Alloys for 1000 degree C service in the Next Generation Nuclear Plant NERI 05-0191

PDF Version Also Available for Download.

Description

The objective of the proposed research is to define strategies for the improvement of alloys for structural components, such as the intermediate heat exchanger and primary-to-secondary piping, for service at 1000 degree C in the He environment of the NGNP. Specifically, we will investigate the oxidation/carburization behavior and microstructure stability and how these processes affect creep. While generating this data, the project will also develop a fundamental understanding of how impurities in the He environment affect these degradation processes and how this understanding can be used to develop more useful life prediction methodologies.

Creation Information

Was, Gary S.; Jones, J.W. & Pollock, T. January 15, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 36 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective of the proposed research is to define strategies for the improvement of alloys for structural components, such as the intermediate heat exchanger and primary-to-secondary piping, for service at 1000 degree C in the He environment of the NGNP. Specifically, we will investigate the oxidation/carburization behavior and microstructure stability and how these processes affect creep. While generating this data, the project will also develop a fundamental understanding of how impurities in the He environment affect these degradation processes and how this understanding can be used to develop more useful life prediction methodologies.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 15, 2009

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 22, 2016, 4:27 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 36

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Was, Gary S.; Jones, J.W. & Pollock, T. Alloys for 1000 degree C service in the Next Generation Nuclear Plant NERI 05-0191, report, January 15, 2009; United States. (https://digital.library.unt.edu/ark:/67531/metadc901618/: accessed April 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen