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Abstract:

The structural approach to joint inversion, entailing common boundarieadients, offers a
flexible way to invert diverse types of surface-based and@mshole geophysical data. The
cross-gradients function has been introduced as a means to constrals imachich spatial
changes in two models are parallel or anti-parallel. Inversidhads that use such structural
constraints also provide estimates of non-linear and non-unique fadl-selationships
between model parameters. Here, we invert jointly crosshole aadageismic traveltimes for
structurally similar models using an iterative non-linear itame tomography algorithm.
Application of the inversion scheme to synthetic data demonstiaaedt tbetter resolves
lithological boundaries than the individual inversions. Tests of the schembserved radar
and seismic data acquired within a shallow aquifer illustratetkigaresultant models have
improved correlations with flowmeter data than with models basaddividual inversions.
The highest correlation with the flowmeter data is obtained whenjdint inversion is
combined with a stochastic regularization operator, where thecaleititegral scale is
estimated from the flowmeter data. Point-spread functions shwatstite most significant

resolution improvements of the joint inversion is in the horizontal direction.



1. Introduction

To determine petrophysical properties, state variables, andusauicbundaries, it may
be necessary to combine information provided by models obtained fromexlifieeophysical
data (e.g., Tronicke et al., 2004; Bedrosian et al., 2007). Inteipretdtseveral individually
inverted data sets can be illuminating, but the results are yisaffdcted by the resolution
limitations of each model.

For consistent interpretations of multiple geophysical modelmuld be advantageous
to have inversion tools that have similar formulations of the inyad@em regardless of the
type of geophysical data being inverted. This would allow modét® tooupled, as long as
the data have comparable spatial support. By joint inversion, wetoeteupled models that
are obtained by simultaneously minimizing a misfit function theludes the data misfit of
each data type. Joint inversion can improve the resolution of eachygeabhmodel and
provide models that are consistent with each other and therefosx &asnterpret (e.g.,
Gallardo and Meju, 2004).

Joint inversion is not yet a standard tool in geophysical applicatioasly because
robust and well-established petrophysical models that can be usedg® the models are
usually only available for certain geophysical parameters, ssictorapressional and shear
wave slownesses (Tryggvason et al., 2002). Furthermore, petrophysicds roftele apply
only in restricted geological settings (e.g., Sen et al., 1981 oNlati al., 1992). In addition,
the parameters of petrophysical models can seldom be adequatstyamed by individual
field data sets, such that fairly strong assumptions are rdquareouple models based on
their petrophysical properties.

To avoid introducing questionable petrophysical models, joint inversion mellaves
been developed for layered (1D) structures that are expectédvi® coincident layer

boundaries and constant properties within each layer (e.g., MonteitosSaral., 2006). A



natural extension to two- and three-dimensional applications hasdassume that the earth
can be divided into sub-volumes of uniform properties with geometriesuthiaommon for
all physical properties in the inversion (e.g., Hyndman and Gorel@86; Musil et al.,
2003). Such approaches are certainly useful, but physical propeatiegacy gradually in
space and not all data are necessarily sensitive to the $emmnges in lithology and state
variables. Furthermore, the zonations must be updated continuously, rtakimyersions
computationally expensive.

In Occam’s inversion (Constable et al., 1987), fine model discretiaare used and
the inverse problem is regularized by minimizing, for exampiledel roughness with the
constraint that the simulated model response is close to a girgen data misfit. Haber and
Oldenburg (1997) introduced a joint inversion scheme to find models thatraccturally
similar, in the sense that spatial changes in models occur sére location. This scheme is
applicable to over-parameterized two- and three-dimensional maddist is essentially
based on minimizing the squared difference of a weighted Laplacian of the twesmodel

Gallardo and Meju (2003) further developed the framework of thetatal approach to
joint inversion proposed by Haber and Oldenburg (1997) by defining the-gragients
functiont(x,y,z) as

t(xy,z) =vm?*(x,y,z) xvm®(x,y .z) , (1)
where Vm®(x,y,z) and vm®(x,y,z) are the gradients of modets' andm® at locatiorx, y,

andz, andx indicates the cross-product. By forcing the diszeel cross-gradients function to

be close to zero at each location during the ineerprocess, either the gradients of the two
resulting models will be parallel or anti-paraltel each other or one or both of the models
does not change. The boundaries of the resultindetachave the same orientation, thus
facilitating geological interpretations. An adveaggacompared to the work of Haber and

Oldenburg (1997) is that constraints based on th&segradients function do not focus on the



magnitudes of the changes, which are difficult stineatea priori and may necessitate a
number of tuning parameters, but rather on a comdr@ction. The validity of imposing the
cross-gradients function to be zero is discussed.ibgle et al. (2006a) in the context of
electrical properties.

