Evidence for $X(3872) \to \psi(2S)\gamma$ in $B^\pm \to X(3872)K^\pm$ decays, and a study of $B \to c\bar{c}\gamma K$

Published in the Physical Review Letters

Work supported in part by US Department of Energy contract DE-AC02-76SF00515
In a search for $B \rightarrow \phi K$ decays with the BABAR detector, where ϕ includes J/ψ and $\psi(2S)$, and K includes K^0, K^0_S and $K^*(892)$, we find evidence for $X(3872) \rightarrow J/\psi \phi$ and $X(3872) \rightarrow \psi(2S)\gamma$ with 3.6% and 3.5% significance, respectively. We measure the product of branching fractions $B(B^+ \rightarrow X(3872)K^{\pm}) \cdot B(X(3872) \rightarrow J/\psi\phi) = (2.8 \pm 0.8_{\text{stat.}} \pm 0.2_{\text{syst.}}) \times 10^{-6}$ and $B(B^+ \rightarrow X(3872)K^{+}) \cdot B(X(3872) \rightarrow \psi(2S)\gamma) = (9.9 \pm 2.9_{\text{stat.}} \pm 0.6_{\text{syst.}}) \times 10^{-8}$.

The $X(3872)$ state discovered by the Belle Collaboration in the decay $B^\pm \rightarrow K^\pm X(3872)$, $X(3872) \rightarrow J/\psi \pi^+\pi^-$ [1] is now well established [2]. $\bar{B}B$ has seen evidence for the decay $X(3872) \rightarrow J/\psi \gamma$, which implies positive C-parity [3]. A variety of theoretical interpretations [4] exist for this state, including conventional charmonium interpretations [5] and exotic QCD proposals such as a $\bar{D}D^{*0}$ molecule [6], or a diquark-antidiquark state [7]. While $\bar{D}D^{*0}$ molecular proposals can accommodate decays to $J/\psi \gamma$, the branching fraction for decays to $\psi(2S)\gamma$ is expected to be very small [8]. These models allow for the possibility of an admixture of a $\bar{D}D^{*0}$ bound state with, for example, a $\sigma\pi$ meson. The $\chi_{c1}(2P)$ state potentially decays to $\psi(2S)\gamma$ at a rate many times higher than to $J/\psi \gamma$, hence the decay $X(3872) \rightarrow \psi(2S)\gamma$ could be enhanced due to $\sigma\pi$-$\bar{D}D^{*0}$ mixing.

We present a study of the decay $B \rightarrow X K$, where the notation X represents any state decaying radiatively to $J/\psi \gamma$ or $\psi(2S)\gamma$ (the $\chi_{c1,2}$ and $X(3872)$ states in particular), and K encompasses K^\pm, K^0_S, $K^{*0}(892)$ and $K^{*+}(892)$. We consider J/ψ mesons decaying to e^+e^- or $\mu^+\mu^-$, and $\psi(2S)$ decaying to e^+e^-, $\mu^+\mu^-$ or $J/\psi\pi^+\pi^-$. Kaons are required to decay to final states consisting of charged particles; $K^0_S \rightarrow \pi^+\pi^-$, $K^{*+} \rightarrow K^0_S(\pi^+\pi^-)\pi^\pm$, and $K^{*0} \rightarrow K^\pm\pi^\mp$.

The data sample for this analysis consists of (465 ± 5) million $B\bar{B}$ pairs collected with the $\bar{B}B$ detector at the PE-P II asymmetric e^+e^- collider at SLAC. This represents 424 fb$^{-1}$ of data taken at the $T(4S)$ resonance. The $\bar{B}B$ detector is described in detail elsewhere [9].

The event selection, determined independently from the data, is based on Monte Carlo (MC) simulated events with the aim of maximizing significance.

