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Abstract 

Procedures are described for the representation of results in analyses that involve both aleatory uncertainty and 

epistemic uncertainty, with aleatory uncertainty deriving from an inherent randomness in the behavior of the system 

under study and epistemic uncertainty deriving from a lack of knowledge about the appropriate values to use for 

quantities that are assumed to have fixed but poorly known values in the context of a specific study.  Aleatory 

uncertainty is usually represented with probability and leads to cumulative distribution functions (CDFs) or 

complementary cumulative distribution functions (CCDFs) for analysis results of interest.  Several mathematical 

structures are available for the representation of epistemic uncertainty, including interval analysis, possibility theory, 

evidence theory and probability theory.  In the presence of epistemic uncertainty, there is not a single CDF or CCDF 

for a given analysis result.  Rather, there is a family of CDFs and a corresponding family of CCDFs that derive from 

epistemic uncertainty and have an uncertainty structure that derives from the particular uncertainty structure (i.e., 

interval analysis, possibility theory, evidence theory, probability theory) used to represent epistemic uncertainty.  

Graphical formats for the representation of epistemic uncertainty in families of CDFs and CCDFs are investigated 

and presented for the indicated characterizations of epistemic uncertainty. 
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1. Introduction 

The appropriate treatment of uncertainty in analyses of complex systems is a topic of great importance and 

hence widespread interest [1-14].  Such treatment is particularly important in computational analyses that are used to 

support important societal decisions on issues related to climate change [15-19], reactor safety [20-26], radioactive 

waste disposal [27-34], nuclear weapon safety [35-38], economic policy [39-43], environmental degradation [44-

47], and many additional areas of concern and challenge.  Indeed, it is difficult to envision how adequately informed 

decisions can be made on such issues without an appropriate assessment of the uncertainties present in the 

supporting analyses. 

An immediate challenge in the development of an appropriate treatment of uncertainty in an analysis of a 

complex system is the selection of a mathematical structure to be used in the representation of uncertainty.  

Traditionally, probability theory has provided this structure [48-55].  However, in the last several decades, additional 

mathematical structures for the representation of uncertainty such as evidence theory [56-63], possibility theory [64-

70],  fuzzy set theory [71-75], and interval analysis [76-81] have been introduced.  This introduction has been 

accompanied by a lively discussion of the strengths and weaknesses of the various mathematical structures for the 

representation of uncertainty [82-90].  For perspective, several comparative discussions of these different 

approaches to the representation of uncertainty are available [72; 91-98].  

An additional and closely related challenge derives from the presence of two different types of uncertainty in 

most analyses for complex systems.  The first type derives from an inherent randomness in the behavior of the 

system under study.  For example, the weather conditions at the time of a major accident at a chemical plant could 

have a significant effect on the number of resultant off-site injuries but is essentially random in so far as our ability 

to predict the future is concerned.  Uncertainty of this type is usually referred to as aleatory uncertainty; alternative 

designators include variability, stochastic, irreducible, and Type A [11; 53; 99-105].  The second type of uncertainty 

derives from a lack of knowledge about a quantity that is assumed to have a fixed, but poorly known, value in the 

context of a particular analysis.  For example, the appropriate value to use for a spatially averaged permeability in an 

analysis involving groundwater flow has, by definition, a single value but this single “effective” value can never be 

known with certainty.  Uncertainty of this type is usually referred to as epistemic uncertainty; alternative designators 

include state of knowledge, subjective, reducible, and Type B [11; 53; 99-105]. 

The challenges associated with the treatment of aleatory and epistemic uncertainty in the analysis of a complex 

system are twofold.  First, it is necessary to select and then implement a mathematical structure to represent each of 

these uncertainties.  The mathematical structures used to represent aleatory and epistemic uncertainty in a particular 

analysis are not necessarily the same.  For example, probability theory could be, as is usually the case, used to 

represent aleatory uncertainty while, in the same analysis, evidence theory is used to represent epistemic uncertainty.  

Second, the mathematical structures used to represent aleatory and epistemic uncertainty must be propagated 
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through the analysis in a manner that maintains an appropriate separation of these uncertainties in the final results of 

interest. 

The purpose of this presentation is to discuss and illustrate the representation of analysis results involving 

aleatory and epistemic uncertainty.  To this end, several mathematical structures for the representation of uncertainty 

are described (Sect. 2); the distinction between aleatory and epistemic uncertainty is discussed (Sect. 3); a simple 

example involving the reliability of a coastal dike is introduced for use in illustrating the representation of 

uncertainty (Sect. 4); the representation of unstructured epistemic uncertainty is discussed and illustrated (Sect. 5); 

and the representation of structured epistemic uncertainty is discussed and illustrated (Sect. 6).  The presentation 

then ends with a concluding discussion (Sect. 7). 

2. Representation of Uncertainty 

This section provides a brief overview of the following mathematical structures that are used in the 

representation of uncertainty:  interval analysis (Sect. 2.1), possibility theory (Sect. 2.2), evidence theory (Sect. 2.3), 

and probability theory (Sect. 2.4).  For each structure, the following topics are considered:  (i) the representation of 

uncertainty in a single variable xi, (ii) the representation of uncertainty in a vector x = [x1, x2, …, xnX] of uncertain 

variables, and (iii) the representation of the uncertainty in a variable y defined by 

( ) [ ]1 2, , , , ,nXy F x x x= = Kx x  (2.1) 

where F is a function of the vector x of uncertain variables x1, x2, …, xnX.  For this overview, no distinction is made 

between aleatory uncertainty and epistemic uncertainty.  Then, the section concludes with a discussion of the use of 

sampling-based (i.e., Monte Carlo) procedures in the propagation of different mathematical structures for the 

representation of uncertainty (Sect. 2.5). 

2.1 Interval Analysis 

Interval analysis is based on the assumption that a set Xi of possible values for a variable xi is known but with 

no specified uncertainty structure within the set Xi [76-81].  Thus, all that is assumed to be known about xi is that its 

value is contained within the set Xi.  Usually, but not necessarily, Xi is defined by 

{ }: ,i i i i ix a x b= ≤ ≤X  (2.2) 

where [ai, bi] is an interval that contains the possible values for xi. 

For a vector x = [x1, x2, …, xnX] of variables known only to be contained in the sets X1, X 2, …, X nX, the set X 

of possible values is given by 

1 2 .nX= × × ×KX X X X  (2.3) 
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Given that there is no specified uncertainty structure for the sets X1, X 2, …, X nX, there is also no uncertainty 

structure for the set X of possible values for x.  Further, the preceding representation for X is predicated on the 

assumption that no restrictions exist that preclude specific combinations of values for the individual variables 

contained in x. 

Propagation of the individual values of x contained in X through the function F results in the set 

( ){ }:  and y y F= ∈ =x xY X  (2.4) 

of possible values for y.  Given that there is no uncertainty structure for the set X, there is also no uncertainty 

structure for the set Y. 

In most applications, the indicated propagation to produce the set Y  is based on using algebraic procedures 

implemented with appropriate software.  However, an interval analysis can also be thought of as an optimization 

process in which it is desired to find the minimum and maximum of the function F on the set X.  Alternatively, the 

uncertainty propagation associated with an interval analysis can be approximated with a sampling-based (i.e., Monte 

Carlo) procedure. 

2.2 Possibility Theory 

Possibility theory [64-70] provides a representation for uncertainty that permits the specification of more 

structure than interval analysis and is based on the specification of a pair (Xi, ri) for a variable xi, where (i) Xi is the 

set of possible values for xi and (ii) ri is a function defined on Xi such that 0 ≤ ri(xi) ≤ 1 for xi ∈ Xi and sup{r(xi): xi 

∈ Xi} = 1.  The function ri provides a measure of the amount of “credence” or “confidence” that is assigned to each 

element of Xi and is referred to as the possibility distribution function for xi.  The pair (Xi, ri) defines a possibility 

space for the variable xi. 

A value of r(xi) = 1 indicates that there is no known information that refutes the “occurrence” or 

“appropriateness” of a specific value xi contained in Xi, and a value of r(xi) = 0 indicates that known information 

completely refutes the “occurrence” or “appropriateness” of xi.  Further, increasing values for r(xi) between 0 and 1 

indicate an increasing absence of information that refutes the “occurrence” or “appropriateness” of xi.  Intuitively, 

r(xi) = 1 signifies that xi is entirely possible in the sense that nothing is known that contradicts the possibility of xi; 0 

< r(xi) < 1 signifies that xi is possible but with the amount of information indicating that xi is not possible increasing 

as r(xi) approaches 0; and r(xi) = 0 signifies that xi is known to be impossible. 

Possibility theory provides two measures of likelihood for subsets of Xi:  possibility and necessity.  Specifically, 

possibility and necessity for a subset U of Xi are defined by 

( ) ( ){ }sup :U U= ∈i i i iPos r x x  (2.5) 
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and 

( ) ( ) ( ){ }1 1 sup : ,c c
i i i i iNec Pos r x x= − = − ∈U U U  (2.6) 

respectively.  In consistency with the properties of the possibility distribution function ri, Posi(U) provides a 

measure of the amount of information that does not refute the proposition that U contains the appropriate value for 

xi, and Neci(U) provides a measure of the amount of uncontradicted information that supports the proposition that U 

contains the appropriate value for xi. 

Relationships satisfied by possibility and necessity for the possibility space (Xi, ri) include 

( ) ( ) ( ) ( )1 ,c
i i i iNec Pos Nec Pos= + ≤U U U U  (2.7) 

( ) ( ) ( ) ( )1 , 1c c
i i i iPos Pos Nec Nec≤ + + ≤U U U U  (2.8) 

( ) ( ){ } ( ) ( ){ }1 max , , 0 min ,c c
i i i iPos Pos Nec Nec= =U U U U  (2.9) 

( ) ( ) ( ) ( )1 0, 0 1i i i iPos Nec Nec Pos< ⇒ = > ⇒ =U U U U  (2.10) 

for subsets U of Xi (see Ref. [106], p. 34). 

Convenient graphical summaries of possibility spaces are provided by cumulative necessity functions (CNFs), 

complementary cumulative necessity functions (CCNFs), cumulative possibility functions (CPoFs), and 

complementary cumulative possibility functions (CCPoFs).  Specifically, the CNF, CCNF, CPoF and CCPoF for the 

possibility space (Xi, ri) are defined by the sets 

( ){ } ( ){ }, : , , :c
i i x i i i x ix Nec x x Nec x⎡ ⎤⎡ ⎤= ∈ = ∈⎣ ⎦ ⎢ ⎥⎣ ⎦

CNF U X CCNF U X  (2.11) 

( ){ } ( ){ }, : , , : ,c
i i x i i i x ix Pos x x Pos x⎡ ⎤⎡ ⎤= ∈ = ∈⎣ ⎦ ⎢ ⎥⎣ ⎦

CPoF U X CCPoF U X  (2.12) 

where 

{ }:  and .x ix x x x= ∈ ≤% % %U X  

Plots of the curves defined by the points associated with CNFi, CCNFi, CPoFi and CCPoFi yield the CNF, CCNF, 

CPoF, and CCPoF for the possibility space (Xi, ri) (Fig. 1). 
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Fig. 1. Plots of CNF, CCNF, CPoF and CCPoF for possibility space (X, r) with (i) X = {x: 1 ≤ x ≤ 10}, (ii) r(x) = 

i/4 for i ≤ x ≤ i + 1 and i = 1, 2, 3, 4, (iii) r(x) = (10 – i)/10 for i ≤ x ≤ i + 1 and i = 5, 6, 7, 8, 9, and (iv) 
Pos(x% ≤ x), Nec(x% ≤ x), Pos(x% > x) and Nec(x% > x) used as abbreviated notations for the expressions 
Posi(Ux), Neci(Ux), Posi(

c
xU ) and Neci(

c
xU ) in Eqs. (2.11) and (2.12):  (a) CNF and CPoF, and (b) CCNF 

and CCPoF. 

