Microstructural Characterization of Dislocation Networks During Harper-Dorn Creep of fcc, bcc, and hcp Metals and Alloys

PDF Version Also Available for Download.

Description

Harper-Dorn (H-D) creep is observed in metals and geological materials exposed to very low stresses at temperatures close to the melting point. It is one of several types of creep processes wherein the steady-state strain rate is proportional to the applied stress, Nabarro-Herring creep and Coble creep being two other important processes. H-D creep can be somewhat insidious because the creep rates are much larger than those expected for Nabarro-Herring or Coble creep. Since the working conditions of structural components of power plants and propulsion systems, as well as the motion of the earth’s mantle all involve very low stresses, ... continued below

Physical Description

2.3 3MB

Creation Information

Przystupa, Marek A. December 13, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 56 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Harper-Dorn (H-D) creep is observed in metals and geological materials exposed to very low stresses at temperatures close to the melting point. It is one of several types of creep processes wherein the steady-state strain rate is proportional to the applied stress, Nabarro-Herring creep and Coble creep being two other important processes. H-D creep can be somewhat insidious because the creep rates are much larger than those expected for Nabarro-Herring or Coble creep. Since the working conditions of structural components of power plants and propulsion systems, as well as the motion of the earth’s mantle all involve very low stresses, an understanding of the factors controlling H-D creep is critical in preventing failures associated with those higher-than-expected creep rates. The purpose of this investigation was to obtain missing microstructural information on the evolution of the dislocation structures during static annealing of materials with fcc, bcc and hcp structure and use obtained results to test predictive capabilities of the dislocation network theory of H-D creep. In our view the evolutionary processes during static annealing and during Harper-Dorn creep are intimately related. The materials used in this study were fcc aluminum, hcp zinc and bcc tin. All characterizations of dislocation structures, densities and dislocation link length distributions were carried out using the etch pit method. To obtain quantitative information on the evolution of the dislocation networks during annealing the pure fcc aluminum samples were pre-deformed by creep at 913 and 620 K and then annealed. The higher deformation temperature was selected to generate starting dislocation networks similar to those forming during Harper-Dorn creep and the lower, to obtain higher dislocation densities suitable for reliable estimates of the parameters of the network growth law. The measured experimental link length distribution were, after scaling, (1) the same for all annealing temperatures, (2) time invariant and (3) identical to the distributions obtained previously for Harper-Dorn creep. This has never been shown before and confirms our theoretical expectations that evolution of the dislocation networks during annealing and H-D creep is governed by the same growth law. Obtained results were also used to predict H-D steady creep rates from annealing kinetics data using equations of the dislocation network theory. For the three considered stresses the theory predicts systematically smaller creep rates by the average factor of 4.5. Considering that the creep rates have been predicted from the annealing data alone and without any adjustable parameters, this results shout be considered as outstanding. In case of hcp zinc the samples were pre-deformed in compression at constant stress of 4 MPa at temperature of 573 K and subsequently annealed at the same temperature. During annealing samples readily recrystallized, but it was possible to obtain information on the link length distributions from several unrecrystallized grains. The results showed that the scaled link length distributions were time invariant and similar to those of the aluminum. The annealing studies on bcc tin were also curtailed by the concurrent recrystallization. It was only possible to obtain link length distribution for samples deformed in compression at constant load of 2 MPa at 423 K after unloading. The link length distribution was also in this case similar to that of the aluminum and zinc. These results suggest that the scaled link length distribution is universal and the same for the three considered crystal structures. This supports theoretical findings of these studies that appropriately scaled dislocation link length distribution should both universal and time invariant. We have also investigated the possibility of using alternative methods of estimating local dislocation densities from etch pits which could give more precise estimates of the dislocation link-lengths. The two most promising method are based on the use of Voronoi diagrams and uniform 3-connected nets. Both methods require further testing before they can be used in confidence in the analysis of the etch pit results.

Physical Description

2.3 3MB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/46077-1
  • Grant Number: FG02-03ER46077
  • DOI: 10.2172/920925 | External Link
  • Office of Scientific & Technical Information Report Number: 920925
  • Archival Resource Key: ark:/67531/metadc901191

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 13, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Feb. 24, 2018, 1:59 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 56

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Przystupa, Marek A. Microstructural Characterization of Dislocation Networks During Harper-Dorn Creep of fcc, bcc, and hcp Metals and Alloys, report, December 13, 2007; Los Angeles, California. (digital.library.unt.edu/ark:/67531/metadc901191/: accessed August 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.