The J/ψ candidates are formed using pairs of leptons whose invariant mass is in the range $[2.96,3.15]$ GeV/c2 for electrons (including bremsstrahlung photons) and $[3.06,3.13]$ GeV/c2 for muons. For $\psi(2S) \rightarrow \ell^+\ell^-$, the candidate invariant masses are required to be in the range $[3.61,3.73]$ GeV/c2 for electrons or $[3.65,3.72]$ GeV/c2 for muons. The $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ candidates are composed of J/ψ candidates decaying as described but with a tighter mass requirement of $[3.01,3.15]$ GeV/c2 for the e^+e^- decay mode. To form a $\psi(2S)$ candidate, the J/ψ candidate is mass-constrained to the nominal PDG value [10] and combined with a pair of oppositely charged tracks requiring $[0.4,0.6]$ GeV/c2 and $[3.68,3.69]$ GeV/c2 for the dipion and $\psi(2S)$ invariant masses, respectively. All four final decay particles are constrained to the same decay vertex.

We reconstruct $X \rightarrow \sigma\gamma$ candidates from a mass-constrained J/ψ ($\psi(2S)$) candidate combined with a photon with an energy greater than $30(100)$ MeV. Additional selection criteria are applied to the shape of the lateral distribution ($0.001 < \text{LAT} < 0.5$) [11] and azimuthal asymmetry (as measured by the Zernike moment $A_{22} < 0.1$) [12] of the photon-shower energy. For $X \rightarrow J/\psi\gamma$, the radiative γ candidate is rejected if, when combined with any other γ from the event, it has an invariant mass consistent with the π^0 mass, $124 < m_{\gamma\gamma} < 146$ MeV/c2.

The K^0_S candidates are required to be within ± 17 MeV/c2 of the nominal K^0_S mass [10], and the significance of the distance of the reconstructed decay vertex from the primary vertex must be greater than 3.7 standard deviations (σ). The excited kaons are required to have an invariant mass within the range $0.7 < m(K^*) < 1.1$ GeV/c2. For K^0_S, K^{*+}, and K^0_S candidates associated with $X \rightarrow \psi(2S)\gamma$, additional requirements are placed on the χ^2 vertex probability of the kaon, $P(\chi^2) > 0.001, 0.02$ and 0.002, respectively.

We form the final B candidate from an X candidate and a kaon constrained to originate from the same vertex. To identify B candidates, we use two kinematic variables, m_B and m_{miss}. The unconstrained mass of the reconstructed B candidate is $m_B = \sqrt{E_B^2/c^4 - p_B^2/c^2}$, where E_B and p_B are obtained by summing the energies and momenta of the particles in the candidate B meson. The missing mass is defined as $m_{\text{miss}} = \sqrt{(p_{e^-e^+} - p_B)^2/c^4}$, where $p_{e^-e^+}$ is the four-momentum of the beam e^+e^- system and p_B is the four-momentum of the B candidate after applying a B mass constraint. For $X \rightarrow J/\psi(\psi(2S))\gamma$ events, we require m_B to be within ± 30 MeV/c2 of the nominal B mass [10]. Our B candidate selection is further refined by imposing criteria on the χ^2 probability for the B vertex; for all $X \rightarrow J/\psi\gamma$ modes $P(\chi^2) > 0.0001$, and for $X \rightarrow \psi(2S)\gamma$ modes, $P(\chi^2) > 0.01, 0.002$, and 0.05 for the K^0_S, K^0_S, and K^* modes, respectively. The ratio of the second and zeroth Fox-Wolfram moments ($R_2 < 0.45$) [13] is used to separate isotropic B events from continuum background events. Once a B candidate has been established, it and its daughter decays are refit with the B mass constrained to the known value [10].

We perform a one(two)-dimensional unbinned extended maximum-likelihood (UML) fit to m_{miss} (and m_{K^*}, if applicable), and then use the χPlot formalism [14] to project our signal events into m_X, the invariant mass of the X candidate. The χPlot of the UML fit displays the number of $B \rightarrow X K$ signal-like events as a function of m_X. We extract the number of signal events for a given decay mode by fitting this resultant m_X distribution with shapes for signal and background determined from MC simulation.