If the variables x1, x2, …, xnX have associated possibility spaces (X1, r1), (X2, r2), …, (XnX, rnX), then the vector 

x = [x1, x2, …, xnX] also has an associated possibility space (X, rX), where X is defined the same as in Eq. (2.3) and 

( ) ( ) ( ) ( ){ }1 1 2 2min , , , .X nX nXr r x r x r x= Kx  (2.13) 

The indicated definitions for X and rX are predicated on the assumption that no restrictions involving possible 

combinations of values for the xi’s exist.  If such restrictions exist, then the definition of rX is more complex. 

Once the possibility space (X, rX) for x is defined, possibility PosX(U) and necessity NecX(U) for subsets U of 

X are defined as indicated in Eqs. (2.5) and (2.6).  Further, the relationships indicated in Eqs. (2.7) – (2.10) also 

hold. 

Propagation of the individual values of x contained in X through the function F indicated in Eq. (2.1) results in a 

set Y of possible values for y of the form shown in Eq. (2.4).  Given that a possibility space (X, rX) exists for x, a 

resultant possibility space (Y, rY) also exists for the values of y.  Specifically, the possibility distribution function rY 

is defined by 

( ) ( ) ( ){ } ( ){ }1sup :  and Y X Xr y r y F Pos F y−= ∈ = =Xx x x  (2.14) 

for y ∈ Y, where F–1(y) represents the set 
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( ) ( ){ }1 :  and .F y y F− = ∈ =Xx x x  

In turn, the possibility PosY(U) and necessity NecY(U) for subsets U of Y can be defined as indicated in Eqs. (2.5) 

and (2.6); further, the relationships indicated in Eqs. (2.7) – (2.10) also hold. 

Provided y is real valued, the possibility space (Y, rY) can be summarized by presentation of the corresponding 

CNF, CCNF, CPoF and CCPoF as discussed in conjunction with Eqs. (2.11) and (2.12).  Specifically, the CNF, 

CCNF, CPoF and CCPoF for y are defined by the sets 

( ){ } ( ){ }1, : , : ,Y y X yy Nec y y Nec F y−⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
CNF U Y U Y  (2.15) 

( ){ } ( ){ }1, : , : ,c c
Y y X yy Nec y y Nec F y−⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

CCNF U Y U Y  (2.16) 

( ){ } ( ){ }1, : , : ,Y y X yy Pos y y Pos F y−⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
CPoF U Y U Y  (2.17) 

( ){ } ( ){ }1, : , : ,c c
Y y X yy Pos y y Pos F y−⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

CCPoF U Y U Y  (2.18) 

where 

{ }:  and .y y y y y= ∈ ≤% % %U Y  

Plots of the curves defined by CNF, CCNF, CPoF and CCPoF produce a figure identical in concept to Fig. 1 and 

provide a visual representation of the uncertainty associated with y in terms of necessity and possibility. 

2.3 Evidence Theory 

Evidence theory, which is also known as Dempster-Shafer theory in recognition of the initial work done by 

these two individuals, provides a representation for uncertainty that permits the specification of more structure than 

possibility theory [56-63].  Evidence theory is based on the specification of a triple (Xi, Ξi, mi) for a variable xi, 

where (i) Xi is the set of possible values for xi, (ii) Ξi is a countable collection of subsets of Xi, and (iii) mi is a 

function defined for subsets U of Xi such that mi(U) > 0 if U ∈ Ξi, mi(U) = 0 if U ∉ Ξi, and 

( ) 1.ii
m∈ =∑ XU U  (2.19) 

In the terminology of evidence theory, (i) Xi is the sample space or universal set, (ii) Ξi is the set of focal elements 

for Xi and mi, and (iii) mi(U) is the basic probability assignment associated with a subset U of Xi.  In concept, the 

basic probability assignment mi(U) provides a measure of the amount of information (or credibility or probability) 

that can be associated with a subset U of Xi but which cannot be further decomposed over subsets of U. 
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Evidence theory provides two measures of likelihood for subsets of Xi:  plausibility and belief.  Specifically, the 

plausibility and belief for a subset U of Xi are defined by 

( ) ( )i iPl m
∩ ≠∅

= ∑
V U

U V  (2.20) 

and 

( ) ( ),i iBel m
⊂

= ∑
V U

U V  (2.21) 

respectively.  As a result of the intersection requirement (i.e., V ∩ U ≠ ∅ in Eq. (2.20)), Pli(U) provides a measure 

of the amount of information that could possibly be associated with U.  Similarly as a result of the subset 

requirement (i.e., V ⊂ U in Eq. (2.21)), Beli(U) provides a measure of the amount of information that is known to be 

associated with U. 

Relationships satisfied by plausibility and belief for the evidence space (Xi, Ξi, mi) include 

( ) ( ) 1,c
i iBel Pl+ =U U  (2.22) 

( ) ( ) 1c
i iBel Bel+ ≤U U  (2.23) 

and 

( ) ( ) 1c
i iPl Pl+ ≥U U  (2.24) 

for subsets U of Xi. 

Convenient graphical summaries of evidence spaces are provided by cumulative belief functions (CBFs), 

complementary cumulative belief functions (CCBFs), cumulative plausibility functions (CPFs), and complementary 

cumulative plausibility functions (CCPFs).  Specifically, the CBF, CCBF, CPF and CCPF for the evidence space 

(Xi, Ξi, mi) are defined by the sets 

( ){ } ( ){ }, : , , :c
i i x i i i x ix Bel x x Bel x⎡ ⎤⎡ ⎤= ∈ = ∈⎣ ⎦ ⎢ ⎥⎣ ⎦

CBF U X CCBF U X  (2.25) 

( ){ } ( ){ }, : , , : ,c
i i x i i i x ix Pl x x Pl x⎡ ⎤⎡ ⎤= ∈ = ∈⎣ ⎦ ⎢ ⎥⎣ ⎦

CPF U X CCPF U X  (2.26) 

where Ux is defined the same as in conjunction with Eqs. (2.11) and (2.12).  Plots of the curves defined by the points 

associated with CBFi, CCBFi, CPFi and CCPFi yield the CBF, CCBF, CPF and CCPF for the evidence space (Xi, Ξi, 

mi) (Fig. 2). 
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Fig. 2. Plots of CBF, CCBF, CPF and CCPF for evidence space (X, Ξ, m) with (i) X = {x: 1 ≤ x ≤ 10}, (ii) Ξ = 

{U1, U2, …, U10} with Ui = [i, 2i] for i = 1, 2, 3, 4, 5 and Ui = [i − 1, i] for i = 6, 7, 8, 9, 10, (iii) m(U) = 
1/10 if U ∈ Ξ and m(U) = 0 otherwise, and (iv) Pl(x% ≤ x), Bel(x% ≤ x), Pl(x% > x) and Bel(x% > x) used as 
abbreviated notations for Pli(Ux), Beli(Ux), Pli(

c
xU ) and Beli(

c
xU ) in Eqs. (2.25) and (2.26):  (a) CBF and 

CPF, and (b) CCBF and CCPF. 

If the variables x1, x2, …, xnX have associated evidence spaces (X1, Ξ1, m1), (X2, Ξ2, m2), …, (XnX, ΞnX, mnX), 

then the vector x = [x1, x2, …, xnX] also has an associated evidence space (X, Ξ, mX), where (i) X is defined the same 

as in Eq. (2.3), (ii) U ∈ Ξ if, and only if, 

1 2 nX= × × ×KU U U U  (2.27) 

with Ui ∈ Ξi for i = 1, 2, …, nX, and (iii) 

( ) ( )
1

nX

X i i
i

m m
=

= ∏U U  (2.28) 

if U = U1 × U2 × … × U nX ∈ Ξ and mX(U) = 0 otherwise.  The preceding definition for (X, Ξ, mX) is predicated on 

the assumption that no restrictions involving possible combinations of values for the xi exist.  If such restrictions 

exist, then the definition of (X, Ξ, mX) is more complex. 

Once the evidence space (X, Ξ, mX) for x is defined, the plausibility PlX(U) and belief BelX(U) for subsets U of 

X are defined as indicated in Eqs. (2.20) and (2.21).  Further, the relationships indicated in Eqs. (2.22) – (2.24) also 

hold. 
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Propagation of the individual values of x contained in X through the function F indicated in Eq. (2.1) results in a 

set Y of possible values for y of the form shown in Eq. (2.4).  Given that an evidence space (X, Ξ, mX) exists for x, a 

resultant evidence space (Y, Ψ, mY) also exists for the value of y.  Specifically, (i) 

( ) ( ) ( ){ }1 2, , , nF F F= KY V V V  (2.29) 

where V1, V 2, …, V n correspond to the elements of Ξ, (ii) 

( ) ( )
( )

Y k
k

m m
∈

= ∑
I U

U V  (2.30) 

if U ∈ Ψ, where k ∈ I(U) if, and only if, U = F(Vk), and (iii) mY(U) = 0 if U ∉ Ψ.  The summation over k in the 

definition of mY(U) in Eq. (2.30) is necessary to appropriately incorporate the possibility that U = F(Vk) for more 

than one element Vk of Ξ.  In turn, the plausibility PlY(U) and belief BelY(U) for subsets U of Y can be defined as 

indicated in Eqs. (2.20) and (2.21); further, the relationships indicated in Eqs. (2.22) – (2.24) also hold. 

Provided y is real valued, the evidence space (Y, Ψ, mY) can be summarized by presentation of the 

corresponding CBF, CCBF, CPF and CCPF as discussed in conjunction with Eqs. (2.25) and (2.26).  Specifically, 

the CBF, CCBF, CPF and CCPF for y are defined by the sets 

( ){ } ( ){ }1, : , : ,Y y X yy Bel y y Bel F y−⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
CBF U Y U Y  (2.31) 

( ){ } ( )1, : , : ,c c
Y y X yy Bel y y Bel F y−⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭

CCBF U Y U Y  (2.32) 

( ){ } ( ){ }1, : , : ,Y y X yy Pl y y Pl F y−⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
CPF U Y U Y  (2.33) 

( ){ } ( )1, : , : ,c c
Y y X yy Pl y y Pl F y−⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭

CCPF U Y U Y  (2.34) 

where Uy is defined the same as in conjunction with Eqs. (2.15) – (2.18).  Plots of the curves defined by the points 

associated with CBF, CCBF, CPF and CCPF produce a figure identical in concept to Fig. 2 and provide a visual 

representation of the uncertainty associated with y in terms of belief and plausibility. 

2.4 Probability Theory 

Probability theory provides a representation for uncertainty that involves the specification of more structure 

than evidence theory [48-55; 107-111].  Similarly to evidence theory, probability theory is based on the specification 

of a triple (Xi, Ξi, pi) for a variable xi, where (i) Xi is the set of possible values for xi, (ii) Ξi is a suitably restricted 

collection of subsets of Xi (i.e., if U ∈ Ξi, then Uc ∈ Ξi, and if U1, U2, … is a countable sequence of elements of Ξi, 
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then ∪kUk ∈ Ξi and ∩kUk ∈ Ξi),and (iii) pi defines the probability for elements of Xi (i.e., 0 ≤ pi(U) ≤ 1 if U ∈ Ξi, 

pi(Xi) = 1, and pi (∪kUk) = ∑k pi(Uk) if U1, U2, … is a countable sequence of nonintersecting elements of Ξi).  

