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Abstract:  

The structural approach to joint inversion, entailing common boundaries or gradients, offers a 

flexible way to invert diverse types of surface-based and/or crosshole geophysical data. The 

cross-gradients function has been introduced as a means to construct models in which spatial 

changes in two models are parallel or anti-parallel. Inversion methods that use such structural 

constraints also provide estimates of non-linear and non-unique field-scale relationships 

between model parameters. Here, we invert jointly crosshole radar and seismic traveltimes for 

structurally similar models using an iterative non-linear traveltime tomography algorithm. 

Application of the inversion scheme to synthetic data demonstrates that it better resolves 

lithological boundaries than the individual inversions. Tests of the scheme on observed radar 

and seismic data acquired within a shallow aquifer illustrate that the resultant models have 

improved correlations with flowmeter data than with models based on individual inversions. 

The highest correlation with the flowmeter data is obtained when the joint inversion is 

combined with a stochastic regularization operator, where the vertical integral scale is 

estimated from the flowmeter data. Point-spread functions shows that the most significant 

resolution improvements of the joint inversion is in the horizontal direction. 
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1. Introduction  

To determine petrophysical properties, state variables, and structural boundaries, it may 

be necessary to combine information provided by models obtained from different geophysical 

data (e.g., Tronicke et al., 2004; Bedrosian et al., 2007). Interpretation of several individually 

inverted data sets can be illuminating, but the results are usually affected by the resolution 

limitations of each model. 

For consistent interpretations of multiple geophysical models, it would be advantageous 

to have inversion tools that have similar formulations of the inverse problem regardless of the 

type of geophysical data being inverted. This would allow models to be coupled, as long as 

the data have comparable spatial support. By joint inversion, we refer to coupled models that 

are obtained by simultaneously minimizing a misfit function that includes the data misfit of 

each data type. Joint inversion can improve the resolution of each geophysical model and 

provide models that are consistent with each other and therefore easier to interpret (e.g., 

Gallardo and Meju, 2004). 

Joint inversion is not yet a standard tool in geophysical applications, mainly because 

robust and well-established petrophysical models that can be used to couple the models are 

usually only available for certain geophysical parameters, such as compressional and shear 

wave slownesses (Tryggvason et al., 2002). Furthermore, petrophysical models often apply 

only in restricted geological settings (e.g., Sen et al., 1981; Marion et al., 1992). In addition, 

the parameters of petrophysical models can seldom be adequately constrained by individual 

field data sets, such that fairly strong assumptions are required to couple models based on 

their petrophysical properties.  

To avoid introducing questionable petrophysical models, joint inversion methods have 

been developed for layered (1D) structures that are expected to have coincident layer 

boundaries and constant properties within each layer (e.g., Monteiro Santos et al., 2006). A 
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natural extension to two- and three-dimensional applications has been to assume that the earth 

can be divided into sub-volumes of uniform properties with geometries that are common for 

all physical properties in the inversion (e.g., Hyndman and Gorelick, 1996; Musil et al., 

2003). Such approaches are certainly useful, but physical properties can vary gradually in 

space and not all data are necessarily sensitive to the same changes in lithology and state 

variables. Furthermore, the zonations must be updated continuously, making the inversions 

computationally expensive.  

In Occam’s inversion (Constable et al., 1987), fine model discretizations are used and 

the inverse problem is regularized by minimizing, for example, model roughness with the 

constraint that the simulated model response is close to a given target data misfit. Haber and 

Oldenburg (1997) introduced a joint inversion scheme to find models that are structurally 

similar, in the sense that spatial changes in models occur at the same location. This scheme is 

applicable to over-parameterized two- and three-dimensional models and it is essentially 

based on minimizing the squared difference of a weighted Laplacian of the two models.   

Gallardo and Meju (2003) further developed the framework of the structural approach to 

joint inversion proposed by Haber and Oldenburg (1997) by defining the cross-gradients 

function t(x,y,z) as 

( ) ( ) ( ), , = , , × , , ,A Bx y z m x y z m x y z∇ ∇t      (1) 

where ( ), ,Am x y z∇  and ( ), ,Bm x y z∇  are the gradients of models mA and mB at location x, y, 

and z, and × indicates the cross-product. By forcing the discretized cross-gradients function to 

be close to zero at each location during the inversion process, either the gradients of the two 

resulting models will be parallel or anti-parallel to each other or one or both of the models 

does not change. The boundaries of the resulting models have the same orientation, thus 

facilitating geological interpretations. An advantage compared to the work of Haber and 

Oldenburg (1997) is that constraints based on the cross-gradients function do not focus on the 
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magnitudes of the changes, which are difficult to estimate a priori and may necessitate a 

number of tuning parameters, but rather on a common direction. The validity of imposing the 

cross-gradients function to be zero is discussed by Linde et al. (2006a) in the context of 

electrical properties. 