The signal event probability density functions (PDFs) are determined from MC-simulated $B \rightarrow \chi_{c1}K$ and $B \rightarrow X(3872)K$ events. Only reconstructed events exactly matching the generated decay chain particles are used to parameterize the signal PDFs. The PDF shapes for $B \rightarrow \chi_{c2}K$ are the same as for χ_{c1}, with the below-noted exception of the m_X distribution. The m_{miss} distribution is modeled with a Crystal Ball function [15], m_X with a single Gaussian for the χ_{c2} decay modes and narrower core Gaussian plus a second wider Gaussian sharing the same mean for all other signal modes, and m_{K^*}-
with the convolution of a Breit-Wigner and a Gaussian. The background PDFs are determined from fits to generic B^+B^-, $B^0\overline{B}^0$, η_f, and $\tau^+\tau^-$ MC samples, and are dominated by events from $B\overline{B}$ decays that include a J/ψ or $\psi(2S)$ in their decay chain. For the $B^\pm \rightarrow XK^\pm$ and $B^0 \rightarrow XK^0$ decay modes, the background in m_{miss} consists of two parts: a non-peaking combinatoric component modeled with an ARGUS function [16], and a peaking component that shares the Crystal Ball parameterization used for signal events. These backgrounds are modeled as linear in m_{X}. The K^* decay modes have three background components: events that peak in m_{miss} but are flat in m_{K^*} (“non-resonant”) and vice versa (“K^* combinatoric”), and those that do not peak in either distribution (“combinatoric”). The peaking m_{miss} and m_{K^*} distributions use the same parameterization and values found by fitting to the signal MC. The non-peaking m_{miss} distributions are fit with an ARGUS function, while the non-peaking m_{K^*} distribution is modeled with a linear function. Both combinatoric background types are flat in m_{X}, while the non-resonant backgrounds (typically $B \rightarrow XK\pi$) have a flat and peaking component in m_{X}. However, because none of these background events are signal-like in both m_{miss} and m_{K^*}, they are not present in the sPlot projection in m_{X}.

To account for any potential differences between data and MC, the values for the m_{miss} ARGUS and m_{X} linear parameters for the background events are left as free parameters in the final fit to data. We also allow the height of the m_{X} Gaussian peaks to float, which we use to derive the number of signal events.

The effectiveness of the signal extraction method is validated on fully-simulated MC events for $\chi_{c1,2}$ and $X(3872)$ signal events, with random samples generated from the MC background distribution. Successful performance of the fit is verified on simulated datasets assuming the number of signal and background events from the known branching fractions and efficiencies. We apply small corrections (<5%) to account for biases found in the results of the MC fit validation.

We determine the efficiency from the fraction of the events generated in MC simulation that survive the analysis selection criteria and are accepted by the fitting procedure. We calculate the branching fraction for each decay mode using $B(B \rightarrow X) = N_S/(N_{B\overline{B}} \times \epsilon \times f)$ where N_S is the bias-corrected number of signal events from the fit to the m_{X} sPlot, $N_{B\overline{B}}$ is the number of $B\overline{B}$ pairs in the data set, ϵ is the total signal extraction efficiency, and f represents all secondary branching fractions. The fit results, efficiencies, and derived branching fractions are summarized in Table I.

For most of the $B \rightarrow X(3872)K$ decay channels, the largest source of systematic uncertainty affecting the signal yield comes from the uncertainty in the true $X(3872)$ mass and width (~2% for the K^* modes). In the case of the K^\pm and K^0_π decay modes for $X(3872) \rightarrow \psi(2S)\gamma$, an alternate parametrization of the m_{X} shape was considered for background events, as indicated by the MC simulation. A correction equal to half the difference between the results of the two background model choices, with a systematic error equal to this amount, is applied to the final result. This is the largest yield-related systematic uncertainty for the $X(3872)(\psi(2S)\gamma)K^\pm$ mode (~2%). For $B \rightarrow \chi_{c1,2}K$, uncertainty in the fit bias, PDF parameters, and MC/data differences for the mean value m_{X} for signal events all contribute in varying though roughly equal amounts.

Regarding systematic uncertainties related to the branching fraction calculations, one of the main contributors across all decay modes is uncertainty associated with particle identification (~4%). The uncertainty in secondary branching fractions, beyond the control of this analysis, is the dominant systematic uncertainty for $B(B \rightarrow \chi_{c1}K)$ and $B(B^0 \rightarrow \chi_{c2}K^0)$ (~6%). Effects from tracking, photon corrections and B counting are also considered, but are all less than 2%.

Figure 1 shows the fit to m_{X} in the mass range $3.411 < m_{X} < 3.611$ GeV/c^2. We observe all of the expected $B \rightarrow \chi_{c1}K$ decay modes, in good agreement with previous measurements. We find 3.7σ evidence for $B^0 \rightarrow \chi_{c2}K^0$, and set upper limits for the remaining $B \rightarrow \chi_{c2}K$ decays.

Table I: Summary of the analysis results.

<table>
<thead>
<tr>
<th>Decay</th>
<th>N_S</th>
<th>σ (5%)</th>
<th>Derived B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{c1}K^+$</td>
<td>1018 ± 34 ± 14</td>
<td>28 ± 11.0</td>
<td>$(4.6 ± 0.2 ± 0.3) \times 10^{-4}$</td>
</tr>
<tr>
<td>$\chi_{c1}K^0$</td>
<td>242 ± 16 ± 5</td>
<td>14 ± 8.7</td>
<td>$4.1 ± 0.3 ± 0.3$</td>
</tr>
<tr>
<td>$\chi_{c1}K^0$</td>
<td>71 ± 13 ± 8</td>
<td>4.7 ± 5.7</td>
<td>$2.7 ± 0.5 ± 0.4$</td>
</tr>
<tr>
<td>$\chi_{c1}K^0$</td>
<td>255 ± 25 ± 11</td>
<td>9.5 ± 7.9</td>
<td>$2.5 ± 0.2 ± 0.2$</td>
</tr>
<tr>
<td>$\chi_{c2}K^+$</td>
<td>14.0 ± 7.9 ± 1.1</td>
<td>1.8 ± 12.3</td>
<td>$(1.0 ± 0.6 ± 0.1) < 1.8$</td>
</tr>
<tr>
<td>$\chi_{c2}K^0$</td>
<td>6.1 ± 3.9 ± 1.1</td>
<td>1.5 ± 11.0</td>
<td>$1.5 ± 0.9 ± 0.3 < 2.8$</td>
</tr>
<tr>
<td>$\chi_{c2}K^0$</td>
<td>1.2 ± 4.7 ± 6.1</td>
<td>0.2 ± 4.2</td>
<td>$1.2 ± 4.3 ± 5.5 < 12$</td>
</tr>
<tr>
<td>$\chi_{c2}K^0$</td>
<td>38.8 ± 10.5 ± 1.1</td>
<td>9.8 ± 8.6</td>
<td>$6.4 ± 1.7 ± 0.5$</td>
</tr>
<tr>
<td>$X(3872)(J/\psi\gamma)$</td>
<td>$23.0 ± 6.4 ± 0.6$</td>
<td>3.6 ± 14.5</td>
<td>$2.5 ± 0.8 ± 0.2$</td>
</tr>
<tr>
<td>$X(3872)(\psi(2S)\gamma)$</td>
<td>$5.3 ± 3.6 ± 0.2$</td>
<td>1.5 ± 11.0</td>
<td>$2.6 ± 1.7 ± 0.2 < 4.9$</td>
</tr>
<tr>
<td>$X(3872)(\psi(2S)\gamma)$</td>
<td>$0.6 ± 2.3 ± 0.1$</td>
<td>0.3 ± 6.9</td>
<td>$0.7 ± 2.6 ± 0.1 < 4.8$</td>
</tr>
<tr>
<td>$X(3872)(\psi(2S)\gamma)$</td>
<td>$2.8 ± 5.2 ± 0.4$</td>
<td>0.5 ± 10.4</td>
<td>$0.7 ± 1.4 ± 0.1 < 2.8$</td>
</tr>
</tbody>
</table>
Fits to m_X in the range $3.772 < m_X < 3.972$ GeV/c2 are shown in Fig. 2 for decays to $J/\psi\gamma$. We confirm evidence for the decay $X(3872) \rightarrow J/\psi\gamma$ in $B^{\pm} \rightarrow X(3872)K^{\pm}$, measuring $B(B^{\pm} \rightarrow X(3872)K^{\pm}) \cdot B(X(3872) \rightarrow J/\psi\gamma) = (2.8 \pm 0.8(\text{stat.}) \pm 0.2(\text{syst.})) \times 10^{-6}$ with a significance of 3.6σ. This value is in good agreement with the previous BABAR result [3], which it supersedes, and represents the best measurement of this branching fraction to date. We find no significant signal in the other decay modes.