The cross-gradients function was first employedwwo-dimensions to invert jointly
surface-based electrical resistance tomography JEBRA seismic refraction profiles collected
over weathered granodioritic bedrock overlain bydstane (Gallardo and Meju, 2003; 2004).
The same seismic refraction data was later joimtlerted with controlled-source audio
magnetotelluric data (Gallardo and Meju, 2007). dddly, Gallardo (2007) proposed an
extension of the cross-gradients function thatvadlohe simultaneous inversion of more than
two data types. Gallardo (2007) then used this meh@ two-dimensions to jointly invert
surface-based P-wave and S-wave traveltimes, Efiliregnetic data.

Tryggvason and Linde (2006) presented the firgatdimensional application of joint
inversion based on the cross-gradients function. j@ptly inverting P- and Swave
traveltimes in a synthetic local earthquake tomplgyaexperiment, they found that the
resulting anomalousvy/Vsratios were better defined than those obtained sbparate
inversions or joint inversion based on dampingdbleition around a pre-definag/Vs ratio.
The efficiency of this approach was demonstratedseismological data collected in the
surroundings of the Hengill volcanic system ondoel (Tryggvason and Linde, 2007). Linde
et al. (2006a) jointly inverted crosshole groundchgieating radar (GPR) and ERT data
collected in unsaturated sandstone in three diroeasiScatter plots of the jointly inverted
models were used together with petrophysical motteimfer a zonation and to determine
possible ranges of the electrical formation factesater contents, and effective grain radius of
the sediments within each of the zones. The regsuéistimates were consistent with gamma

logs, measured clay fraction, and electrical foramatactor in a cored borehole.



Linde et al. (2006a) presented the only study soirfawhich geophysical models
obtained from joint inversions using the cross-grats function were evaluated against
borehole data. However, their example providedhayunsaturated Sherwood Sandstone was
limited by the one-dimensional character of thelggp We acknowledge that the cross-
gradients method needs to be applied to additimeditinstrumented study sites before it is
widely accepted.

Here, we present the results of jointly invertiedsshole radar and seismic traveltimes
recorded at the South Oyster study site, VA (Cheal.¢2001; Hubbard et al., 2001), where
the geology consists of saturated unconsolidatedime:ts with three-dimensional
heterogeneity. To guide the choice of inversionapeeters, we calculate trade-off curves
between the weight given to the cross-gradientstcaimt in the objective function and the
resulting structural similarity of the resulting ded, as well as between the weight given to
the cross-gradients constraints and the weightngteethe regularization operators. Finally,
the improved resolution offered by the joint inversis visualized with point-spare functions
calculated in the central part of the interwellioeg
2. Method
2.1 The inversion method

Our formulation of the joint inverse problem clos@&llows that developed by Linde et
al. (2006a) for use with ERT and GPR data. In fgerghm, the first arrival traveltimes are
computed with the finite difference (FD) algorithime3d (Podvin and Lecomte, 1991;
Tryggvason and Bergman, 2006). Ray tracing is perd bya posteriori back propagation
perpendicular to the wave fronts from the receiterthe transmitters (Hole, 1992).

Our objective function have three competing comptsieghe data fit resulting from two
piece-wise constant individual slowness modefsand m® weighted by the estimated data

errors; regularization of the individual models fgnalizing model complexity (the relative



weights given to the regularization operators agtermnined byg;,“ and gff, where small

values provides a strong relative weight); and @aogpof the two models by enforcing

structural similarity via cross-gradients consttaifthe weight given to this term is controlled
by 1). These objectives are formulated in one objedtivetion that we seek to minimize, at
each iteration, in a least-squares sense (seei@ua®-9 in Linde et al. (2006a)) with the
iterative conjugate gradient algorithm LSQR (Pagd Saunders, 1982).