The cross-gradients function was first employed in two-dimensions to invert jointly 

surface-based electrical resistance tomography (ERT) and seismic refraction profiles collected 

over weathered granodioritic bedrock overlain by mudstone (Gallardo and Meju, 2003; 2004). 

The same seismic refraction data was later jointly inverted with controlled-source audio 

magnetotelluric data (Gallardo and Meju, 2007). Recently, Gallardo (2007) proposed an 

extension of the cross-gradients function that allows the simultaneous inversion of more than 

two data types. Gallardo (2007) then used this scheme in two-dimensions to jointly invert 

surface-based P-wave and S-wave traveltimes, ERT, and magnetic data.  

Tryggvason and Linde (2006) presented the first three-dimensional application of joint 

inversion based on the cross-gradients function. By jointly inverting P- and S-wave 

traveltimes in a synthetic local earthquake tomography experiment, they found that the 

resulting anomalous Vp/Vs-ratios were better defined than those obtained by separate 

inversions or joint inversion based on damping the solution around a pre-defined Vp/Vs ratio. 

The efficiency of this approach was demonstrated on seismological data collected in the 

surroundings of the Hengill volcanic system on Iceland (Tryggvason and Linde, 2007). Linde 

et al. (2006a) jointly inverted crosshole ground penetrating radar (GPR) and ERT data 

collected in unsaturated sandstone in three dimensions. Scatter plots of the jointly inverted 

models were used together with petrophysical models to infer a zonation and to determine 

possible ranges of the electrical formation factors, water contents, and effective grain radius of 

the sediments within each of the zones. The resulting estimates were consistent with gamma 

logs, measured clay fraction, and electrical formation factor in a cored borehole.  
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Linde et al. (2006a) presented the only study so far in which geophysical models 

obtained from joint inversions using the cross-gradients function were evaluated against 

borehole data. However, their example provided by the unsaturated Sherwood Sandstone was 

limited by the one-dimensional character of the geology. We acknowledge that the cross-

gradients method needs to be applied to additional well-instrumented study sites before it is 

widely accepted.  

Here, we present the results of jointly invertied crosshole radar and seismic traveltimes 

recorded at the South Oyster study site, VA (Chen et al., 2001; Hubbard et al., 2001), where 

the geology consists of saturated unconsolidated sediments with three-dimensional 

heterogeneity. To guide the choice of inversion parameters, we calculate trade-off curves 

between the weight given to the cross-gradients constraint in the objective function and the 

resulting structural similarity of the resulting model, as well as between the weight given to 

the cross-gradients constraints and the weight given to the regularization operators. Finally, 

the improved resolution offered by the joint inversion is visualized with point-spare functions 

calculated in the central part of the interwell region. 

2. Method 

2.1 The inversion method 

Our formulation of the joint inverse problem closely follows that developed by Linde et 

al. (2006a) for use with ERT and GPR data. In the algorithm, the first arrival traveltimes are 

computed with the finite difference (FD) algorithm time3d (Podvin and Lecomte, 1991; 

Tryggvason and Bergman, 2006). Ray tracing is performed by a posteriori back propagation 

perpendicular to the wave fronts from the receivers to the transmitters (Hole, 1992). 

Our objective function have three competing components: the data fit resulting from two 

piece-wise constant individual slowness models mA and mB weighted by the estimated data 

errors; regularization of the individual models by penalizing model complexity (the relative 
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weights given to the regularization operators are determined by Α

pε  and ,B
pε  where small 

values provides a strong relative weight); and coupling of the two models by enforcing 

structural similarity via cross-gradients constraints (the weight given to this term is controlled 

by λ). These objectives are formulated in one objective function that we seek to minimize, at 

each iteration, in a least-squares sense (see equations 8-9 in Linde et al. (2006a)) with the 

iterative conjugate gradient algorithm LSQR (Paige and Saunders, 1982). 