Figure 3 shows the fit to the m_X distribution for $X \rightarrow \psi(2S)\gamma$ in the range $3.772 < m_X < 3.972$ GeV/c2. In our search for $X(3872) \rightarrow \psi(2S)\gamma$ in $B^{\pm} \rightarrow X(3872)K^{\pm}$, we find the first evidence for this decay with a significance of 3.5σ. We derive $B(B^{\pm} \rightarrow X(3872)K^{\pm}) \cdot B(X(3872) \rightarrow \psi(2S)\gamma) = (9.9 \pm 2.9(\text{stat.}) \pm 0.6(\text{syst.})) \times 10^{-6}$. We find no significant signals in the other decay modes.

To search for other new resonances, the m_X invariant mass window is extended up to the kinematic limit. Even after combining all decay modes together, there are no indications of any further signals above the prominent $X(3872)$ peak.

In summary, we present first evidence for the decay $X(3872) \rightarrow \psi(2S)\gamma$, and updated measurements of the $X(3872) \rightarrow J/\psi\gamma$ and $B \rightarrow \chi_{c1,2}K$ decays. We find evidence for the factorization-suppressed [18] decay $B^0 \rightarrow \chi_{c2}K^{*0}$, but see no evidence for other $\chi_{c2}K$ decays. Taking the statistical and systematic errors in quadrature, we find a ratio of $B(B^{\pm} \rightarrow X(3872)K^{\pm}) \cdot B(X(3872) \rightarrow J/\psi\gamma) = 3.5 \pm 1.4$. Comparing to $B(B^{\pm} \rightarrow X(3872)K^{\pm}) \cdot B(X(3872) \rightarrow J/\psi\gamma) [19]$ with the errors again in quadrature, we find $B(X(3872) \rightarrow \psi(2S)\gamma) = 1.1 \pm 0.4$. This relatively large branching fraction for $X(3872) \rightarrow \psi(2S)\gamma$ is generally inconsistent with a purely D^0D^{*0} molecular interpretation of the $X(3872)$, and possibly indicates mixing with a significant $c\tau$ component.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
† Now at Temple University, Philadelphia, Pennsylvania 19122, USA
‡ Now at Tel Aviv University, Tel Aviv, 69978, Israel
§ Also with University of Perugia, Dipartimento di Fisica, Perugia, Italy
¶ Also with Università di Roma La Sapienza, I-00185 Roma, Italy
FIG. 3: Plot of the number of extracted signal events versus m_X for (a) $B^\pm \to X(3872)K^{\pm}$, (b) $B^0 \to X(3872)K^0_S$, (c) $B^\pm \to X(3872)K^{\ast \pm}$, and (d) $B^0 \to X(3872)K^{\ast 0}$, where $X(3872) \to \psi(2S)\gamma$. The solid curve is the fit to the data.

\[\text{** Now at University of South Alabama, Mobile, Alabama 36688, USA}
\\[\text{†† Also with Università di Sassari, Sassari, Italy}
\\[\text{BABar Collaboration, Phys. Rev. D71, 071103 (2005).}
\\[\text{[3] B. Aubert et al., BABar Collaboration, Phys. Rev. D74, 071101(R) (2006).}
\\[\text{[8] E.S. Swanson, Phys. Rept. 429, 243 (2006).}
\\[\text{[17] The upper limit (UL) is calculated from $R_{UL}^G(x)/R_{Inf}^G(x) = 0.9$, where $G(x)$ is a Gaussian with mean equal to the central value of the branching fraction measurement and standard deviation equal to the total uncertainty.}