However, in contrast to an evidence space (Xi, Ξi, mi), a probability space (Xi, Ξi, pi) involves the imposition of 

more structure on Ξi and pi than is the case for Ξi and mi for an evidence space.  In the terminology of probability 

theory, (i) Xi is the sample space, (ii) the elements of Ξi are events and collectively constitute what is known as a σ-

algebra, and (iii) pi is a probability measure (Sects. IV.3 and IV.4, Ref. [111]).  For notational and computational 

convenience, a probability space (Xi, Ξi, pi) is often summarized with a density function di, where 

( ) ( )di ip d x x= ∫UU  (2.35) 

for U ∈ Ξi. 

Unlike possibility theory and evidence theory, which provide two measures of likelihood (i.e., possibility and 

necessity in possibility theory and plausibility and belief in evidence theory), probability theory provides only one 

measure of likelihood:  probability.  The probabilities of a set and its complement are related by 

( ) ( ) 1c
i ip p+ =U U  (2.36) 

for U ∈ Ξi, which is a more restrictive requirement than shown in Eq. (2.8) for possibility and necessity and in Eqs. 

(2.23) an (2.24) for belief and plausibility. 

Convenient graphical summaries of probability spaces are provided by cumulative distribution functions 

(CDFs) and complementary cumulative distribution functions (CCDFs).  Specifically, the CDF and CCDF for the 

probability space (Xi, Ξi, pi) with the corresponding density function di are defined by the sets 

( ){ } ( ), : , d :
x

i i x i i ix p x x d x x x⎧ ⎫⎡ ⎤⎡ ⎤= ∈ = ∈⎨ ⎬⎣ ⎦ ⎢ ⎥⎣ ⎦⎩ ⎭∫ % %
U

CDF U X X  (2.37) 

and 

( ){ } ( ), : , d : ,c
ci i x i i i
x

x p x x d x x x
⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= ∈ = ∈⎨ ⎬⎢ ⎥⎢ ⎥⎣ ⎦ ⎪ ⎪⎣ ⎦⎩ ⎭

∫ % %
U

CCDF U X X  (2.38) 

where Ux is defined the same as in conjunction with Eqs. (2.11) and (2.12).  Plots of the curves defined by the points 

associated with CDFi and CCDFi yield the CDF and CCDF for the probability space (Xi, Ξi, pi) (Fig. 3). 

One interpretation of an evidence space (X, Ξ, m) is that it is a characterization of a partially defined probability 

space.  In general, there are many possible probability spaces (X, Ξ, p) that are consistent with a given evidence 

space (X, Ξ, m) in the sense that, if U ⊂ X (i.e., technically, an element of the set Ξ associated with (X, Ξ, p)), then 
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( ) ( ) ( ).Bel p Pl≤ ≤U U U  (2.39) 

As a result of the preceding inequality, if a probability space (X, Ξ, p) is consistent with an evidence space (X, Ξ, m), 

then the CDF associated with (X, Ξ, p) falls between the CBF and CPF associated with (X, Ξ, m) and similarly the 

CCDF falls between the CCBF and CCPF. 

For example, if X corresponds to a bounded interval I = [a, b] and each focal element Uk associated with the 

evidence space (X, Ξ, m) is a subinterval Ik = [ak, bk] of I, then a probability space (X, Ξ, p) consistent with the 

evidence space (X, Ξ, m) is defined by the density function 

( ) ( ) ( ) ( ) ,k k k kkd x x m b aδ= −∑ U  (2.40) 

where 

( ) 1 if 
0 otherwise.

k
k

x
xδ

∈⎧
= ⎨
⎩

U
 

As a result, the CDF for (X, Ξ, p) falls between the CBF and CPF for (X, Ξ, m), and similarly, the CCDF for (X, Ξ, 

p) falls between the CCBF and CCPF for (X, Ξ, m) (Fig. 3). 

If the variables x1, x2, …, xnX have associated probability spaces (X1, Ξ1, p1), (X2, Ξ2, p2), …, (XnX, ΞnX, pnX), 

then the vector x = [x1, x2, …, xnX] also has an associated probability space (X, Ξ, pX), where (i) X is defined the 

same as in Eq. (2.3), (ii) Ξ is developed from the sets contained in  

{ }1 2 1 2: nX nX= = × × × ∈ × × ×L KC X X XU U U U U  (2.41) 

(see Sect. IV.6, Ref. [111] and Sect. 2.6, Ref. [108]), and (iii) pX is developed from the properties of p1, p2, …, pnX.  

Specifically, if the xi are independent (i.e., if the occurrence of one xi has no implications for the occurrence of the 

remaining xj, j ≠ i), then 

( )
1

nX

X i i
i

p p
=

= ⎡ ⎤⎣ ⎦∏U U  (2.42) 

for U = U 1 × U 2 × … × U nX ∈ Χ and, more generally, 

( ) ( )dX Xp d X= ∫UU x  (2.43) 

for U ∈ Ξ, where 

( ) ( )
nX

X i i
i i

d d x
=

= ∏x  
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Fig. 3. Plots of (a) CBF, CCBF, CPF and CCPF for evidence space (X, Ξ, m) with (i) X = {x: 1 ≤ x ≤ 10}, (ii) Ξ 

= {U1, U2, …, U10} with Ui = [i, 2i] for i = 1, 2, 3, 4, 5, Ui = [i − 1, i] for i, 6, 7, 8, 9, and U = [1, 10], 
and (iii) m(U) = 1/10 if U ∈ Ξ and m(U) = 0 otherwise, and (iv) Pl(x% ≤ x), Bel(x% ≤ x), Pl(x% > x) and 
Bel(x% > x) used as abbreviated notations for Pli(Ux), Beli(Ux), Pli(

c
xU ) and Beli(

c
xU ) in Eqs. (2.25) and 

(2.26), and (b) CDF and CCDF for probability space (X, Ξ, p) with density function d defined as 
indicated in Eq. (2.40) with Prob(x% ≤ x) and Prob(x% > x) used as abbreviated notations for pi(Ux) and 

pi(
c
xU ) in Eqs. (2.37) and (2.38). 

is the density function associated with (X, Ξ, pX) and di is the density function associated with (Xi, Ξi, pi) for i = 1, 2, 

…, nX.  The definition of pX and dX are more complex when the xi are not independent and will not be considered 

here. 

Propagation of the individual values of x contained in X through the function F indicated in Eq. (2.1) results in a 

set Y of possible values for y of the form shown in Eq. (2.4).  Given that a probability space (X, Ξ, pX) exists for x, a 

resultant probability space (Y, Ψ, pY) also exists for the values of y.  In concept, the probability pY(U) for a subset U 

of Y is given by 

( ) ( )1 .Y Xp p F −⎡ ⎤= ⎣ ⎦U U  (2.44) 

A formal development of Ψ and pY would focus on the properties that F must possess to actually produce the 

probability space (Y, Ψ, pY) (see Sect. IV. 4, Ref. [111], and Sects. 4.6 and 4.7, Ref. [108]); such details are outside 

the scope of this presentation. 

Provided y is real valued, the probability space (Y, Ψ, pY) can be summarized by the presentation of the 

corresponding CDF and CCDF.  Specifically, the CDF and CCDF for y are defined by the sets 
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( ){ } ( ){ }1, : , :Y y X yy p y y p F y−⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
CDF U Y U Y  (2.45) 

( ){ } ( )1, : , : ,c c
Y y X yy p y y p F y−⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = ∈⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭

CCDF U Y U Y  (2.46) 

where Uy is defined the same as in conjunction with Eqs. (2.15) – (2.18).  Plots of the curves defined by the points 

associated with CDF and CCDF produce a CDF and CCDF identical in concept to the CDF and CCDF in Fig. 3 and 

provide a visual representation of a probabilistic characterization of the uncertainty associated with y. 

2.5 Sampling-Based Uncertainty Propagation 

An analysis outcome y = F(x) of the form indicated on Eq. (2.1) will have an uncertainty structure that derives 

from the uncertainty structure associated with x.  In particular, the uncertainty associated with y will have an interval 

representation, a possibility theory representation, an evidence theory representation or a probabilistic representation 

in consistency with an interval representation (Sect. 2.1), a possibility theory representation (Sect. 2.2), an evidence 

theory representation (Sect. 2.3) or a probabilistic representation (Sect. 2.4) for the uncertainty associated with x.  

An exact determination of the uncertainty structure associated with y without any numerical or approximation error 

is usually not possible in a real analysis.  However, the indicated uncertainty structures for y can be approximated 

with sampling-based procedures.   

As indicated by the name, sampling-based (i.e., Monte Carlo) procedures involve the use of a sample 

1 2 ,, , , , 1, 2, , ,i i i i nXx x x i nS⎡ ⎤= =⎣ ⎦K Kx  (2.47) 

from the set X of possible values of x in the estimation of the uncertainty structure associated with y = F(x) that 

derives from the uncertainty structure associated with x [112-119].  For uncertainty propagations involving interval 

analysis, possibility theory and evidence theory, it is important that the sample provide an “adequate” coverage of X  

but there are no requirements for a specific structure for this sample.  Of course, what constitutes adequate coverage 

of X depends on properties of X and the function F(x).  In the case of an evidence theory representation of the 

uncertainty associated with x, adequate coverage of x corresponds to a sample that provides a reasonable estimate of 

the minimum and maximum value of F(x) for each focal element in the evidence space defined for X.  However, for 

a probabilistic representation of the uncertainty associated with x, the sample in Eq. (2.47) must be generated in 

consistency with the probability distribution defined for x.  An exception to this is when importance sampling is 

used in the propagation of a probabilistic representation of uncertainty; in this situation, a specially selected 

distribution is used for sampling and the effects of this distribution must then be compensated for to obtain the 

desired uncertainty propagation [120-126]. 

Once an appropriate sample of the form indicated in Eq. (2.47) is generated, an interval representation for the 

uncertainty associated with y is given by 
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( ) ( )

{ } { }

, inf , sup

min : 1, 2, , , max : 1, 2, , ,

mn mx

i i

y y

y i nS y i nS

⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤≅ = =⎣ ⎦K K

Y Y
 

(2.48)
 

where Y is the set of possible values for y defined in Eq. (2.4) and yi = y(xi) for i = 1, 2, …, nS.  It is emphatically 

emphasized that the preceding procedure will not be the most computationally efficient method for estimating [ymn, 

ymx] in many analyses.  However, it is presented here for consistency with the sampling-based procedures described 

below for use in conjunction with possibility theory, evidence theory and probability theory representations of the 

epistemic uncertainty in x and hence in y. 