We regularize the inverse problem by seeking either a model that has small second-

derivatives (i.e., smoothness constraints) or is close to a given stationary exponential 

covariance function. Linde et al. (2006a) show how such stochastic regularization operators 

can be calculated efficiently. To include the structural constraints in our objective function, 

we discretize the cross-gradients function, equation 1, with a central finite-difference scheme, 

which provides better results than the forward difference scheme used in previous work (e.g., 

Gallardo and Meju, 2004). The cross-gradients function for a candidate model is estimated 

using a first-order Taylor expansion around the cross-gradients function at the previous 

iteration (see equation 7 in Linde et al. (2006a)). 

2.2 Inversion strategy 

The goal of the inversion is to construct two models where each model explain the data 

within pre-defined data errors (i.e., the weighted RMS of each of the models are very close to 

1) for a given λ, with the smallest possible value of Αpε  and B
pε . For the joint inversion of 

radar and seismic traveltimes, in which the same type of traveltime tomography is employed 

and in which the relative variations in the model are expected to be similar, we assign 

Α B
p p pε ε ε= = . A simple way to test this assumption is to perform individual inversions to 

assure that Α B
p pε ε≈  at the final iteration stage. When considering methods with significantly 

different resolution characteristics or relative variations in the parameters inverted for, we 
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recommend to follow Linde et al. (2006a) and perform a line-search for both Αpε  and B
pε  at 

each iteration. To simplify the inversion process, we keep λ fixed during the inversion and 

choose it such that the objective function is dominated by the terms that force the linearized 

cross-gradients function to be close to zero. In Section 4.2, we investigate how the choice of 

λ affects the resulting model. 

The joint inverse problem is non-linear not only because the ray-paths depend on the 

slowness structure, but also because the cross-gradients function is non-linear (equation 1). 

The derivatives of the cross-gradients function are only valid in the vicinity of the previous 

model, and care must be made such that the updates are made within the region where the 

linearized cross-gradients function is reasonably valid.  

To avoid large model updates outside the region where the linearizations are valid, we 

keep pε  small in the first few iterations such that we solve a problem in which the 

regularization operator is heavily weighted relative to the data fit. This means that ε1 is chosen 

such that the relative improvement in the data fit is only approximately 10%. In each iteration, 

we evaluate three candidate models derived from the inversion for 1/1.3× pε , pε , and 1.3× pε , 

respectively. We retain the model with the lowest RMS, or the model with the smallest pε that 

meets the target misfit. The trade-off parameter corresponding to the preferred model, will be 

the new pε  in the next iteration. When the target data misfit has been reached, we perform 

additional inversions where we seek to decrease pε  under the constraint that the resulting 

models explain the data within the target data misfit. These additional inversions where only 

minor changes between iterations occur, also serve the purpose of further decreasing the value 

of the cross-gradients function. This approach where we only gradually change pε  requires 

more inversion steps than a full line-search at each iteration (Linde et al., 2006a), but it allows 

the non-linearity of the cross-gradients function to be better accounted for. 
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To visualize the results, we introduce a normalized cross-gradients function as 

( ) ( ) ( ), , × , ,
, , = ,

A B

A B

m x y z m x y z
x y z

m m

∇ ∇

⋅
t'     (8) 

where the cross-gradients function is weighted by the absolute values of the models and where 

( ), ,x y zt'  has units of m-2 regardless of the units of the inverted parameters. 

3. Synthetic example 

A synthetic example is used to demonstrate the impact of the cross-gradients constraints 

on the solution of the inverse problem. Figure 1a shows a GPR velocity model that consists of 

three homogeneous rectangular zones of high- (100 m/µs) and low velocity (50 m/µs) 

embedded in a homogeneous background (75 m/µs). Figure 1d shows a matching seismic 

velocity model, where the high- and  low velocities are 2 km/s and 1km/s, respectively, 

embedded in a homogeneous background of 1.5 km/s. A discretization of 0.25 × 0.25 m2 is 

used both for the forward and the inverse modeling yielding 1750 model cells for each model 

type. The two models are characterized by sharp boundaries that are difficult to resolve using 

individual smoothness-constrained inversions. These models illustrate a case in which the 

petrophysical relationships between the radar and seismic velocities are non-unique.  