We regularize the inverse problem by seeking eithenodel that has small second-
derivatives (i.e., smoothness constraints) or @se&lto a given stationary exponential
covariance function. Linde et al. (2006a) show smeh stochastic regularization operators
can be calculated efficiently. To include the stuual constraints in our objective function,
we discretize the cross-gradients function, equatiowith a central finite-difference scheme,
which provides better results than the forwardeddhce scheme used in previous work (e.g.,
Gallardo and Meju, 2004). The cross-gradients fonctor a candidate model is estimated
using a first-order Taylor expansion around thessfgradients function at the previous
iteration (see equation 7 in Linde et al. (2006a)).

2.2 Inversion strategy
The goal of the inversion is to construct two medehere each model explain the data

within pre-defined data errors (i.e., the weigh®?¥dS of each of the models are very close to

1) for a giveni, with the smallest possible value ej and gff. For the joint inversion of

radar and seismic traveltimes, in which the sarpe tf traveltime tomography is employed

and in which the relative variations in the modet axpected to be similar, we assign
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¢, A simple way to test this assumption is to perfdndividual inversions to

assure that;4 ~ g,? at the final iteration stage. When consideringhmds with significantly

different resolution characteristics or relativeri@aons in the parameters inverted for, we



recommend to follow Linde et al. (2006a) and perfar line-search for botl; and ¢; at

each iteration. To simplify the inversion process, keepA fixed during the inversion and
choose it such that the objective function is dated by the terms that force the linearized
cross-gradients function to be close to zero. IctiSe 4.2, we investigate how the choice of
A affects the resulting model.

The joint inverse problem is non-linear not onlycdese the ray-paths depend on the
slowness structure, but also because the crosgegtadunction is non-linear (equation 1).
The derivatives of the cross-gradients functionarky valid in the vicinity of the previous
model, and care must be made such that the updegesiade within the region where the
linearized cross-gradients function is reasonahblidy

To avoid large model updates outside the regionrevtiee linearizations are valid, we
keep ¢, small in the first few iterations such that we veola problem in which the
regularization operator is heavily weighted relatio the data fit. This means thais chosen
such that the relative improvement in the datesfanly approximately 10%. In each iteration,

we evaluate three candidate models derived fronntrexsion for 1/1.3% Eps and 1.3>sp,

p 1
respectively. We retain the model with the loweBt3R or the model with the smallesf that
meets the target misfit. The trade-off parameteresponding to the preferred model, will be

the newe, in the next iteration. When the target data miséis been reached, we perform

additional inversions where we seek to decregsainder the constraint that the resulting

models explain the data within the target dataitni§hese additional inversions where only
minor changes between iterations occur, also see/purpose of further decreasing the value
of the cross-gradients function. This approach whee only gradually change, requires

more inversion steps than a full line-search ahetsration (Linde et al., 2006a), but it allows

the non-linearity of the cross-gradients functiorbé better accounted for.



To visualize the results, we introduce a normaliz@ss-gradients function as

vm*(x,y,z)xVm®(x,y,z)
m’}{m®]

t'(xy,z)= : (8)

where the cross-gradients function is weightedhieyabsolute values of the models and where

t'(x, y,z) has units of M regardless of the units of the inverted parameters

3. Synthetic example

A synthetic example is used to demonstrate the atnpiathe cross-gradients constraints
on the solution of the inverse problem. Figure Haws a GPR velocity model that consists of
three homogeneous rectangular zones of high- (108s)mand low velocity (50 mk)
embedded in a homogeneous background (4m)nFigure 1d shows a matching seismic
velocity model, where the high- and low velocitie 2 km/s and 1km/s, respectively,
embedded in a homogeneous background of 1.5 km¢isaketization of 0.25 x 0.2577s
used both for the forward and the inverse modefielgling 1750 model cells for each model
type. The two models are characterized by sharpdemies that are difficult to resolve using
individual smoothness-constrained inversions. Theselels illustrate a case in which the
petrophysical relationships between the radar arshsc velocities are non-unique.

