standard methods for preparing  Niskin bottle watersamples that 

had been fixed and appropriately collected on filters at sea (Garrison et al., 2005).  Back 

in the lab these were processed, viewed, and SEM micrographs obtained of the various 

species, using our standard methods (Garrison et al., 2005)  

 

Appendix  B   Changes in biogeochemical fluxes and their vertical attenuation at ALOHA 
and K2 

Rates of NPP compared with predicted export flux at the base of the euphotic zone (Eez), and 
observed export fluxes at 150 m (E150) and 500 m (E500) depth (Buesseler et al., 2007).  B values 
(sensu Martin et al., 1987) for each ratio are presented in parentheses. 

Flux (mg m-2 d-

1) 
ALOHA K2 deployment 1 K2 deployment 2 

NPP 180-220 450-603 302-478 
Eez 20-22 78-111 27-33 
E150 18 62 23 
E500 3.6 29 13 
Ratio ALOHA K2 deployment 1 K2 deployment 2 
Eez/NPP 0.10-0.11 0.16-0.21 0.08-0.11 
E150/Eez 0.82-0.90 

(1.2) 
0.56-0.79  (0.55) 0.69-0.85 (0.41) 

E500/E150 0.23 (1.2-
1.25) 

0.47  (0.51) 0.52  (0.48) 
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