Our synthetic experiment involved seismic and GPR pulses transmitted at intervals of 

0.25 m in the 0.125-12.125 m depth range of a borehole located along the left side of the 

model. The resulting traveltimes were computed in the high-frequency limit for a set of 

receivers with the same interval and depth range in a borehole located on the right side of the 

model. We restricted the inversions to the 2095×2 rays with angles less than 45°. This is often 

done in field applications to avoid fast GPR ray-paths within the boreholes and because 

traveltime calculations are typically based on the assumption that the radar antenna acts like a 

point source, thereby overestimating velocities when inverting data with high angular 
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coverage. The traveltimes were contaminated with uncorrelated Gaussian noise with standard 

deviations of 0.5 nS and 20 µs for the radar and seismic traveltimes, respectively.  

The resulting radar and seismic velocity models of the individual inversions are shown 

in Figures 1b and 1e, respectively. The models are smeared, such that it is difficult to 

determine the actual geometry of the zones. The models also indicate that the locations of the 

highest velocities in the common high velocity zone differ for the seismic and radar models. 

The radar and seismic velocity estimates are plotted for every collocated model pair between 

the boreholes (Figure 2a).  This scatter plot seems to indicate that the sub-surface is composed 

of three different anomalous zones. 

The resulting radar and seismic velocity models of the joint inversion are shown in 

Figures 1c and 1f, respectively. The three zones are less smeared out and the geometries of the 

upper and lower zones correspond well with the actual geometries. In addition, the common 

high-velocity zone in Figures 1c and 1f have fairly uniform velocities. The scatter plot in 

Figure 2b has very little scatter in the direction normal to the main axes of velocity gradients 

and the anomalies can therefore be picked by eye (for additional examples and discussions 

illustrating this, see Gallardo and Meju (2004, 2007), Linde et al. (2006a), Tryggvason and 

Linde (2006)). All models have a weighted RMS very close to one. 

As expected, the models constructed from the individual inversions and the joint 

inversion all resolve the high velocity zones better than the low velocity zones. Figure 2b 

indicates that the joint inversion resolves the upper zone of high seismic velocity better than 

the corresponding zone of low radar velocity, and vice versa for the lower zone where the 

radar velocity is high and the seismic velocity is low. However, the joint inversion greatly 

improves the geometry of the low velocity zones (e.g., compare the low velocity zone in 

Figure 2b with the one in Figure 2c).  
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The velocity contrasts considered in the example above are larger than the ones 

encountered in most environmental applications. Figure 2c and 2d shows the scatter plots 

resulting from individual inversions and joint inversion, respectively, for a model where the 

velocity range of the radar model was 70-90 m/µs and 1.4-1.8 km/s for the seismic model. 

The low velocity zones are now better resolved since the ray coverage in the low velocity 

regions is improved. 

4. A field example 

We now consider radar and seismic traveltime data collected between wells S14 and M3 

in the South Oyster Focus Area, Virginia (Hubbard et al., 2001). The radar data were collected 

using a PulseEKKO 100 system with 100 MHz nominal frequency antennas and a transmitter 

and receiver spacing of 0.125 m in each borehole. The seismic data were collected using a 

Geometrics Strataview seismic system, a Lawrence Berkeley National Laboratory 

piezoelectric source, and an ITI hydrophone sensor string. The central frequency of the pulse 

was 4000 Hz, with a bandwidth from approximately 1000 to 7000 Hz, and the source and 

geophone spacings in the boreholes were 0.125 m. These high-resolution data sets consist of 

3248 radar and 2530 seismic traveltimes.  

We used a discretization of 0.125 × 0.125 m2 in our forward modeling, and a model 

discretization of 0.25 × 0.25 m2 for the inverse solution. We defined a target data misfit of 0.5 

ns for the radar traveltimes and 20 µs for the seismic traveltimes. 

4.1 Individual inversions 

The individual inversions were carried out using two different types of regularization: an 

anisotropic roughness operator that penalizes spatial variations in the horizontal direction five 

times as much as in the vertical direction, and a stochastic regularization operator (Linde et 

al., 2006a) based on an exponential model with a vertical integral scale of 0.28 m and an 

anisotropy factor of five, which is the model that was proposed and used by Hubbard et al. 
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(2001). The marine shore-face deposits at Oyster are expected to have a longer horizontal than 

vertical correlation length, such that assuming a certain anisotropy in the regularization 

provides geologically more reasonable models compared with isotropic regularization.  

The individually inverted smoothness-constrained radar (Figure 3a) and seismic (Figure 

3e) velocity models contain a common low-velocity zone in the upper 2 m and a common 

high velocity zone at 4-5 m. The radar velocity model also includes a smaller low-velocity 

zone at 3 m, which is much less pronounced in the seismic model. The radar model includes a 

low velocity zone at 5.5-6 m that is not seen in the seismic model, possibly because of low 

ray-coverage in that depth interval. A scatter plot of velocities presented by the two models 

indicates an overall positive relationship (Figure 3m) with a correlation coefficient of 0.83.  