Our synthetic experiment involved seismic and GRiBgs transmitted at intervals of
0.25 m in the 0.125-12.125 m depth range of a lwbeelocated along the left side of the
model. The resulting traveltimes were computedha high-frequency limit for a set of
receivers with the same interval and depth rangeborehole located on the right side of the
model. We restricted the inversions to the 2Eays with angles less than°43his is often
done in field applications to avoid fast GPR rayhsawithin the boreholes and because
traveltime calculations are typically based onaksumption that the radar antenna acts like a

point source, thereby overestimating velocities mheverting data with high angular



coverage. The traveltimes were contaminated wittouelated Gaussian noise with standard
deviations of 0.5 nS and 2@ for the radar and seismic traveltimes, respdgtive

The resulting radar and seismic velocity modelshefindividual inversions are shown
in Figures 1b and 1le, respectively. The models saneared, such that it is difficult to
determine the actual geometry of the zones. Theetaalso indicate that the locations of the
highest velocities in the common high velocity zaliger for the seismic and radar models.
The radar and seismic velocity estimates are pldtie every collocated model pair between
the boreholes (Figure 2a). This scatter plot sdemwicate that the sub-surface is composed
of three different anomalous zones.

The resulting radar and seismic velocity modelghaf joint inversion are shown in
Figures 1c and 1f, respectively. The three zones$ess smeared out and the geometries of the
upper and lower zones correspond well with theaaeometries. In addition, the common
high-velocity zone in Figures 1c and 1f have faulyiform velocities. The scatter plot in
Figure 2b has very little scatter in the directimrmal to the main axes of velocity gradients
and the anomalies can therefore be picked by eyeaffditional examples and discussions
illustrating this, see Gallardo and Meju (2004, 20Q.inde et al. (2006a), Tryggvason and
Linde (2006)). All models have a weighted RMS velgse to one.

As expected, the models constructed from the iddadi inversions and the joint
inversion all resolve the high velocity zones hettean the low velocity zones. Figure 2b
indicates that the joint inversion resolves theargmne of high seismic velocity better than
the corresponding zone of low radar velocity, arek wersa for the lower zone where the
radar velocity is high and the seismic velocityas/. However, the joint inversion greatly
improves the geometry of the low velocity zoneg.(ecompare the low velocity zone in

Figure 2b with the one in Figure 2c).



The velocity contrasts considered in the examplevabare larger than the ones
encountered in most environmental applicationsuf@@c and 2d shows the scatter plots
resulting from individual inversions and joint imgen, respectively, for a model where the
velocity range of the radar model was 70-9Qusnand 1.4-1.8 km/s for the seismic model.
The low velocity zones are now better resolved esitie ray coverage in the low velocity
regions is improved.

4. A field example

We now consider radar and seismic traveltime daltacted between wells S14 and M3
in the South Oyster Focus Area, Virginia (Hubbardle 2001). The radar data were collected
using a PulseEKKO 100 system with 100 MHz nominadjfiency antennas and a transmitter
and receiver spacing of 0.125 m in each borehdhe. Seismic data were collected using a
Geometrics Strataview seismic system, a LawrencekeBey National Laboratory
piezoelectric source, and an ITI hydrophone sessorg. The central frequency of the pulse
was 4000 Hz, with a bandwidth from approximatel{)@Qo 7000 Hz, and the source and
geophone spacings in the boreholes were 0.125 sserThigh-resolution data sets consist of
3248 radar and 2530 seismic traveltimes.

We used a discretization of 0.125 x 0.12% imour forward modeling, and a model
discretization of 0.25 x 0.257for the inverse solution. We defined a target daisfit of 0.5
ns for the radar traveltimes and 20 for the seismic traveltimes.

4.1 Individual inversions

The individual inversions were carried out using thfferent types of regularization: an
anisotropic roughness operator that penalizesapeatriations in the horizontal direction five
times as much as in the vertical direction, andoahastic regularization operator (Linde et
al., 2006a) based on an exponential model withréaceg integral scale of 0.28 m and an

anisotropy factor of five, which is the model theas proposed and used by Hubbard et al.
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(2001). The marine shore-face deposits at Oysteedoected to have a longer horizontal than
vertical correlation length, such that assumingeaain anisotropy in the regularization
provides geologically more reasonable models coetpaith isotropic regularization.

The individually inverted smoothness-constrainethrgFigure 3a) and seismic (Figure
3e) velocity models contain a common low-velocigne in the upper 2 m and a common
high velocity zone at 4-5 m. The radar velocity mlodlso includes a smaller low-velocity
zone at 3 m, which is much less pronounced in ¢f@rsc model. The radar model includes a
low velocity zone at 5.5-6 m that is not seen ia eismic model, possibly because of low
ray-coverage in that depth interval. A scatter plbtelocities presented by the two models
indicates an overall positive relationship (Fig@re) with a correlation coefficient of 0.83.

