Metal fire implications for advanced reactors. Part 1, literature review.

PDF Version Also Available for Download.

Description

Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. ... continued below

Physical Description

68 p.

Creation Information

Nowlen, Steven Patrick; Radel, Ross F.; Hewson, John C.; Olivier, Tara Jean & Blanchat, Thomas K. October 1, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior.

Physical Description

68 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2007-6332
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/946583 | External Link
  • Office of Scientific & Technical Information Report Number: 946583
  • Archival Resource Key: ark:/67531/metadc901843

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 6, 2016, 1:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 16

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nowlen, Steven Patrick; Radel, Ross F.; Hewson, John C.; Olivier, Tara Jean & Blanchat, Thomas K. Metal fire implications for advanced reactors. Part 1, literature review., report, October 1, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc901843/: accessed July 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.