The individually inverted radar (Figure 3b) and seismic (Figure 3f) velocity models 

based on the stochastic regularization include the same main zones as those based on the 

smoothness-constrained inversions. However, the former models are more variable, since 

stochastic regularization operators represent a combination of general smoothness constraints 

(i.e., providing smooth models) and damping constraints (i.e., providing uncorrelated small-

scale variability around an a priori model) (Maurer et al., 1998). The short vertical integral 

scale used here makes the zones thinner, more variable, and more pronounced. The models 

based on the stochastic regularization tend to split the upper low-velocity zones into two 

different horizontally aligned zones; a similar behavior is found in the high-velocity zone at 4-

5 m. Again, a scatter plot of the radar and seismic velocities (Figure 3n) indicate a strong 

correlation with a correlation coefficient of 0.86. 

4.2 Joint inversions 

A series of joint inversions with stochastic regularizations was carried out with different 

weights λ given to the cross-gradients constraints. Figure 4a indicates that the smallest value 

of the cross-gradients function is obtained for a λ of 10 000, which results in models where 
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the cross-gradients function is approximately 100 times smaller than for the individual 

inversions. Figure 4b shows that a λ in the range of 100 to 10 000 enforces the trade-off 

parameter in the final iteration εp to be increased with 30% compared with the individual 

inversions. As λ grows above 10 000, εp is increased significantly to achieve a model that fit 

the target data misfit. The inversion results presented below were performed with a λ of 10 

000, which corresponds to the structurally most similar models and where the spatial 

variability of the models are only slightly larger than those of the individual inversions. 

The models obtained by jointly inverting radar (Figure 3c) and seismic (Figure 3g) 

traveltimes with anisotropic smoothness constraints contain the same main zones as in the 

individually inverted models. However, the resolution is higher, since more small-scale 

variability is present and the boundaries between the different zones are sharper. The low-

velocity zone in the upper 2 m of the seismic model is divided into two. A high-velocity 

region between 2-3 m on the left side of the model, which is only weakly indicated in the 

individually inverted models, appears more clearly in the jointly inverted model. The high-

velocity zone at 4 m becomes thinner and more elongated, and the modeled velocities are 

higher than those in the individually inverted models. Finally, the low-velocity zone at 5.5-6 

m in the radar velocity model now appears in the seismic model.  

The associated scatter plot (Figure 3o) are less scattered and thereby easier to interpret 

than those of the individually inverted models (Figures 3m and 3n). As expected, there is a 

strong positive correlation between the radar and seismic velocities, but there are also zones in 

which the relationship changes, thereby demonstrating the flexibility of the structural 

approach to joint inversion to deal with non-stationary apparent petrophysical relationships. 

The correlation coefficient is 0.88. 

The models obtained by jointly inverted radar (Figure 3d) and seismic (Figure 3h) 

traveltimes with stochastic regularization operators are spatially the most variable, but they 
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contain mostly the same features as observed in models based on anisotropic smoothness 

constraints. The associated scatter plot (Figure 3p) indicates a strong linear correlation 

between the radar and seismic velocities, with a correlation coefficient of 0.90.  

Table 1 demonstrates that the RMS data fit for all models are quite similar. The joint 

inversions decrease the scatter in the scatter plots significantly (Figures 3o and 3p), but they 

do not markedly change the trends that appear in the scatter plots for the individual inversions 

(Figures 3m and 3n). This indicates that also the regularization operator is very important, 

since it will significantly influence any zonation or petrophysical interpretation of the models. 

The visual similarity between the individual inversions and the joint inversions indicates that 

the joint inversion is not getting trapped in a local minima . 

4.3 Image appraisal 

To investigate the resolution characteristics of the resulting models, we calculate the 

point-spread function (PSF) for the final inversion models based on the stochastic 

regularizations. The PSF is a row of the resolution matrix and it can be interpreted as the 

spatial averaging filter that relates the true underlying model to the resulting model estimate at 

a specific location. The PSFs are calculated with the LSQR algorithm analogously to the 

method presented by Alumbaugh and Newman (2000) for the conjugate gradient method and 

assuming that the cross-gradients function for the true model is zero. The PSFs based on the 

joint inversions are first normalized with regards to the mean values of the radar and seismic 

slownesses. The PSFs are then normalized with regards to the largest value in accordance 

with Alumbaugh and Newman (2000). 