The individually inverted radar (Figure 3b) andsseic (Figure 3f) velocity models
based on the stochastic regularization includestdmae main zones as those based on the
smoothness-constrained inversions. However, themdormodels are more variable, since
stochastic regularization operators represent éowtion of general smoothness constraints
(i.e., providing smooth models) and damping com#isa(i.e., providing uncorrelated small-
scale variability around aa priori model) (Maurer et al., 1998). The short verticakgral
scale used here makes the zones thinner, moreblarend more pronounced. The models
based on the stochastic regularization tend td #pdéi upper low-velocity zones into two
different horizontally aligned zones; a similar beior is found in the high-velocity zone at 4-
5 m. Again, a scatter plot of the radar and seisyeiocities (Figure 3n) indicate a strong
correlation with a correlation coefficient of 0.86.

4.2 Joint inversions
A series of joint inversions with stochastic regizations was carried out with different

weightsA given to the cross-gradients constraints. Figaréndicates that the smallest value

of the cross-gradients function is obtained fot @ 10 000, which results in models where
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the cross-gradients function is approximately 1bfies smaller than for the individual
inversions. Figure 4b shows thatian the range of 100 to 10 000 enforces the tradle-of
parameter in the final iteratiog, to be increased with 30% compared with the indisld
inversions. Asl grows abovd0 000, &, is increased significantly to achieve a model fiat
the target data misfit. The inversion results pnesg below were performed with/aof 10
000, which corresponds to the structurally mostilaimmodels and where the spatial
variability of the models are only slightly largéian those of the individual inversions.

The models obtained by jointly inverting radar (g 3c) and seismic (Figure 3Q)
traveltimes with anisotropic smoothness constraootstain the same main zones as in the
individually inverted models. However, the resauatiis higher, since more small-scale
variability is present and the boundaries betwdmndifferent zones are sharper. The low-
velocity zone in the upper 2 m of the seismic madetlivided into two. A high-velocity
region between 2-3 m on the left side of the modlich is only weakly indicated in the
individually inverted models, appears more cleanlythe jointly inverted model. The high-
velocity zone at 4 m becomes thinner and more ealigay and the modeled velocities are
higher than those in the individually inverted misdé&inally, the low-velocity zone at 5.5-6
m in the radar velocity model now appears in thensie model.

The associated scatter plot (Figure 30) are lesdesed and thereby easier to interpret
than those of the individually inverted models (Fes 3m and 3n). As expected, there is a
strong positive correlation between the radar amshsic velocities, but there are also zones in
which the relationship changes, thereby demonsgathe flexibility of the structural
approach to joint inversion to deal with non-stasioy apparent petrophysical relationships.
The correlation coefficient is 0.88.

The models obtained by jointly inverted radar (Feg®d) and seismic (Figure 3h)

traveltimes with stochastic regularization operatare spatially the most variable, but they
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contain mostly the same features as observed irelsidzhsed on anisotropic smoothness
constraints. The associated scatter plot (Figure iBgicates a strong linear correlation
between the radar and seismic velocities, withreetation coefficient of 0.90.

Table 1 demonstrates that the RMS data fit fomadbels are quite similar. The joint
inversions decrease the scatter in the scattes plghificantly (Figures 30 and 3p), but they
do not markedly change the trends that appearisc¢htter plots for the individual inversions
(Figures 3m and 3n). This indicates that also #wularization operator is very important,
since it will significantly influence any zonatiam petrophysical interpretation of the models.
The visual similarity between the individual inverss and the joint inversions indicates that
the joint inversion is not getting trapped in adbminima .

4.3 Image appraisal

To investigate the resolution characteristics @& tasulting models, we calculate the
point-spread function (PSF) for the final inversionodels based on the stochastic
regularizations. The PSF is a row of the resolutizairix and it can be interpreted as the
spatial averaging filter that relates the true ulyleg model to the resulting model estimate at
a specific location. The PSFs are calculated vhth ESQR algorithm analogously to the
method presented by Alumbaugh and Newman (200Gh&conjugate gradient method and
assuming that the cross-gradients function fortthe model is zero. The PSFs based on the
joint inversions are first normalized with regatdsthe mean values of the radar and seismic
slownesses. The PSFs are then normalized withdedarthe largest value in accordance
with Alumbaugh and Newman (2000).

