Highly Effective Polarized Electron Sources Based on Strained Semiconductor Superlattice with Distributed Bragg Reflector

PDF Version Also Available for Download.

Description

Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strained superlattice structures is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by the order of magnitude in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources.

Physical Description

7 pages

Creation Information

Gerchikov, L.G.; Aulenbacher, K.; Clendenin, J.E.; Kuz'michev, V.V.; Mamaev, Yu.A.; Maruyama, T. et al. November 28, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strained superlattice structures is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by the order of magnitude in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources.

Physical Description

7 pages

Source

  • Presented at 12th International Workshop on Polarized Sources and Targets (PST 2007), Upton, New York, 10-14 Sep 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12980
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 920278
  • Archival Resource Key: ark:/67531/metadc901243

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 28, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 5, 2016, 7:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gerchikov, L.G.; Aulenbacher, K.; Clendenin, J.E.; Kuz'michev, V.V.; Mamaev, Yu.A.; Maruyama, T. et al. Highly Effective Polarized Electron Sources Based on Strained Semiconductor Superlattice with Distributed Bragg Reflector, article, November 28, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc901243/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.