Horizontal and vertical profiles through the normalized PSFs at a central location 

(depth=3.2 m, distance=3.4 m) are shown in Figure 5. As expected, the individual inversions 

have similar PSFs for the radar and seismic inversions. A much poorer horizontal (Figures 5a 

and 5c) than vertical resolution (Figures 5b and 5d) is evident. The profile of the PSF in the 
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horizontal direction is more narrow for the joint inversion (Figures 5a and 5c) than for the 

individual inversions indicating a higher resolution. In addition, the PSF constructed for the 

joint inversion has no side lobes in the vertical direction (Figures 5b and 5d).  

The radar model from the joint inversion is at this location only dependent on the 

surrounding radar estimates, and not of the seismic model (Figures 5a-5b). The seismic model 

is here primarily affected by the neighboring seismic estimates, but it is also strongly affected 

by the surrounding radar estimates. This observation can be explained when studying the 

models at this location. The radar model indicates a low velocity zone with a significant 

gradient that influences the resulting seismic model through the cross-gradients constraints 

(see equation 7 in Linde et al. (2006a)). The seismic model is fairly uniform at this location 

and do therefore not impose any significant restrictions on the radar model. The PSFs 

constructed for the joint inversion are thus strongly dependent on the neighboring values of 

the seismic and radar slowness models. This means that the PSFs are only meaningful if they 

are evaluated around the final model estimate.  

4.4 Comparison with flowmeter data 

Hubbard et al. (2001) used tomograms from the Oyster site together with flowmeter data 

to create a hydraulic conductivity model. The flowmeter data collected in the boreholes were 

first kriged to provide a prior model of hydraulic conductivity. Relationships between 

geophysical attributes and hydraulic conductivity were developed using collocated 

tomographic estimates and flowmeter data; these relationships had a linear correlation 

coefficient of 0.68 (between hydraulic conductivity and radar velocity) and 0.67 (between 

hydraulic conductivity and seismic velocity). A Bayesian model was then used to update this 

prior model based on the observed correlation between flowmeter data and collocated 

geophysical estimates. Schiebe and Chien (2003) found that model predictions based on 
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stochastic indicator simulations conditioned to these estimates were superior to those based on 

stochastic indicator simulations conditioned to the flowmeter data alone. 

The usefulness or not of geophysical tomograms for constraining hydrological models is 

strongly dependent on the intrinsic relationships between the geophysical properties and 

hydraulic conductivity, here most likely through a common link with porosity (e.g., Carcione 

et al., 2007). If the models based on the joint inversions correlate better with the flowmeter 

data, it should be possible to improve the hydraulic conductivity model of Hubbard et al. 

(2001) and hence also solute transport predictions.  

To evaluate if the joint inversions are likely to provide better models than those supplied 

by the individual inversions, we have compared hydraulic conductivity estimates based on 

flowmeter data at borehole M3 (located near the right side of the tomographic models in 

Figure 3) with tomographic estimates located two model cells away from the borehole. The 

flowmeter data are shown in Figure 6a and the collocated radar velocity and seismic velocity 

models are shown in Figures 6b and 6c, respectively. To facilitate comparison, we highlight 

three depth intervals where the hydraulic conductivity data display a local minimum (Low 1-

3) and three where they display a local maximum (High 1-3).  

The radar velocity model based on individual inversion with stochastic regularization 

accurately indicates five zones, whereas the radar model based on anisotropic smoothness 

constraints only accurately indicates one zone. The seismic velocity model based on stochastic 

regularization accurately indicates five zones, whereas the seismic model based on anisotropic 

smoothness constraints does not indicate any of these zones. The correlation coefficients of 

the collocated models based on the separate inversion and the flowmeter data are higher for 

the stochastic regularization (i.e., 0.72 for radar velocity and 0.60 for seismic velocity) than 

for the anisotropic smoothness constraints (i.e., 0.63 for radar velocity and 0.49 for seismic 

velocity). 
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The models based on the joint inversion with stochastic regularization indicate all six 

zones. The radar model based on the anisotropic regularization indicates three zones and the 

seismic velocity model indicates four zones. The correlation coefficients of the collocated 

models based on joint inversion and the flowmeter data are higher when using the stochastic 

regularization (i.e., 0.78 for radar velocity and 0.69 for seismic velocity) than when using the 

anisotropic smoothness constraints (i.e., 0.67 for radar velocity and 0.52 for seismic velocity). 