Horizontal and vertical profiles through the norinedl PSFs at a central location
(depth=3.2 m, distance=3.4 m) are shown in Figur&sbexpected, the individual inversions
have similar PSFs for the radar and seismic ingassiA much poorer horizontal (Figures 5a

and 5c) than vertical resolution (Figures 5b angiscakvident. The profile of the PSF in the
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horizontal direction is more narrow for the joimtversion (Figures 5a and 5c) than for the
individual inversions indicating a higher resolutidn addition, the PSF constructed for the
joint inversion has no side lobes in the vertiagegction (Figures 5b and 5d).

The radar model from the joint inversion is at tlosation only dependent on the
surrounding radar estimates, and not of the seismoel (Figures 5a-5b). The seismic model
is here primarily affected by the neighboring secsestimates, but it is also strongly affected
by the surrounding radar estimates. This obsematen be explained when studying the
models at this location. The radar model indicael®ow velocity zone with a significant
gradient that influences the resulting seismic rhaldeugh the cross-gradients constraints
(see equation 7 in Linde et al. (2006a)). The seisnodel is fairly uniform at this location
and do therefore not impose any significant resbns on the radar model. The PSFs
constructed for the joint inversion are thus stigrdgpendent on the neighboring values of
the seismic and radar slowness models. This mbéanhshte PSFs are only meaningful if they
are evaluated around the final model estimate.

4.4 Comparison with flowmeter data

Hubbard et al. (2001) used tomograms from the @yé#te together with flowmeter data
to create a hydraulic conductivity model. The flogter data collected in the boreholes were
first kriged to provide a prior model of hydraulmnductivity. Relationships between
geophysical attributes and hydraulic conductivityer&v developed using collocated
tomographic estimates and flowmeter data; thesatioeships had a linear correlation
coefficient of 0.68 (between hydraulic conductivapd radar velocity) and 0.67 (between
hydraulic conductivity and seismic velocity). A Besyan model was then used to update this
prior model based on the observed correlation betwikowmeter data and collocated

geophysical estimates. Schiebe and Chien (2003)dfabhat model predictions based on
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stochastic indicator simulations conditioned tcsthestimates were superior to those based on
stochastic indicator simulations conditioned toftbermeter data alone.

The usefulness or not of geophysical tomogramsdaostraining hydrological models is
strongly dependent on the intrinsic relationshiggwieen the geophysical properties and
hydraulic conductivity, here most likely througlt@ammon link with porosity (e.g., Carcione
et al., 2007). If the models based on the joinermsions correlate better with the flowmeter
data, it should be possible to improve the hydcaabnductivity model of Hubbard et al.
(2001) and hence also solute transport predictions.

To evaluate if the joint inversions are likely tpide better models than those supplied
by the individual inversions, we have compared aytic conductivity estimates based on
flowmeter data at borehole M3 (located near thétrgjde of the tomographic models in
Figure 3) with tomographic estimates located twalelaells away from the borehole. The
flowmeter data are shown in Figure 6a and the catkxd radar velocity and seismic velocity
models are shown in Figures 6b and 6c, respectiVafacilitate comparison, we highlight
three depth intervals where the hydraulic conditgtidata display a local minimum (Low 1-
3) and three where they display a local maximunglHi-3).

The radar velocity model based on individual inigrswith stochastic regularization
accurately indicates five zones, whereas the ratatel based on anisotropic smoothness
constraints only accurately indicates one zone.sBEm@nic velocity model based on stochastic
regularization accurately indicates five zones, n@he the seismic model based on anisotropic
smoothness constraints does not indicate any gkthenes. The correlation coefficients of
the collocated models based on the separate ioveasid the flowmeter data are higher for
the stochastic regularization (i.e., 0.72 for radaocity and 0.60 for seismic velocity) than
for the anisotropic smoothness constraints (i.63 Gor radar velocity and 0.49 for seismic

velocity).
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The models based on the joint inversion with stettbaegularization indicate all six
zones. The radar model based on the anisotropidarezation indicates three zones and the
seismic velocity model indicates four zones. Theratation coefficients of the collocated
models based on joint inversion and the flowmetgacre higher when using the stochastic
regularization (i.e., 0.78 for radar velocity an@®for seismic velocity) than when using the
anisotropic smoothness constraints (i.e., 0.6Tddar velocity and 0.52 for seismic velocity).