If the epistemic uncertainty associated with x is characterized by a possibility space (X, rX), then the 

corresponding possibility space (Y, rY) for y can be summarized by its associated CNF, CCNF, CPoF and CCPoF 

(see Eqs. (2.15) – (2.18)).  Specifically, the CNF, CCNF, CPoF and CCPoF associated with (Y, rY) can be 

approximated with use of the sample in Eq. (2.47) through the relationships 

( ){ }
( ){ }

{ }( ){ }

, :

ˆ, 1 :

, 1 :1  and : ,

ˆ

ˆ

Y y

c
Y y

X i i

y Nec y

y Pos y

y Pos i nS y y y

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤≅ − ∈⎢ ⎥⎣ ⎦

⎡ ⎤= − ≤ ≤ > ∈⎣ ⎦x

CNF U Y

U Y

Y

 

(2.49) 

( ){ }
( ){ }

{ }( ){ }

, :

ˆ, 1 :

, 1 :1  and : ,

ˆ

ˆ

c
Y y

Y y

X i i

y Nec y

y Pos y

y Pos i nS y y y

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎡ ⎤≅ − ∈⎣ ⎦

⎡ ⎤= − ≤ ≤ ≤ ∈⎣ ⎦x

CCNF U Y

U Y

Y

 

(2.50)

 

( ){ }
( ){ }

{ }( ){ }

, :

ˆ, :

, :1  and : ,

ˆ

ˆ

Y y

Y y

X i i

y Pos y

y Pos y

y Pos i nS y y y

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤≅ ∈⎣ ⎦

⎡ ⎤= ≤ ≤ ≤ ∈⎣ ⎦x

CPoF U Y

U Y

Y

 

(2.51) 
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( ){ }
( ){ }

{ }( ){ }

, :

ˆ, :

, :1  and :

ˆ

ˆ

c
y

c
Y y

X i i

y Pos y

y Pos y

y Pos i nS y y y

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎡ ⎤≅ ∈⎢ ⎥⎣ ⎦

⎡ ⎤= ≤ ≤ > ∈⎣ ⎦x

CCPoF U Y

U Y

Y

 

(2.52)

 

as indicated in conjunction with Table 2 of Ref. [93], where (i) Ŷ  is a set that at least contains the approximation to 

the interval [ymn, ymx] defined in Eq. (2.48) but may correspond to a larger interval for plotting purposes, (ii) Uy 

denotes a subset of Y or Ŷ  as appropriate of the form defined in conjunction with Eqs. (2.15) – (2.18), and (iii) 
ˆ ( )YPos U  denotes an approximation to PosY(U) for subsets U of Y and Ŷ .  As the sample values for x become 

increasingly dense in X, the approximations in Eqs. (2.49) – (2.52) will approach the CNF, CCNF, CPoF and CCPoF 

for y. 

If the epistemic uncertainty associated with x is characterized by an evidence space (X, Ξ, mX), then the 

corresponding evidence space (Y, Ψ, mY) for y can be summarized by its associated CBF, CCBF, CPF and CCPF 

(see Eqs. (2.31) – (2.34)).  Specifically, the CBF, CCBF, CPF and CCPF associated with (Y, Ψ, mY) can be 

approximated with use of the sample in Eq. (2.47) through the relationships 

( ){ }
( ){ }

{ }( ){ }

, :

ˆ, 1 :

, 1 :1  and : ,

ˆ

ˆ

Y y

c
Y y

X i i

y Bel y

y Pl y

y Pl i nS y y y

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤≅ − ∈⎢ ⎥⎣ ⎦

⎡ ⎤= − ≤ ≤ > ∈⎣ ⎦x

CBF U Y

U Y

Y

 

(2.53) 

( ){ }
( ){ }

{ }( ){ }

, :

ˆ, 1 :

, 1 :1  and : ,

ˆ

ˆ

c
Y y

Y y

X i i

y Bel y

y Pl y

y Pl i nS y y y

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎡ ⎤≅ − ∈⎣ ⎦

⎡ ⎤= − ≤ ≤ < ∈⎣ ⎦

CCBF U Y

U Y

Yx

 

(2.54)

 

( ){ }
( ){ }

{ }( ){ }

, :

ˆ, :

, :1  and : ,

ˆ

ˆ

Y y

Y y

X i i

y Pl y

y Pl y

y Pl i nS y y y

⎡ ⎤= ∈⎣ ⎦

⎡ ⎤≅ ∈⎣ ⎦

⎡ ⎤= ≤ ≤ ≤ ∈⎣ ⎦x

CPF U Y

U Y

Y

 

(2.55) 
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( ){ }
( ){ }

{ }( ){ }

, :

ˆ, :

, :1  and :

ˆ

ˆ

c
Y y

c
Y y

X i i

y Pl y

y Pl y

y Pl i nS y y y

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

⎡ ⎤≅ ∈⎢ ⎥⎣ ⎦

⎡ ⎤= ≤ ≤ > ∈⎣ ⎦

CCPF U Y

U Y

Yx

 

(2.56)

 

as indicated in conjunction with Table 1 of Ref. [93], where (i) Ŷ  and Uy are defined the same as in Eqs. (2.49) – 

(2.52) and (ii) ˆ ( )YPl U  denotes an approximation to PlY(U) for subsets U of Y and Ŷ .  As the sample values for x 

become increasingly dense in X and, in particular, approach the values at which F has its minimum and maximum 

values for the individual focal elements in Ξ, the approximations in Eq. (2.53) – (2.56) will approach the CBF, 

CCBF, CPF and CCPF for y. 

If the epistemic uncertainty associated with x is characterized by a probability space (X, Ξ, pX), then the 

corresponding probability space (Y, Ψ, pY) for y can be summarized by its associated CCDF and CDF (see Eqs. 

(2.45) – (2.46)).  If the sample in Eq. (2.47) is generated in consistency with the distribution for x defined by the 

probability space (X, Ξ, pX), then the CCDF and CDF associated with (Y, Ψ, pY) can be approximated through the 

standard sampling-based relationships 
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where (i) Ŷ  and Uy are defined the same as in Eqs. (2.49) – (2.52), (ii) ˆ ( )Yp U  denotes an approximation to pY(U) 

for subsets U of Y and Ŷ , and (iii) the indicator functions yδ  and yδ  are defined by 

( ) ( )1 if 1 if 
  and  

0 otherwise 0 otherwise,y y
y y y y

y yδ δ
< ≤⎧ ⎧

= =⎨ ⎨
⎩ ⎩

% %
% %  
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respectively.  As the sample size increases, the approximations in Eqs. (2.57) and (2.58) will approach the CCDF 

and CDF for y. 

When appropriately designed, sampling-based uncertainty propagations also provide a mapping between 

analysis inputs and analysis results that can be explored with a variety of sensitivity analysis procedures [127-129]. 

3. Aleatory and Epistemic Uncertainty 

The primary focus of this presentation is on the representation of uncertainty in analyses that involve both 

aleatory and epistemic uncertainty.  Conceptually, such analyses involve three distinct mathematical entities:  (i) a 

characterization of aleatory uncertainty, (ii) a function that predicts results of interest, and (iii) a characterization of 

epistemic uncertainty [130; 131].  This presentation assumes that probability theory provides the mathematical 

structure used to represent aleatory uncertainty (Sect. 2.4).  However, four different mathematical structures are 

considered as alternatives for the representation of epistemic uncertainty:  interval analysis (Sect. 2.1), possibility 

theory (Sect. 2.2), evidence theory (Sect. 2.3), and probability theory (Sect. 2.4). 

The function that predicts results of interest can be represented by 

( ) ( )1 2 1 2 ,, , , , , , ,M nA M M M nMz f f a a a e e e= = K Ka e  (3.1) 

where z is the result of interest, a = [a1, a2, …, anA] is the vector of variables included in the analysis that are 

assumed to be uncertain in an aleatory sense, and eM = [eM1, eM2, …, eM,nM] is the vector of variables included in 

the analysis that are involved in the evaluation of the function f and are assumed to be uncertain in an epistemic 

sense.  In addition, there is often epistemic uncertainty with respect to the appropriate values to use for the 

parameters that define the distributions that characterize the aleatory uncertainty in the elements of a.  As a result, 

there is also a vector eD = [eD1, eD2, …, eD,nD] of epistemically uncertain variables used in the definition of the 

distributions that characterize the aleatory uncertainty associated with the elements of a.  Notationally, the 

distribution for a conditional on a specific realization for eD can be represented by a density function dA(a|eD).  In 

turn, the vector 

[ ] 1 2, , , ,M D nEe e e= = ⎡ ⎤⎣ ⎦Ke e e  (3.2) 

contains all the epistemically uncertain variables under consideration with nE = nM + nD. 

The uncertainty characterization associated with each element ei of e starts with a set Ei of possible values for 

ei.  In turn, the set of all possible values for e is given by 

1 2 ,nE= × × ×KE E E E  (3.3) 
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although in general there can potentially be additional restrictions that limit the possible combinations of values for 

specific elements of e.  What distinguishes the various alternatives for the representation of epistemic uncertainty 

(e.g., interval analysis, possibility theory, evidence theory, probability theory) is the type of internal uncertainty 

structure imposed on the sets E i and hence on the set E.  In practice, this internal uncertainty structure is typically 

developed through some type of expert review process [132-144]. 

A specific element e = [eM, eD] of E results in (i) a specific definition for the function f(a|eM) in which eM is 

fixed and (ii) a specific definition of the density function dA(a|eD), which corresponds to the aleatory distribution for 

a, in which eD is fixed.  Further, associated with the density function dA(a|eD) is a set A of possible values for a.  In 

general, A could be a different set for each possible value of eD; however, this potential dependency will be 

suppressed for notational simplicity.  Or, equivalently, it can be assumed that dA(a|eD) = 0 for vectors a that are not 

possible for a given value of eD. 

With e = [eM, eD] fixed as indicated, a single distribution for z results.  This distribution is often presented as a 

CDF defined by the points [z, ( | )AProb z z≤% e ] with 

( ) ( ) ( )| dA z M A DProb z z f d Aδ ⎡ ⎤≤ = ⎣ ⎦∫% e a e a e
A

 (3.4) 

and 

( ) ( )1 if 
0 otherwise

Mz M
f zfδ ⎧ ≤⎡ ⎤ = ⎨⎣ ⎦ ⎩

a ea e  (3.5) 

or as a CCDF defined by the points [z, ( | )AProb z z>% e ] with 

( ) ( ) ( )| dA z M A DProb z z f d Aδ ⎡ ⎤> = ⎣ ⎦∫% e a e a e
A

 (3.6) 

and 

( ) ( )1 if 
0 otherwise

Mz M
f zfδ ⎧ >⎡ ⎤ = ⎨⎣ ⎦ ⎩

a ea e  (3.7) 

(Fig. 4).  The function zδ  is the same as the Heaviside function except that zδ (z) = 0 rather than 1/2.  In the 

preceding, the subscript A is used to indicate that the probabilities ProbA( z%  ≤ z|e) and ProbA( z%  > z|e) are 

characterizing aleatory uncertainty.  Similarly, the distribution for z conditional on a specific realization for e can be 

represented by a density function dA(z|e). 
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Fig. 4. Example CDF and CCDF defined by points ( ), |Az Prob z z⎡ ⎤≤⎣ ⎦% e  and ( ), |Az Prob z z⎡ ⎤>⎣ ⎦% e , 

respectively. 
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Fig. 5. Example CDFs and CCDFs that result for different values of the vector e = [eM, eD] of epistemically 

uncertain analysis inputs:  (a) CDFs, and (b) CCDFs. 

 

Different values for e = [eM, eD] result in different distributions for z.  Thus, as e takes on different values from 

the set E, a set of epistemically uncertain distributions for z will result (Fig. 5).  In general, the cardinality (i.e., 

number of elements) of the resultant set of distributions could, but may not, equal the cardinality of E. 

The discussions that follow will focus primarily on the uncertainty structure associated with sets of the form 
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( ) ( ){ }:  for Az p p Prob z z= = ≤ ∈% e eP E  (3.8) 

and 

( ) ( ){ }:  for .Az p p Prob z z= = > ∈% e eP E  (3.9) 

Thus, ( )zP  is the set of all probabilities for a value z% less than or equal to z, and ( )zP  is the set of all probabilities 

for a value z% greater than z.  The individual probabilities in ( )zP  and ( )zP  derive from aleatory uncertainty as 

indicated in Eqs. (3.4) and (3.6); however, the sets ( )zP  and ( )zP  derive from epistemic uncertainty that results 

from the multiple values for e contained in the set E.  Specifically, the sets ( )zP  and ( )zP  contain the probabilities 

for different values of e that are associated with vertical lines drawn through the CDFs and CCDFs in Figs. 5a and 

5b, respectively. 

