Tomographic wavefront correction for the LSST

PDF Version Also Available for Download.

Description

The Large Synoptic Survey Telescope (LSST) is a three mirror modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary followed by a 3-element refractive corrector producing a 3.5 degree field of view. This design produces image diameters of <0.3 arcsecond 80% encircled energy over its full field of view. The image quality of this design is sufficient to ensure that the final images produced by the telescope will be limited by the atmospheric seeing at an excellent astronomical site. In order to maintain this image quality, the deformations and rigid body motions of the three ... continued below

Physical Description

PDF-file: 14 pages; size: 0.3 Mbytes

Creation Information

Phillion, D W; Olivier, S S; Baker, K; Seppala, L & Hvisc, S May 3, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Large Synoptic Survey Telescope (LSST) is a three mirror modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary followed by a 3-element refractive corrector producing a 3.5 degree field of view. This design produces image diameters of <0.3 arcsecond 80% encircled energy over its full field of view. The image quality of this design is sufficient to ensure that the final images produced by the telescope will be limited by the atmospheric seeing at an excellent astronomical site. In order to maintain this image quality, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations. By measuring the optical wavefront produced by the telescope at multiple points in the field, mirror deformations and rigid body motions that produce a good optical wavefront across the entire field may be determined. We will describe the details of the techniques for obtaining these solutions. We will show that, for the expected mirror deformations and rigid body misalignments, the solutions that are found using these techniques produce an image quality over the field that is close to optimal. We will discuss how many wavefront sensors are needed and the tradeoffs between the number of wavefront sensors, their layout and noise sensitivity.

Physical Description

PDF-file: 14 pages; size: 0.3 Mbytes

Source

  • Presented at: Astronomical Telescopes and Instrumentation 2006 SPIE Conference, Orlando, FL, United States, May 24 - May 31, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-221531
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 928548
  • Archival Resource Key: ark:/67531/metadc901647

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 3, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 7, 2016, 11:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Phillion, D W; Olivier, S S; Baker, K; Seppala, L & Hvisc, S. Tomographic wavefront correction for the LSST, article, May 3, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc901647/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.