These results are summarized in Table 2 and thaigate that joint inversion with
stochastic regularization at this site offer highesolution and accuracy in determining
lithological changes than the other inversion apphes considered here. Stochastic
regularization operators based on borehole dataiffleter data) provided better models than
those supplied by traditional anisotropic smootenasnstraints. Indeed, changes associated
with varying the regularization operator seem t@riove the resulting models slightly more
than the joint inversion. The radar and seismieditane data could not individually provide
the necessary resolution to image the small-scal@hility revealed by the flowmeter data.
Regularization based on flowmeter data from the aitd the assumption that the two models
are structurally similar improves the resolutiortlog resulting models.

5. Discussion

The resulting inversion models are qualitativelyifar and they reach the target misfit
for all inversion types considered. This indicatiest the non-linearity of the cross-gradients
function do not cause the joint inversion processbé trapped in local minima for the
examples considered here. When performing this ofgeint inversion, we recommend to
first perform individual inversions to assess # tmodels appear to be structurally similar. In

addition, the individual inversions help to defiaetarget data misfit and to assure that

g;‘ zg,‘f. The joint inversion is expected to focus the ism@btained from the individual

inversions. If the joint and individual inversionodels are very different, this is likely to
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indicate that the two physical properties undersatgration are not structurally similar or that
the model updates at the early iteration steps baea too large.

The best way to choosewhen performing the joint inversions is to perfoanseries of
inversions with different choices of (see Figure 4). The resolution improvements offéred
the joint inversion vary from case to case andupghout the model domain since it is largely
dependent on the spatial variations of the phygeaameters inverted for. To evaluate the
resolution improvements, we recommend to calcUP8€&s at selected locations (see Figure
5) as suggested by Alumbaugh and Newman (2000)exect that some of the oscillations
in the horizontal profiles of the PSF (e.g., Figh® is caused by the discretization of the
cross-gradients constraints, which operates onhbeigng model cells only. This problem
could be avoided if the cross-gradients constrangre discretized on the same scale as the
stochastic regularization operator.

The stochastic regularization operator defines esymably known scale on which
structure is resolved. Large integral scales wault in large-scale features with large
amplitudes, small integral scales will result iheavily damped solution with a lot of small-
scale variability (see Maurer et al. (1998) for @odg illustration). This implies that the
magnitudes exhibited in the scatter plots of raatat seismic velocities (e.g., Figure 3p) are
dependent on the regulartization operator. Thehgyittexample also shows that earth models
with large variability (e.g., Figure 1a and 1d) lwitroduce bias in the resulting scatter plots
(see Figure 2b), since the velocity of low-velodtynes will be over-estimated. These effects
must be considered when making petrophysical ettenices from such scatter plots (e.qg.,
Linde et al., 2006a).

The sharper boundaries and the more variable moffeled by the joint inversion with
stochastic regularization are likely to signifidgnmprove flow- and transport predictions if

used to constrain hydrological model compared waimg individually inverted models with
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smoothness constraints. In the future, we plan d¢geldp new strategies to infer the
underlying geometry and physical properties offearddel from jointly inverted models. The
resulting method will be used to parameterize agftimensional flow- and transport model
at an ongoing research site.

6. Conclusions

The structural approach to joint inversion is basedthe assumption that the two
relevant physical properties have common structboaindaries. Gallardo and Meju (2003)
introduce a quantitative measure of structural Isinty that they term the cross-gradients
function. By discretizating and linearizating thess-gradients function, it is possible to
define a joint inversion method that penalizes nwdéere the gradients of two models are
neither parallel nor anti-parallel. We use the srgmadients function to develop an iterative
non-linear traveltime tomography algorithm thanjty inverts seismic and GPR traveltimes.
A synthetic example shows that the joint inversiomproves the determination of the
boundaries of three anomalous zones as well asghemetry compared with models based
on individual inversions.

