Compositional Modulation in InxGa1-xN

PDF Version Also Available for Download.

Description

Transmission Electron Microscopy and x-ray diffraction were used to study compositional modulation in In{sub x}Ga{sub 1-x} N layers grown with compositions close to the miscibility gap. The samples (0.34 < x < 0.8) were deposited by molecular beam epitaxy using either a 200-nm-thick AlN or GaN buffer layer grown on a sapphire substrate. In the TEM imaging mode this modulation is seen as black/white fringes which can be considered as self-assembled thin quantum wells. Periodic compositional modulation leads to extra electron diffraction spots and satellite reflections in x-ray diffraction in the {theta}-2{theta} coupled geometry. The modulation period was determined using ... continued below

Creation Information

Liliental-Weber, Z.; Zakharov, D.N.; Yu, K.M.; Ager III, J.W.; Walukiewicz, W.; Haller, E.E. et al. July 20, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Transmission Electron Microscopy and x-ray diffraction were used to study compositional modulation in In{sub x}Ga{sub 1-x} N layers grown with compositions close to the miscibility gap. The samples (0.34 < x < 0.8) were deposited by molecular beam epitaxy using either a 200-nm-thick AlN or GaN buffer layer grown on a sapphire substrate. In the TEM imaging mode this modulation is seen as black/white fringes which can be considered as self-assembled thin quantum wells. Periodic compositional modulation leads to extra electron diffraction spots and satellite reflections in x-ray diffraction in the {theta}-2{theta} coupled geometry. The modulation period was determined using both methods. Larger modulation periods were observed for layers with higher In content and for those having larger mismatch with the underlying AlN buffer layer. Compositional modulation was not observed for a sample with x = 0.34 grown on a GaN buffer layer. Modulated films tend to have large 'Stokes shifts' between their absorption edge and photoluminescence peak.

Source

  • Journal Name: Physica B; Journal Volume: 376-377; Related Information: Journal Publication Date: 04/01/2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--60764
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 928764
  • Archival Resource Key: ark:/67531/metadc901353

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 20, 2005

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:49 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Liliental-Weber, Z.; Zakharov, D.N.; Yu, K.M.; Ager III, J.W.; Walukiewicz, W.; Haller, E.E. et al. Compositional Modulation in InxGa1-xN, article, July 20, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc901353/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.