Before continuing, it is important to recognize that the study of the uncertainty associated with the sets ( )zP  and 

( )zP  defined in Eqs. (3.8) and (3.9) is actually just a special case of the study of the uncertainty associated with the 

set 

( ){ }:  and y y F= ∈ =Y Xx x  (3.10) 

previously defined in Eq. (2.4) and discussed extensively in Sect. 2.  For this presentation, y corresponds to a 

probability as defined in Eqs. (3.4) and (3.6), and the function F(x) is defined by the integrals in Eqs. (3.4) and (3.6). 

4. Example Problem 

This presentation employs as an example a coastal dike reliability problem originally introduced by Hussaarts 

et al. [145] and subsequently used with modifications by Hall and Lowry [146] and Ferson and Tucker [147].  In this 

problem, the reliability of a dike (Fig. 6) is based on the force balance equation 

( ) ( )tan cos ,z D H M sα α⎡ ⎤= Δ − ⎣ ⎦  (4.1) 

where 

Δ = relative density of the revetment blocks on the front face of the dike (dimensionless), 

D = thickness of revetment blocks (m), 

H = significant wave height (m), which is the average height of the highest one third of the waves in a storm 

event, 

α = slope of revetment (radians), 
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Fig. 6. Dike revetment (Fig. 12 in Ferson and Tucker [147] as redrawn from Hussaarts et al. [145]). 

 

M = introduced parameter used to represent model uncertainty (dimensionless), 

s = offshore peak wave steepness (dimensionless). 

Specifically, the dike is assumed to fail if z is negative, which corresponds to a situation in which the force pushing 

the revetment blocks away from the face of the dike exceeds the force pushing the revetment blocks against the face 

of the dike (see Sect. 3, Ref. [145]). 

With respect to the definition of z in Eq. (4.1), the quantities Δ, D, α and M are epistemically uncertain 

quantities related to properties of the dike, and H and s are aleatory quantities with distributions that derive in large 

part from weather variability.  The quantities Δ, D, α and M are assigned the following sets of values in Ferson and 

Tucker with no specified uncertainty structure within these sets: 

{ } { }1 2:1.60 1.65 , : 0.68 0.72 mD D= Δ ≤ Δ ≤ = ≤ ≤E E  (4.2) 

{ } { }3 4: 0.309 0.328 radians , : 3.0 5.2 .M Mα α= ≤ ≤ = ≤ ≤E E  (4.3) 

Further, H and s are assigned probability distributions with epistemically uncertain defining parameters.  

Specifically, the aleatory uncertainty in H is assumed to be characterized by a Weibull distribution with 

epistemically uncertain values for the scale factor sc and the shape factor sh, and the aleatory uncertainty in s is 

assumed to be characterized by a normal distribution with epistemically uncertain values for the mean μ and the 

standard deviation σ.  With respect to the defining parameters for the density function 
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( ) ( ){ } ( ){ }11
0 0 0exp , ,c c

Xp x c x x xα ξ α ξ α ξ−− ⎡ ⎤= − − − <⎢ ⎥⎣ ⎦
 (4.4) 

of a Weibull distribution in Sect. 20.1 of Ref. [148], sc = α, sh = c, and δ0 = 0. The quantities sc, sh, μ and σ are 

assigned the following sets of possible values in Ferson and Tucker [147]: 

{ } { }5 6:1.2 1.5 , :10.0 12.0sc sc sh sh= ≤ ≤ = ≤ ≤E E  (4.5) 

{ } { }7 8: 0.039 0.041 , : 0.005 0.006 .μ μ σ σ= ≤ ≤ = ≤ ≤E E  (4.6) 

As for Δ, D, α and M, no uncertainty structure was specified within these sets. 

It is important to recognize exactly what the distribution assigned to H is characterizing.  Specifically, this 

distribution is characterizing the year-to-year variability in the maximum annual value for H.  Or, put another way, 

the distribution for H when converted to a CCDF gives the probabilities of H exceeding different values in a single 

given year.  In turn, the distribution for s is for conditions associated with a large value for H (i.e., the maximum 

value for H in a specific year) but is assumed to be independent of the specific value for this maximum (p. 326, Ref. 

[145]). 

In the context of the notation introduced in Sect. 3, the function f in Eq. (3.1) is given by 

( ) ( ) ( )tan cosMz f D H M sα α⎡ ⎤= = Δ − ⎣ ⎦a e  (4.7) 

with a = [H, s] and eM = [Δ, D, α, M].  Further, the density function dA(a|eD) for a is defined by the assumptions 

that H and s follow Weibull and normal distributions, respectively, with parameters defined by the elements of the 

vector eD = [sc, sh, μ, σ].  In particular, 

[ ],H s=a  (4.8) 

is a vector of nA = 2 aleatory variables, and 

[ ] [ ], , , , , , , ,M D D M sc shα μ σ= = Δe e e  (4.9) 

is a vector of nE = 8 epistemically uncertain variables. 

As already indicated, the aleatory variables H and s have specified probability distributions with the 

epistemically uncertain parameters that constitute the elements of eD.  The nE = 8 epistemically uncertain variables 

that constitute the elements of e = [eM, eD] in Eq. (2.8) have ranges (i.e., sets of possible values E1, E 2, …, E 8) as 

indicated in Eqs. (4.2), (4.3), (4.5) and (4.6).  However, no uncertainty structure was specified for these ranges in 

Ferson and Tucker. 
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The fundamental quantity of interest in this example is the (annual) probability that the dike will fail, which 

corresponds to the probability that the quantity z in Eq. (4.1) is negative.  In turn, this probability is given by the 

integral defining ( 0 | )AProb z ≤% e  in Eq. (3.4) for each possible value of e, and the set of all possible values for this 

probability is represented by the set (0)P  in Eq. (3.8).  Probabilities ( | )AProb z z≤% e  and sets ( )zP  for other values 

of z are defined similarly.  If desired, probabilities and sets of the form ( | )AProb z z>% e  and ( )zP  in Eqs. (3.6) and 

(3.9) can also be defined. 

5. Unstructured Epistemic Uncertainty 

In the presentation by Ferson and Tucker [147] no uncertainty structure is specified for the sets E1, E2, …, E8 

containing the possible values for the nE = 8 epistemically uncertain variables under consideration, which 

corresponds to an uncertainty specification of the form on which interval analysis (Sect. 2.1) is predicated.  This 

uncertainty information can also be converted into uncertainty representations of the form used in possibility theory 

(Sect. 2.2), evidence theory (Sect. 2.3), and probability theory (Sect. 2.4), respectively. 

For possibility theory, the resultant distribution function ri for variable ei is given by 

( ) 1 if 
0 otherwise.

i i
i i

e
r e

∈⎧
= ⎨
⎩

E
 (5.1) 

For evidence theory, the resultant BPA mi for subsets U of Ei is given by 

( ) 1 if 
0 otherwise.

i
im

=⎧
= ⎨
⎩

U E
U  (5.2) 

For probability theory, the resultant probability distribution for ei is obtained by recourse to the Laplacian concept of 

insufficient reason, which asserts that a uniform distribution should be used to characterize epistemic uncertainty 

when only a set of possible values is specified (pp. 52 – 55, Ref. [49]).  This recourse results in the assignment of the 

density function 

( ) ( ) ( )1 sup inf if 

0 otherwise
i i i i

i i
e

d e
⎧ ⎡ ⎤− ∈⎪ ⎣ ⎦= ⎨
⎪⎩

E E E
 (5.3) 

to represent the uncertainty in ei. 

Collectively, the sets E1, E 2, …, E 8 give rise to the set 

1 2 8= × × ×KE E E E  (5.4) 
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of vectors of the form e = [e1, e2, …, e8] shown in Eq. (4.9).  In turn, a possibility space (E, rE) results from the 

definition of ri(ei) in Eq. (5.1) and the assignment 

( ) ( ) ( ) ( ){ }1 1 2 2 8 8min , , , 1;Er r e r e r e= =Ke  (5.5) 

an evidence space (E, Ε, mE) results from the definition of mi(U) in Eq. (5.2) and the assignments Ε = {E} and 

( ) ( ) ( ) ( )1 1 2 2 8 8 1 if 
0 otherwise;E
m m m

m
⎧ = = ∈⎪= ⎨
⎪⎩

K EX X X U E
U  (5.6) 

and a probability space (E, Ε, pE) results from the definition of di(ei) in Eq. (5.3) and the assignment of 

( ) ( ) ( ) ( )1 1 2 2 8 8Ed d e d e d e= Ke  (5.7) 

as the defining density function for Ε and pE. 

Each element e of the set E defined in Eq. (5.4) gives rise to a CDF for z, notationally represented by CDF(e), 

defined by probabilities of the form indicated in Eq. (3.4) (see Eq. (2.45) for a discussion of CDFs for model 

predictions).  As a reminder, 

( ) ( ) [ ]{ }
( ) ( ) [ ]{ }

, : ,  and 

, d : ,  and ,

A M D

z M A D M D

z prob z z z

z f d A zδ

⎡ ⎤= ≤ = ∈ − ∞ < < ∞⎣ ⎦

⎡ ⎤⎡ ⎤= = ∈ − ∞ < < ∞⎣ ⎦⎢ ⎥⎣ ⎦∫

%CDF E

E

e e e e e

a e a e e e e
A

 
(5.8)

 

where A is the set of possible values for a associated with the density function dA(a|eD) and [ ( | )]z Mfδ a e  is 

defined in Eq. (3.5).  In turn, there exists a set 

[ ] ( ){ }: ,  and M D= = ∈ =C CDF E CDF CDFe e e e  (5.9) 

of possible CDFs for z.  The set C can be viewed in the context of interval analysis, possibility theory, evidence 

theory, or probability theory. 

In the context of interval analysis, C is the set of possible CDFs associated with the set E of epistemically 

uncertain variables and nothing more can be said.  For possibility theory, there is a possibility space (C, rC), where 

( ) ( ){ }sup :  and 1Cr = ∈ = =CDF E CDF CDFe e e  (5.10) 

for CDF ∈ C.  Similarly for evidence theory, there is an evidence space (C, Χ, mC), where Χ = {C} and 

( ) 1 if 
0 otherwiseCm

=⎧
= ⎨
⎩

U C
U  (5.11) 



 31

for subsets U of C.  Because the spaces (E, rE) and (E, Ε, mE) are degenerate (i.e., rE(e) = 1 for e ∈ E and mE(E) = 

1), the corresponding spaces (C, rC) and (C, Χ, mC) are also degenerate (i.e., rC(CDF) = 1 for CDF ∈ C and mC(C) = 

1) and are effectively equivalent to the outcome of an interval analysis.  In contrast, the probability space (C, Χ, pC) 

is not degenerate (i.e., there does not exist an element CDF of C such that pC({CDF}) = 1) because of the structure 

of the probability space (E, Ε, pE).  Specifically, 

( ) ( ){ }( ):  and C Ep p= ∈ ∈U E CDF Ue e e  (5.12) 

for U ∈ Χ, where the formal properties of Χ would follow from the properties of Ε and pE. 

An analogous development is also possible for CCDFs and indeed for any property such as an expected value or 

a quantile that can be extracted from a CDF or a CCDF.  However, it is worth noting that the consideration of a 

particular property extracted from a CDF are CCDF (e.g., an expected value or a quantile) is equivalent to studying 

the set of all CDFs or CCDFs with the extracted quantity serving as an index to identify individual CDFs or CCDFs.  