The inversion method was applied to crosshole radat seismic traveltime data
collected in an unconsolidated and saturated emviemt. The inverse problem was
regularized (i) with an exponential geostatisticabdel based on flowmeter data and
tomographic estimates presented in Hubbard e2@01() and (ii) with anisotropic smoothness
constraints. The radar and seismic velocity modated on individual inversions indicated a
strong structural similarity, in which the modelasbd on stochastic regularization showed
more variability for a given data misfit. The mamwies of the cross-gradients function for the
models based on the joint inversion were approxiyati% of the individually inverted
models. The jointly inverted models were not oricturally more similar, but they also

displayed larger spatial variability for a givertalét.
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We used flowmeter data collected in one of the lhales to assess if the stochastic
regularization and the joint inversion could impgothe resulting models as indicators of
geological variability. We identified three zoneswhich the flowmeter data indicated local
minima in the hydraulic conductivity and three zeriadicating local maxima. The joint
inversion based on the stochastic regularizatios tha only one that accurately located all
six zones. Since tomographic models may be usedotwstrain hydrological flow and
transport models (e.g., Hubbard et al., 2001; $ehend Chien, 2003; Linde et al., 2006b),
we suggest that if structural similarity can beabBshed, then the structural approach to joint
inversion and the use of borehole data to deterrtheeregularization operators has the
potential to improve such hydrological models.
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Figure captions

Figure 1. (a, d) True radar and seismic velocityats; (b,e) individually inverted radar and
seismic velocity models; (c, f) jointly inverteddiar and seismic velocity models.

Figure 2. (a) and (b) Scatter plots of the indialtiy and jointly inverted models shown in
Figure 1, respectively. The large dots in (a) dmdate the true velocity values and the
small dots with the same color coding are rangetheftomographic estimates at the
corresponding locations. (c) and (d) Correspondicgtter plots where the true velocity
values have a smaller range as indicated by tige @dots.

Figure 3. Radar velocity models from Oyster: (aglividual inversion with anisotropic
smoothness constraints, (b) individual inversiothvatochastic regularization, (c) joint
inversion with anisotropic smoothness constraifd, joint inversion with stochastic
regularization, (e) to (h) corresponding seismiteiy inversion results, (i) to (I) the
cross-gradients function for these models, (mpjesatter plots of these models.

Figure 4. (@) The mean value [of| and (b) s, for different choices ofi. The values
correspond to those of the final iteration of theersion with stochastic regularization
operators.

Figure 5. (a, d) Normalized PSFs of the final raaidels in the horizontal and the vertical
direction and (c, d) for the corresponding seismadels. Dotted line indicates profiles of
PSFs from the individual inversions with stochasggularization, solid line indicates
PSFs of radar parameters for joint inversion wititlsastic regularization and the dashed
line indicates the corresponding seismic parameters

Figure 6. (a) Flowmeter data of hydraulic conduttiin borehole M3 (located on the right
side of the tomograms in Figure 3); (b) tomograptaidar velocity models two model
cells away from M3; (c) tomographic seismic velgaiiodels two model cells away from

M3. The red solid and dotted line in (b-c) représandels from the joint inversion model
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with stochastic regularization and anisotropic sthoess constraints, respectively; the
black solid and dotted lines represent the cormedipg models for the individual
inversions. The zones (Low 1-3) are locations willeeemeasured hydraulic conductivity
has a local minima and the zones (High 1-3) whidnas a local maxima.

Table 1. Final RMS value with regards to a targatadit of 0.5 ns for the radar traveltimes
and 20us for the seismic traveltimes. The data fits fdrimersions are practically the
same.

Table 2. The table indicates to what extent lomwL1>-3) and high (High 1-3) permeability
zones can be identified in the different inversinadels. The correlation coefficients) (

between the flowmeter data and collocated inversioodels are also summarized.
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Inversion type

RMS of Radar model

RMS of seismiadgio

Individual inversion,

anisotropic smoothness constrain
Individual inversion,

stochastic regularization

Joint inversion,

anistropic smoothness constraints
Joint inversion,

stochastic regularization
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0.97

0.98
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Separate inversions Joint inversions

Radar models Seismic models Radar models Seismielso
smooth stochastic smooth stochastic smooth stochastic smooth stochastic
Low1l | - + - + - + - +
High 1 | - + - - - - +
Low 2 | - - - + - + + +
High2 | + + - + + + + +
Low 3 - + - + + + + +
High 3 | - + - + + + + +
D 0.63 0.72 0.49 0.60 0.67 0.78 0.52 0.69

33



	Inversion type