These results are summarized in Table 2 and they indicate that joint inversion with 

stochastic regularization at this site offer higher resolution and accuracy in determining 

lithological changes than the other inversion approaches considered here. Stochastic 

regularization operators based on borehole data (flowmeter data) provided better models than 

those supplied by traditional anisotropic smoothness constraints. Indeed, changes associated 

with varying the regularization operator seem to improve the resulting models slightly more 

than the joint inversion. The radar and seismic traveltime data could not individually provide 

the necessary resolution to image the small-scale variability revealed by the flowmeter data. 

Regularization based on flowmeter data from the site and the assumption that the two models 

are structurally similar improves the resolution of the resulting models. 

5. Discussion 

The resulting inversion models are qualitatively similar and they reach the target misfit 

for all inversion types considered. This indicates that the non-linearity of the cross-gradients 

function do not cause the joint inversion process to be trapped in local minima for the 

examples considered here. When performing this type of joint inversion, we recommend to 

first perform individual inversions to assess if the models appear to be structurally similar. In 

addition, the individual inversions help to define a target data misfit and to assure that 

Α B
p pε ε≈ . The joint inversion is expected to focus the images obtained from the individual 

inversions. If the joint and individual inversion models are very different, this is likely to 
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indicate that the two physical properties under consideration are not structurally similar or that 

the model updates at the early iteration steps have been too large. 

The best way to choose λ when performing the joint inversions is to perform a series of 

inversions with different choices of  λ (see Figure 4). The resolution improvements offered by 

the joint inversion vary from case to case and throughout the model domain since it is largely 

dependent on the spatial variations of the physical parameters inverted for. To evaluate the 

resolution improvements, we recommend to calculate PSFs at selected locations (see Figure 

5) as suggested by Alumbaugh and Newman (2000). We expect that some of the oscillations 

in the horizontal profiles of the PSF (e.g., Figure 5c) is caused by the discretization of the 

cross-gradients constraints, which operates on neighboring model cells only. This problem 

could be avoided if the cross-gradients constraints were discretized on the same scale as the 

stochastic regularization operator.  

The stochastic regularization operator defines a presumably known scale on which 

structure is resolved. Large integral scales will result in large-scale features with large 

amplitudes, small integral scales will result in a heavily damped solution with a lot of small-

scale variability (see Maurer et al. (1998) for a good illustration). This implies that the 

magnitudes exhibited in the scatter plots of radar and seismic velocities (e.g., Figure 3p) are 

dependent on the regulartization operator. The synthetic example also shows that earth models 

with large variability (e.g., Figure 1a and 1d) will introduce bias in the resulting scatter plots 

(see Figure 2b), since the velocity of low-velocity zones will be over-estimated. These effects 

must be considered when making petrophysical interferences from such scatter plots (e.g., 

Linde et al., 2006a). 

The sharper boundaries and the more variable models offered by the joint inversion with 

stochastic regularization are likely to significantly improve flow- and transport predictions if 

used to constrain hydrological model compared with using individually inverted models with 
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smoothness constraints. In the future, we plan to develop new strategies to infer the 

underlying geometry and physical properties of earth model from jointly inverted models. The 

resulting method will be used to parameterize a three-dimensional flow- and transport model 

at an ongoing research site.  

6. Conclusions 

The structural approach to joint inversion is based on the assumption that the two 

relevant physical properties have common structural boundaries. Gallardo and Meju (2003) 

introduce a quantitative measure of structural similarity that they term the cross-gradients 

function. By discretizating and linearizating the cross-gradients function, it is possible to 

define a joint inversion method that penalizes models where the gradients of two models are 

neither parallel nor anti-parallel. We use the cross-gradients function to develop an iterative 

non-linear traveltime tomography algorithm that jointly inverts seismic and GPR traveltimes. 

A synthetic example shows that the joint inversion improves the determination of the 

boundaries of three anomalous zones as well as their geometry compared with models based 

on individual inversions.  