In this example, the primary quantity of interest is the probability for values less than z = 0.  As discussed at the end 

of Sect. 4, this set of probabilities is represented by P (0) for z = 0 and by ( )zP  for an arbitrary value of z. 

For this example, sampling-based (i.e., Monte Carlo) methods are used to both propagate epistemic uncertainty 

and integrate over aleatory uncertainty to estimate the CDFs in the set C defined in Eq. (5.9) and thus obtain the 

probabilities in the sets ( )zP  and ( )zP  defined in Eqs. (3.8) and (3.9).  Specifically, a random sample 

1 2 8 1, , , , 1, 2, , ,i i i ie e e i nSE= =⎡ ⎤⎣ ⎦K Ke  (5.13) 

of size nSE1 = 104 was generated from E with a uniform distribution assigned to each element of e (i.e., 

distributions of the form defined in Eq. (5.3)).  In addition, a sample 

1 2 8, , , ,i i i ie e e e= ⎡ ⎤⎣ ⎦K  i = nSE1 + 1, nSE1 + 2, …, nSE1 + nSE2 (5.14) 

of size nSE2 = 28 = 256 was generated from E by taking all possible combinations of the endpoints of the intervals 

that correspond to the sets E 1, E2, …, E 8.  The purpose of this second sample is to include extreme combinations of 

parameter values that would not be obtained with random sampling.  The result is a sample of size nSE = nSE1 + 

nSE2 = 10,256 from E. 

The sample 

1 2 8 1 2, , , , 1, 2, , ,i i i ie e e i nSE nSE nSE= = = +⎡ ⎤⎣ ⎦K Ke  (5.15) 

provides the basis for the propagation of epistemic uncertainty.  Then, aleatory uncertainty is propagated conditional 

on each element ei of the preceding sample.  Specifically, this involves the evaluation of integrals of the form 
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appearing in Eqs. (3.4) and (3.6) to obtain CDFs and CCDFs for z and, correspondingly, elements of the sets  ( )zP  

and ( )zP .  As a reminder, the indicated CDFs and CCDFs derive from the vector a = [H, s] of aleatory variables; 

further, the density function dA(a|eD) for a is conditional on the vector  

[ ]5 6 7 8, , , , , ,D e e e e sc sh μ σ= =⎡ ⎤⎣ ⎦e  (5.16) 

of epistemically uncertain variables, and the evaluation of the function f(a|eM) in Eq. (4.7) is conditional on the 

vector 

[ ]1 2 3 4, , , , , ,M e e e e D Mα= = Δ⎡ ⎤⎣ ⎦e  (5.17) 

of epistemically uncertain variables. 

A sampling-based procedure is also used to evaluate the CDF and CCDF for z conditional on each sample 

element ei.  Specifically, a random sample 

, , 1, 2, , ,ij ij ijH s j nSA⎡ ⎤= =⎣ ⎦ Ka  (5.18) 

of size nSA = 107 is generated from the set A of possible values for a in consistency with the density function 

dA(a|eDi).  Then, the probabilities that define the CDF and CCDF for z conditional on a specific element ei of the 

sample indicated in Eq. (5.15) are given by 

( ) ( )
1

nSA

A i z ij Mi
j

Prob z z f nSAδ
=

⎡ ⎤≤ ≅ ⎢ ⎥⎣ ⎦∑% e a e  (5.19) 

and 

( ) ( )
1

,
nSA

A i z ij Mi
j

Prob z z f nSAδ
=

⎡ ⎤> ≅ ⎢ ⎥⎣ ⎦∑% e a e  (5.20) 

respectively.  The result is nSE = 10,256 CDFs for z and a corresponding number of CCDFs (Fig. 7). 

For this example, CDFs are more meaningful entities to consider than CCDFs because dike failure is associated 

with negative values of z and the primary result of interest is how likely z is to be close to or below zero.  Therefore, 

the following discussion will focus on CDFs and the corresponding sets ( )zP .  However, the associated ideas and 

representations are equally applicable to CCDFs and the corresponding sets ( )zP . Indeed, in most risk assessments, 

CCDFs are the primary summary outcomes of interest because they answer the question “How likely is it to be this 

large or larger?” 
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Fig. 7. Illustration of 50 of the nSE = 10,256 CDFs and CCDFs generated for the sample in Eq. (5.15):  (a) 

CDFs, and (b) CCDFs. 

For illustration, this discussion will focus on the set (0)=P P .  However, the ideas and associated result 

structure are the same for ( )zP  with other values of z.  The elements (i.e., probabilities) contained in P  correspond 

to the probabilities associated with the vertical line through z = 0 in Fig. 7a.  The outcome for interval analysis is 

simply the range of probabilities associated with the indicated vertical line, which corresponds to the interval 

{ } { } [ ]inf : , sup : 0.0, 0.043 .P P⎡ ⎤∈ ∈ ≅⎣ ⎦p p p p  (5.21) 

For possibility theory, evidence theory and probability theory, the same set P of possible probabilities is under 

consideration.  In concept, possibility theory, evidence theory and probability theory result in more internal 

uncertainty structure within P than is the case for interval analysis.  However, in the example of this section, 

additional uncertainty structure within P only exists for probability theory. 

A possibility space (P, rP), an evidence space (P, Π, mP) and a probability space (P, Π, pP) are associated with the 

set P.  In concept, the sampling-based procedures described in Sect. 2.5 can be used to estimate the CNF, CCNF, 

CPoF and CCPoF for the possibility space (P, rP), the CBF, CCBF, CPF and CCPF for the evidence space (P, Π, 

mP), and the CDF and CCDF for the probability space (P, Π, pP).  However, the spaces (P, rP) and (P, Π, mP) are so 

simple this is hardly necessary.  Specifically, since the possibility space (E, rE) is degenerate in the sense that rE(e) 

= 1 for e ∈ E and the evidence space (E, Ε, mE) is degenerate in the sense that mE(E) = 1, it follows immediately 

that (P, rP) is degenerate in the sense that rP(p) = 1 for p ∈ P and similarly that (P, Π, mP) is degenerate in the sense 

that mP(P) = 1.  As a result, the CNF, CCNF, CPoF and CCPoF associated with (P, rP) and the CBF, CCBF, CPF 

and CCPF associated with (P, Π, mP) have simple forms that indicate no uncertainty structure within the set P  (Fig. 

8).  Indeed, in this simple example, interval analysis, possibility theory and evidence theory provide the same infor- 
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Fig. 8. Illustration of (i) CNF, CCNF, CPoF and CCPoF for unstructured possibility space (P, rP) defined in 

Sect. 5 (see Eqs. (5.1) and (5.5)), (ii) CBF, CCBF, CPF and CCPF for unstructured evidence space (P, Π, 
mP) defined in Sect. 5 (see Eqs. (5.2) and (5.6)), and (iii) CDF and CCDF for uniform probability space 
(P, Π, pP) defined in Sect. 5 (see Eqs. (5.3) and (5.7)):  (a) CDF, CPF, CPoF, CBF and CNF, and (b) 
CCDF, CCPF, CCPoF, CCBF and CCNF. 

mation: namely, within the limits of sampling error, the values for p contained in P fall in the interval [0.0, 0.045] 

and no uncertainty structure exists within this interval.  

In elaboration, the probabilities contained in the set P = P (0) are represented on the abscissas of Figs. 8a and 8b 

and fall within the interval [0.0, 0.043].  As a reminder, the epistemically uncertain probabilities contained in the set 

P correspond to the probabilities associated with the vertical line through z = 0 in Fig 7a.  For any value p on the 

abscissas of Figs. 8a and 8b, the possibility and plausibility for the set 

{ }:p p p p= ≤% %P  (5.21) 

are given by 

( ) ( ) 1 if 0
0 if 0,P p P p

p
Pos Pl

p
≥⎧

= = ⎨ <⎩
P P  (5.22) 

where PosP denotes the possibility measure associated with the possibility space (P, rP) and PlP denotes the 

plausibility measure associated with the evidence space (P, Π, mP).  As a result, plots of PosP(Pp) and PlP(Pp) 

overlay and form the top and left side of the box in Fig. 8a.  Similarly, 
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( ) ( ) 1 if 0.043
0 if 0.043,

P P
≥⎧

= = ⎨ <⎩
P p P p

p
Nec Bel

p
 (5.23) 

where NecP denotes the necessity measure associated with the possibility space (P, rP) and BelP denotes the belief 

measure associated with the evidence space (P, Π, mP).  As a result, plots of NecP(Pp) and BelP(Pp) overlay and 

form the right side and bottom of the box in Fig. 8a.  The structure of Fig. 8b is similar, with 

( ) ( ) 1 if 0.043
0 if 0.043

c cP P
≤⎧

= = ⎨ >⎩
P p P p

p
Pos Pl

p
 (5.24) 

overlaying and forming the top and right side of the box in Fig. 8b and 

( ) ( ) 1 if 0
0 if 0P P

p
Nec Bel

p
≤⎧

= = ⎨ >⎩
c c
p pP P  (5.25) 

overlaying and forming the left side and bottom of the box in Fig. 8b.  As stated, the inequalities involving p in Eqs. 

(5.21) – (5.25) can be viewed as tacitly extending the definition of P to the interval (−∞, ∞); however, it is really the 

interval [0.0, 0.043] that is of primary interest. 

Unlike the spaces (P, rP) and (P, Π, mP), the probability space (P, Π, pP) does involve an uncertainty structure 

on the set P that derives from the probability space (E, Ε, pE) and the associated uniform distributions assigned to 

the elements of e in Eq. (5.3).  As indicated in Sect. 2.5, the sample elements in Eq. (5.13) and associated estimates 

for ProbA ( 0 | )iz ≤% e  indicated in Eq. (5.19) can be used to estimate the CDF and CCDF for p that derives from the 

probability space (E, Ε, pE) (Fig. 8).  In this example, the probability space (P, Π, pP) is never fully determined in 

the sense of giving complete definitions for Π and pP; rather, a sampling-based procedure is used to estimate the 

associated CDF and CCDF.  This approximation is evident as the maximum probability obtained with the random 

sample of size nSE1 = 104 used in the probabilistic calculation to obtain CDFs and CCDFs is approximately 0.018, 

while the maximum value obtained when the nSE2 = 256 extreme value combinations of the elements of e are 

included is approximately 0.043.  To obtain probabilities closer to 0.043 in the probabilistic calculation requires 

either (i) use of a value for nSE1 that is considerably larger than 104 or (ii) use of importance sampling. 

In elaboration, the CDF in Fig. 8a is a plot of the probabilities pP(Pp), and the CCDF in Fig. 8b is a plot of the 

probabilities pP( cPp ).  Because most values for pP(Pp)are very close to 1, the resultant CDF is barely discernable in 

the upper left corner of the box in Fig. 8a.  In contrast, the small values for pP( cPp ) result in a CCDF that is clearly 

displayed in Fig. 8b with the log transformation used on the ordinate.  In this example, the CCDF rather than the 

CDF for the probability p that z is less than zero is the quantity of greater relevance because increasing values for p 

correspond to increasing likelihoods that the system will fail.  In concept, and for the same reason, the CCPoF, 

CCNF, CCPF and CCBF in Fig. 8b are also of greater relevance than the CPoF, CNF, CPF and CBF in Fig. 8a, 

although, in the current example, these quantities are not very interesting because of their degenerate structure; an 
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example in which the CPoF, CPF, CCPoF and CCPF for p have more structure is presented in the next section (Sect. 

