An Efficient Microwave Power Source: Free-electron Laser Afterburner

PDF Version Also Available for Download.

Description

A kind of microwave power source, called a free-electron laser afterburner (FEL afterburner) which consists of a free-electron laser buncher and a slow-wave output structure sharing a magnetic wiggler field with the buncher, is proposed. The buncher and the slow-wave structure can operate in either a travelling-wave state or a standing-wave state. In the buncher, the wiggler field together with the radiation field makes an electron beam bunched, and in the slow-wave structure the wiggler field keeps the beam bunched while the bunched beam interacts strongly with the slow-wave structure and so produces rf power. The bunching process comes from ... continued below

Physical Description

21

Creation Information

Wang, C. & Sessler, Andrew M. March 4, 1993.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A kind of microwave power source, called a free-electron laser afterburner (FEL afterburner) which consists of a free-electron laser buncher and a slow-wave output structure sharing a magnetic wiggler field with the buncher, is proposed. The buncher and the slow-wave structure can operate in either a travelling-wave state or a standing-wave state. In the buncher, the wiggler field together with the radiation field makes an electron beam bunched, and in the slow-wave structure the wiggler field keeps the beam bunched while the bunched beam interacts strongly with the slow-wave structure and so produces rf power. The bunching process comes from the free-electron laser mechanism and the generating process of rf power is in a slow-wave structure. A three-dimensional, time-dependent code is used to simulate a particular standing-wave FEL afterburner and it is shown that rf power of up to 1.57 GW can be obtained, at 17.12 GHz, from a l-kA, 5-MeV electron beam.

Physical Description

21

Subjects

Source

  • Journal Name: Journal of Applied Physics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-33755
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 937427
  • Archival Resource Key: ark:/67531/metadc901434

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 4, 1993

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 28, 2016, 7:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wang, C. & Sessler, Andrew M. An Efficient Microwave Power Source: Free-electron Laser Afterburner, article, March 4, 1993; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc901434/: accessed November 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.