The inversion method was applied to crosshole radar and seismic traveltime data 

collected in an unconsolidated and saturated environment. The inverse problem was 

regularized (i) with an exponential geostatistical model based on flowmeter data and 

tomographic estimates presented in Hubbard et al. (2001) and (ii) with anisotropic smoothness 

constraints. The radar and seismic velocity models based on individual inversions indicated a 

strong structural similarity, in which the models based on stochastic regularization showed 

more variability for a given data misfit. The magnitudes of the cross-gradients function for the 

models based on the joint inversion were approximately 1% of the individually inverted 

models. The jointly inverted models were not only structurally more similar, but they also 

displayed larger spatial variability for a given data fit.  
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We used flowmeter data collected in one of the boreholes to assess if the stochastic 

regularization and the joint inversion could improve the resulting models as indicators of 

geological variability. We identified three zones in which the flowmeter data indicated local 

minima in the hydraulic conductivity and three zones indicating local maxima. The joint 

inversion based on the stochastic regularization was the only one that accurately located all 

six zones. Since tomographic models may be used to constrain hydrological flow and 

transport models (e.g., Hubbard et al., 2001; Schiebe and Chien, 2003; Linde et al., 2006b), 

we suggest that if structural similarity can be established, then the structural approach to joint 

inversion and the use of borehole data to determine the regularization operators has the 

potential to improve such hydrological models.  
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Figure captions 

Figure 1. (a, d) True radar and seismic velocity models; (b,e) individually inverted radar and 

seismic velocity models; (c, f) jointly inverted radar and seismic velocity models.  

Figure 2. (a) and (b) Scatter plots of the individually and jointly inverted models shown in 

Figure 1, respectively. The large dots in (a) and (b) are the true velocity values and the 

small dots with the same color coding are ranges of the tomographic estimates at the 

corresponding locations. (c) and (d) Corresponding scatter plots where the true velocity 

values have a smaller range as indicated by the large dots. 

Figure 3. Radar velocity models from Oyster: (a) individual inversion with anisotropic 

smoothness constraints, (b) individual inversion with stochastic regularization, (c) joint 

inversion with anisotropic smoothness constraints, (d) joint inversion with stochastic 

regularization, (e) to (h) corresponding seismic velocity inversion results, (i) to (l) the 

cross-gradients function for these models, (m) to (p) scatter plots of these models. 

Figure 4. (a) The mean value of t’ and (b) εp for different choices of λ. The values 

correspond to those of the final iteration of the inversion with stochastic regularization 

operators. 

Figure 5. (a, d) Normalized PSFs of the final radar models in the horizontal and the vertical 

direction and (c, d) for the corresponding seismic models. Dotted line indicates profiles of 

PSFs from the individual inversions with stochastic regularization, solid line indicates 

PSFs of radar parameters for joint inversion with stochastic regularization and the dashed 

line indicates the corresponding seismic parameters. 

Figure 6. (a) Flowmeter data of hydraulic conductivity in borehole M3 (located on the right 

side of the tomograms in Figure 3); (b) tomographic radar velocity models two model 

cells away from M3; (c) tomographic seismic velocity models two model cells away from 

M3. The red solid and dotted line in (b-c) represent models from the joint inversion model 
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with stochastic regularization and anisotropic smoothness constraints, respectively; the 

black solid and dotted lines represent the corresponding models for the individual 

inversions. The zones (Low 1-3) are locations where the measured hydraulic conductivity 

has a local minima and the zones (High 1-3) where it has a local maxima. 

Table 1. Final RMS value with regards to a target data fit of 0.5 ns for the radar traveltimes 

and 20 µs for the seismic traveltimes. The data fits for all inversions are practically the 

same. 

Table 2. The table indicates to what extent low (Low 1-3) and high (High 1-3) permeability 

zones can be identified in the different inversion models. The correlation coefficients (ρ) 

between the flowmeter data and collocated inversion models are also summarized.
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Inversion type RMS of Radar model RMS of seismic model 

Individual inversion,  
anisotropic smoothness constraints 

0.99 0.97 

Individual inversion,  
stochastic regularization 

0.95 0.98 

Joint inversion,  
anistropic smoothness constraints 

0.98 0.99 

Joint inversion,  
stochastic regularization 

0.97 0.97 
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Separate inversions Joint inversions 
Radar models Seismic models Radar models Seismic models 

 

smooth stochastic smooth stochastic smooth stochastic smooth stochastic 
Low 1 - + - + - + - + 
High 1 - + - - - + - + 
Low 2 - - - + - + + + 
High 2 + + - + + + + + 
Low 3 - + - + + + + + 
High 3 - + - + + + + + 
ρ 0.63 0.72 0.49 0.60 0.67 0.78 0.52 0.69 

 


	Inversion type