6). 

6. Structured Epistemic Uncertainty 

As illustrated in Sect. 5, the absence of an internal uncertainty structure for the sets E1, E2, …, E8 results in 

analyses based on possibility theory and evidence theory that are effectively identical to results based on interval 

analysis.  Thus, to help differentiate between results obtained with interval analysis, possibility theory, evidence 

theory and probability theory, additional uncertainty structure is now assumed and illustrated for several elements of 

e.  Specifically, additional uncertainty structure is assumed for the sets E2, E4 and E5 that contain possible values 

for D, M and sc, respectively. 

For convenience, the same uncertainty structure is imposed on E2, E4 and E5 (i.e., on D, M and sc).  For use in 

describing this structure, I1, I2, I3, I4 and I5 denote subintervals (i.e., subsets) of an interval [a, b] defined by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3

4 5

, 6 10 , 10, 7 10 , 2 10, 8 10 ,

3 10, 9 10 , 4 10,

a a b a a b a a b a a b a a b a

a b a a b a a b a b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − = + − + − = + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= + − + − = + −⎣ ⎦ ⎣ ⎦

I I I

I I
 

(6.1)
 

and illustrated in Fig. 9.  For this example, it is assumed that each of the indicated subintervals of [a, b] is equally 

likely to contain the correct value for the quantity under consideration.  Notionally, such a situation could arise from 

five equally credible experts expressing different intervals of possible values for the quantity under consideration but 

with no specified internal uncertainty structure for the individual intervals.  

In turn, the indicated intervals and the assumptions of equal likelihood for the individual intervals can be 

converted into uncertainty representations in the context of possibility theory, evidence theory and probability 

theory, respectively.  For possibility theory, a distribution function r can be defined by 

( ) ( )
5

1
,i

i
r x xδ

=
=∑  (6.2) 

where 

( ) 1/ 5 if 
0 otherwise.

i
i

x
xδ

∈⎧
= ⎨
⎩

I
 

For evidence theory, a BPA m can be defined by 

( ) 1 2 3 4 51/ 5 if , , , or
0 otherwise

m
=⎧

= ⎨
⎩

U I I I I I
U  (6.3) 
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Fig. 9. Graphical illustration of sets I1, I2, I3, I4, I5 defined in Eq. (6.1) with the interval [a, b] normalized to [0, 

1] for notational convenience. 

for subsets U of [a, b].  For probability theory with recourse to the Laplacian concept of insufficient reason, a 

density function d can be defined by 

( ) ( ) ( )
5

1
i i

i
d x x Lδ

=
=∑ I  (6.4) 

where δi(x) is defined in conjunction with Eq. (6.2) and L(Ii) is the length of the interval Ii. 

As previously indicated, the same uncertainty structure is being imposed on E2, E4 and E5.  Specifically, the 

intervals that correspond to E2, E4 and E5 (i.e., [0.68, 0.72], [3.0, 5.2] and [1.20, 1.5]) are subdivided as indicated in 

Eq. (6.1) and the resultant uncertainty characterizations for possibility theory, evidence theory and probability theory 

are defined as shown in Eq. (6.2), (6.3) and (6.4), respectively.  This results in new definitions for (i) r2, m2 and d2 

for D, (ii) r4, m4 and d4 for M, and (iii) r5, m5 and d5 for sf.  In turn, this results in new definitions for the spaces (E, 

rE), (E, Ε, mE) and (E, Ε, pE) introduced in Sect. 5 and, as a result, also for the corresponding spaces (P, rP), (P, Π, 

mP) and (P, Π, pP) with additional internal uncertainty structure imposed on the set P = (0)P .  However, the set P 

itself remains unchanged.  Similar expansions also result for the corresponding spaces associated with the sets ( )zP  

and ( )zP . 

As indicated in Sect. 5 and discussed in greater detail in Sect. 2.5, sampling-based procedures can be used to 

propagate the uncertainty representations provided by (E, rE), (E, Ε, mE) and (E, Ε, pE).  For this propagation, a 

random sample 

1 2 8 1, , , , 1, 2, , ,= =⎡ ⎤⎣ ⎦K Ki i i ie e e i nSEe  (6.5) 

of size nSE1 = 104 is again generated from E but now with the redefined distributions for the elements of e (see Eq. 

(6.4)).  In addition, a second sample 
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1 2 8 1 1 1 2, , , , 1, 2, , ,= = + + +⎡ ⎤⎣ ⎦K Ki i i ie e e i nSE nSE nSE nSEe  (6.6) 

of size nSE2 = 25 103 = 32,000 is again generated from E by taking all possible combinations of the endpoints of the 

focal elements contained in Ε1, Ε 2, …, Ε8.  The purpose of the second sample is to assure coverage of the end 

points of the focal elements contained in Ε1, Ε2, …, Ε8.  The result is a sample of size nSE = nSE1 + nSE2 = 42,000 

from E.  In turn, this results in nSE CDFs and nSE corresponding CCDFs of the form illustrated in Fig. 7 and 

corresponding approximations to the sets ( )zP  and ( )zP . 

The sampling-based procedures described in Sect. 2.5 can be used (i) with the combined sample ei, i = 1, 2, …, 

nSE = nSE1 + nSE2, to estimate the CNF, CCNF, CPoF and CCPoF for the possibility space (P, rP) and the CBF, 

CCBF, CPF and CCPF for the evidence space (P, Π, mP) and (ii) with the random sample ei, i = 1, 2, …, nSE1, to 

estimate the CDF and CCDF for the probability space (P, Π, pP) (Fig. 10).  Because interval analysis assumes no 

uncertainty structure internal to E1, E2, …, E8 and the set P is unchanged from Sect. 5, the interval analysis result is 

still approximated by the interval [0.0, 0.043].  As a result of their increasing levels of uncertainty structure, the 

uncertainty representations from the possibility space (P, rP) contain the uncertainty representations from the 

evidence space (P, Π, mP) (i.e., the CBF and CPF for (P, Π, mP) fall between the CNF and CPoF for (P, rP) and 

similarly the CCBF and CCPF fall between the CCNF and CCPoF), and the uncertainty representations from (P, Π, 

mP) contain the uncertainty representations from the probability space (P, Π, pP) (i.e., the CDF for (P, Π, pP) falls 

between the CBF and CPF for (P, Π, mP) and similarly the CCDF falls between the CCBF and CCPF). 

In elaboration, the results in Fig. 10a show the changes to the CPoF, CNF, CPF, CBF and CDF in Fig. 8a that 

result when the added uncertainty structure associated with D, M and sc is incorporated into the definitions of the 

possibility space (P, rP), the evidence space (P, Π, mP) and the probability space (P, Π, pP).  Specifically, the CPoF, 

CPF and CDF are not substantially changed (actually, the CDF has changed but this change is not apparent at the 

resolution of Figs. 8a and 10a,c).  However, the CNF and CBF now display a structure that was completely lacking 

in Fig. 8a.  For example, the necessity and belief in Fig. 8a that p is less than 0.02 are 0; in contrast, the 

corresponding values in Fig. 10a are 0.80 and 0.976, respectively.  Similarly, the results in Figs. 10b,c,d show the 

changes to the CCPoF, CCNF, CCPF, CCBF and CCDF in Fig. 8b that result from the changed definitions for (P, 

rP), (P, Π, mP) and (P, Π, pP).  The results in Figs. 10b,c,d are the same, but different scalings on the abscissa and 

ordinate are being used to better display small numerical values.  Specifically, linear scales are used on the abscissa 

and ordinate in Fig. 10b; linear and log scales are used on the abscissa and ordinate, respectively, in Fig. 10c; and 

log scales are used on the abscissa and the ordinate in Fig. 10d.  The CCNF and CCBF in Figs. 10b,c,d are the same 

as the CCNF and CCBF in Fig. 8b.  However, the CCPoF, CCPF and CCDF are substantially changed.  For 

example, the possibility and plausibility that p is greater than 0.02 are 1.0; in contrast, the corresponding values in 

Figs. 10b,c,d are 0.2 and 0.024, respectively.  In both Fig. 8b and Figs. 10b,c,d, the probability that p exceeds 0.02 is 

beneath the numerical resolution of the sample size from E in use (i.e., nSE1 = 104 as indicated in conjunction with 

Eq. (6.5)); estimation of the probability that p exceeds 0.02 in the analyses presented in Figs. 8b and 10b,c,d would 
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require either a much larger random sample from E or the use of some type of importance sampling procedure.   

However, as another comparison, the probability that p exceeds 0 is approximately 0.09 in Fig. 8b and 

approximately 0.043 in Figs. 10b,c,d, with this difference resulting from the changed definitions for the probability 

space (P, Π, pP). 
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Fig. 10. Illustration of (i) CNF, CCNF, CPoF and CCPoF for structured possibility space (P, rP) defined in Sect. 
6 (see Eq. (6.2) and resultant definition for rE), (ii) CBF, CCBF, CPF and CCPF for structured evidence 
space (P, Π, mP) defined in Sect. 6 (see Eq. (6.3) and resultant definition for mE), and (iii) CDF and 
CCDF for nonuniform probability space (P, Π, pP) defined in Sect. 6 (see Eq. (6.4) and resultant 
definition for density function dE corresponding to pE):  (a) CPoF, CNF, CPF, CBF and CDF with linear 
scales on abscissa and ordinate, (b) CCPoF, CCNF, CCPF, CCBF and CCDF with linear scales on 
abscissa and ordinate, (c) same as (b) but with log scale on ordinate, and (d) same as (b) but with log 
scales on abscissa and ordinate. 
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The uncertainty representations in Fig. 10 are for the probabilities contained in the set P = (0)P .  Analogous 

representations are also possible for the probabilities contained in the sets ( )zP  and ( )zP  for other values of z and 

provide a representation of the uncertainty associated with the CDFs and CCDFs in Fig. 7.  For illustration, the sets 

( )zP  are considered.  An analogous development is possible, but not shown, for the sets ( )zP .  Let ( )P p z  denote 

the set defined by 

( ) ( ){ }:  and p Az p p Prob z z p= ∈ = ≤ >% % %P Ee e  (6.7) 

with ( | )AProb z z≤% e  defined in Eq. (3.4) and again in Eq. (5.8).  In words, ( )P p z  is the set of possible values for 

( | )AProb z z≤% e  that are larger than p.  In turn, the possibility space (E, rE), the evidence space (E, Ε, mE) and the 

probability space (E, Ε, pE) give rise to a possibility PosE[ ( )P p z ], a necessity NecE[ ( )P p z ], a plausibility 

PlE[ ( )P p z ], a belief BelE[ ( )zpP ] and a probability ProbE[ ( )P p z ] for each set ( )P p z  , with the subscript E added to 

emphasize that epistemic uncertainty is being represented.  For perspective, the CCPoF, CCNF, CCPF, CCBF and 

CCDF in Figs. 10b–d correspond to plots of the points {p, PosE[ ( )P p z ]}, {p, NecE[ ( )P p z ]}, {p, PlE[ ( )P p z ]}, {p, 

BelE[ ( )P p z ]} and {p, ProbE[ ( )P p z ]}, respectively, for z = 0 and 0 ≤ p ≤ 0.043.  As discussed previously, the 

indicated uncertainty measures are obtained from the spaces (E, rE), (E, Ε, mE) and (E, Ε, pE) by mapping ( )zpP  

back to a subset of E and then determining the uncertainty measure of this set. 

However, the presentation of the preceding representations for multiple values of z is inefficient and unwieldy.  

A more effective presentation is to display plots of quantiles that derive from the probability spaces associated with 

the sets ( )zP  and ( )zP  and analogous quantities that derive from the possibility and evidence spaces associated 

with ( )zP  and ( )zP . 

For the probability space (E, Ε, pE), the resultant probability probE[ ( )P p z ] is a nonincreasing function of p 

because vP (z) ⊂ uP (z) for 0 ≤ u ≤ v ≤ 1.  As a result, the value Prbq(z) for the q quantile (e.g., q = 0.1, 0.2, …, 0.9) 

of the set, ( )zP  can be informally defined as the element of p of ( )zP  for which the approximate equality 

( )E pProb z q⎡ ⎤ ≅⎣ ⎦P  (6.8) 

most closely holds and can be formally defined by 

( ) ( ) ( ){ }inf :  and .q E pPrb z p p z Prob z q⎡ ⎤= ∈ ≥⎣ ⎦P P  (6.9) 

With (0)P  used as an example, the preceding corresponds graphically to (i) starting at the value q on the ordinate of 

Fig. 10d (or, equivalently, Fig. 10b or 10c), (ii) drawing a horizontal line to the CCDF, and then (iii) drawing a 

vertical line down to the ordinate to determine the value of p = ProbA( z%  ≤ 0|e) that is the q quantile value Prbq(0).  

In this context, quantiles are being associated with the probabilities of exceeding specified values rather than with 

the probabilities of being less than specified values. 
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Fig. 11. Illustration of quantile (probability) curves defined by [z, Prbq(z)] for zmn ≤ z ≤ zmx and q = 0.0, 0.1, 0.3, 

0.5, 0.7, 0.9 and 1.0. 

In words, there is an epistemic (i.e., degree of belief) probability q (e.g., q = 0.1, 0.2, …, 0.9) that the value for 

an element p of ( )zP  is larger than Prbq(z).  More specifically, this implies a probability of q that the correct value 

for ProbA( z%  ≤ z) is greater than or equal to Prbq(z).  In turn, the epistemic uncertainty associated with the set C of 

CDFs defined in Eq. (5.9) and illustrated in Fig. 7a can be summarized with plots of the quantile (probability) curves 

defined by [z, Prbq(z)] for zmn ≤ z ≤ zmx and selected values of q (e.g., for q = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0 as 

illustrated in Fig. 11). 

For the possibility space (E, rE), the quantities Posq(z) and Necq(z) for the set ( )zP  are defined by 

( ) ( ) ( ){ }inf :  and q E pPos z p p z Pos z q⎡ ⎤= ∈ ≥⎣ ⎦P P  (6.10) 

and 

( ) ( ) ( ){ }inf :  and ,q E pNec z p p z Nec z q⎡ ⎤= ∈ ≥⎣ ⎦P P  (6.11) 

respectively.  The quantities Posq(z) and Necq(z) are analogous to Prbq(z) and are amenable to similar intuitive 

descriptions except that they correspond to values of p with an exceedance possibility and an exceedance necessity 

of q rather than a value of p with an exceedance probability of value q.  In turn, the epistemic uncertainty associated 

with the set C of CDFs defined in Eq. (5.9) can be summarized with plots of the possibility curves and necessity 

curves defined by [z, Posq(z)] and [z, Necq(z)], respectively, for zmn ≤ z ≤ zmx and selected values of q (Fig. 12).  

Values for q are given a step size of 0.2 in Fig. 12 because of the discretized nature of possibility and necessity in 

this example. 
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Fig. 12. Illustration of possibility curves and necessity curves defined by [z, Posq(z)] and [z, Necq(z)], 

respectively, for zmn ≤ z ≤ zmx and q = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0:  (a) Possibility curves, and (b) 
Necessity curves. 

Similarly for the evidence space (E, Ε, mE), the quantities Plq(z) and Belq(z) for the set ( )zP  are defined by 

( ) ( ) ( ){ }inf :  and q E pPl z p p z Pl z q⎡ ⎤= ∈ ≥⎣ ⎦P P  (6.12) 

and 

( ) ( ) ( ){ }inf :  and ,q E pBel z p p z Bel z q⎡ ⎤= ∈ ≥⎣ ⎦P P  (6.13) 

respectively.  The quantities Plq(z) and Belq(z) are analogous to Prbq(z), Posq(z) and Necq(z) and are amenable to 

similar intuitive descriptions except that they correspond to values of p with an exceedance plausibility and an 

exceedance belief of q rather than values of p with an exceedance probability, an exceedance possibility and an 

exceedance necessity of q.  As in Figs. 11 and 12 for Prbq(z), Posq(z) and Necq(z), the epistemic uncertainty 

associated with the set C of CDFs defined in Eq. (5.9) can be summarized with plots of the plausibility curves and 

belief curves defined by [z, Plq(z)] and [z, Belq(z)], respectively, for zmn ≤ z ≤ zmx and selected values of q (Fig. 13). 

For interval analysis, there is no internal uncertainty structure associated with the set C of CDFs.  Thus, all that 

can be said is that the elements of C fall between the bounding (i.e., extreme) CDFs indicated in Fig. 7.   
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Fig. 13. Illustration of plausibility curves and belief curves defined by [z, Plq(z)] and [z, Belq(z)], respectively, for 

zmn ≤ z ≤ zmx and q = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0:  (a) Plausibility curves, and (b) Belief curves. 

7. Summary Discussion 

The appropriate incorporation and representation of the effects and implications of aleatory and epistemic 

uncertainty are fundamental parts of modern performance and risk studies. 

Traditionally, probability theory has provided the mathematical structure used to characterize both aleatory and 

epistemic uncertainty. For example, probability is used to characterize aleatory uncertainty and epistemic 

uncertainty in the U.S. Nuclear Regulatory Commission’s reassessment of the risks posed by commercial nuclear 

power stations [25; 26; 149] and in the U.S. Department of Energy’s successful compliance certification application 

for the Waste Isolation Pilot Plant [131; 150]. With this approach to the representation of uncertainty, aleatory 

uncertainty in analysis outcomes of interest is typically represented with CDFs or CCDFs and, in turn, epistemic 

uncertainty leads to distributions of these curves. Specifically, the outcome is a probabilistic characterization of the 

epistemic uncertainty associated with families of CDFs and CCDFs, which in turn are probabilistic characterizations 

of aleatory uncertainty [101; 151; 152]. 

In the last several decades, a number of alternatives to probability theory for the representation of epistemic 

uncertainty have been proposed, including interval analysis, possibility theory and evidence theory. These 

alternatives permit a less detailed representation of epistemic uncertainty than is possible with probability theory. As 

a result, these alternatives may more appropriately characterize epistemic uncertainty in the presence of limited 

information than probability theory. In particular, the use of probability to characterize epistemic uncertainty in the 

presence of limited information can imply the presence of more knowledge than is actually present. 
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This presentation illustrates the use of interval analysis, possibility theory, evidence theory and probability 

theory in the representation of the epistemic uncertainty associated with CDFs and CCDFs that summarize the 

effects of aleatory uncertainty. As the presented examples show, the resultant representation of epistemic uncertainty 

and the associated implications of this uncertainty can be very different depending on the mathematical structure 

used to characterize epistemic uncertainty in analysis inputs. 

Although possibility theory, evidence theory and probability theory provide different mathematical structures 

for the representation of epistemic uncertainty, the uncertainty results that derive from these different structures can 

be summarized in conceptually similar formats. Specifically, cumulative and complementary cumulative uncertainty 

representations are possible for each of these theories.  With this format, the outcomes of an uncertainty analysis 

based on possibility theory can be represented with CNFs, CCNFs, CPoFs and CCPoFs; the outcomes of an 

uncertainty analysis based on evidence theory can be represented with CBFs, CCBFs, CPFs and CCPFs; and, as is 

usually done, the outcomes of an uncertainty analysis based on probability theory can be represented with CDFs and 

CCDFs. Cumulative and complementary cumulative uncertainty representations provide compact and informative 

summaries of uncertainty information. Further, as illustrated in this presentation, cumulative and complementary 

cumulative uncertainty representations provided a common format that can be used to compare uncertainty results 

obtained when different mathematical structures are used to characterize epistemic uncertainty. 

Possibility theory and evidence theory provide uncertainty representations with less internal structure than 

probability theory However, the propagation of these representations through a model to obtain the resultant 

uncertainty representations for model results can require more computation (i.e., model evaluations) than is the case 

when probability is used to represent uncertainty.  This computational requirement results when a large number of 

discontinuities are present in a possibility or evidence theory representation for epistemic uncertainty.  For example, 

an evidence theory representation for uncertainty can rapidly expand to involve a huge number of focal elements as 

the number of uncertain variables increases (e.g., an evidence space constructed from 10 uncertain variables with 10 

focal elements for each variable has 1010 focal elements).  This presentation has used a computationally simple 

model for illustration. As a result, large numbers of model evaluations were possible. 

In most real analyses, this level of naïve computation is unlikely to be possible. Rather, some type of efficient 

computational strategy will have to be developed to support the large number of model evaluations required to 

propagate uncertainty representations based on possibility theory or evidence theory.  For example, sensitivity 

analysis procedures can be used to identify the variables that dominate the uncertainty in analysis results of interest 

[127-129; 153-159].  Then, only these important variables can be included in the uncertainty propagation.  This 

reduces the dimensionality of the input space, and as a result, can significantly reduce the number of model 

evaluations required in an uncertainty propagation.  A related approach is to perform a stepwise uncertainty 

propagation in which the full uncertainty representation is used for the most important input variable and all other 

variables are assigned degenerate representations; the analysis is then repeated with the full uncertainty 
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representation used for the two most important variables and all other variables assigned degenerate uncertainty 

representations; this process then continues until the inclusion of full uncertainty representations for additional 

variables results in no significant changes in the uncertainty representations for analysis results of interest, with the 

analysis stopping at this point [160].  Again, this approach reduces the dimensionality of the input space, and as a 

result, can significantly reduce the number of model evaluations required in an uncertainty propagation.  

Computational savings can also be achieved by reducing the complexity of the uncertainty representations in use 

(e.g., by replacing an evidence space with many focal elements with a related evidence space with fewer focal 

elements) [160].  Again, this results in computational savings by reducing the complexity of the input space.  

Finally, significant computational savings can be achieved by using nonparametric regression techniques and other 

related procedures to develop computationally efficient approximations to numerically demanding models [161-

170]. 

The results of performance and risk analyses for complex systems are usually presented as CDFs and CCDFs 

that summarize the effects of aleatory uncertainty. In turn, the presence of epistemic uncertainty results in many 

possible values for these CDFs and CCDFs.  If possibility theory and evidence theory are to have a role in 

characterizing epistemic uncertainty in the results of such analyses, these theories must be able to provide 

uncertainty characterizations for sets of epistemically uncertain CDFs and CCDFs. As illustrated in this 

presentation, such characterizations can be obtained with possibility and evidence theory. 

However, three challenges remain to the use of possibility theory and evidence theory in performance and risk 

analyses for complex systems. First, it is necessary to convince the supporters (i.e., funders) of these analyses of the 

appropriateness and value of the use of an alternative to probability for the representation of epistemic uncertainty.  

This is likely to involve a large educational effort as few funders or users of such analyses will be familiar with these 

alternatives to probability for the representation of epistemic uncertainty. Second, most analysts who participate in 

analyses of this type will not be familiar with these alternative uncertainty representations. Again, a significant 

educational effort is likely to be necessary before the desired uncertainty representations for analysis inputs can be 

obtained. Third, computationally practicable methods must be developed and implemented for the propagation of 

the uncertainty representations through the analysis. This development and implementation is likely to be analysis-

specific. 
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