A Study of Detonation Diffraction in the Ignition-and-Growth Model

PDF Version Also Available for Download.

Description

Heterogeneous high-energy explosives are morphologically, mechanically and chemically complex. As such, their ab-initio modeling, in which well-characterized phenomena at the scale of the microstructure lead to a rationally homogenized description at the scale of observation, is a subject of active research but not yet a reality. An alternative approach is to construct phenomenological models, in which forms of constitutive behavior are postulated with an eye on the perceived picture of the micro-scale phenomena, and which are strongly linked to experimental calibration. Most prominent among these is the ignition-and-growth model conceived by Lee and Tarver. The model treats the explosive as ... continued below

Physical Description

PDF-file: 43 pages; size: 7.7 Mbytes

Creation Information

Kapila, A K; Schwendeman, D W; Bdzil, J B & Henshaw, W D April 14, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Heterogeneous high-energy explosives are morphologically, mechanically and chemically complex. As such, their ab-initio modeling, in which well-characterized phenomena at the scale of the microstructure lead to a rationally homogenized description at the scale of observation, is a subject of active research but not yet a reality. An alternative approach is to construct phenomenological models, in which forms of constitutive behavior are postulated with an eye on the perceived picture of the micro-scale phenomena, and which are strongly linked to experimental calibration. Most prominent among these is the ignition-and-growth model conceived by Lee and Tarver. The model treats the explosive as a homogeneous mixture of two distinct constituents, the unreacted explosive and the products of reaction. To each constituent is assigned an equation of state, and a single reaction-rate law is prescribed for the conversion of the explosive to products. It is assumed that the two constituents are always in pressure and temperature equilibrium. The purpose of this paper is to investigate in detail the behavior of the model in situations where a detonation turns a corner and undergoes diffraction. A set of parameters appropriate for the explosive LX-17 is selected. The model is first examined analytically for steady, planar, 1-D solutions and the reaction-zone structure of Chapman-Jouguet detonations is determined. A computational study of two classes of problems is then undertaken. The first class corresponds to planar, 1-D initiation by an impact, and the second to corner turning and diffraction in planar and axisymmetric geometries. The 1-D initiation, although interesting in its own right, is utilized here as a means for interpretation of the 2-D results. It is found that there are two generic ways in which 1-D detonations are initiated in the model, and that these scenarios play a part in the post-diffraction evolution as well. For the parameter set under study the model shows detonation failure, but only locally and temporarily, and does not generate sustained dead zones. The computations employ adaptive mesh refinement and are finely resolved. Results are obtained for a rigid confinement of the explosive. Compliant confinement represents its own computational challenges and is currently under study. Also under development is an extended ignition-and-growth model which takes into account observed desensitization of heterogeneous explosives by weak shocks.

Physical Description

PDF-file: 43 pages; size: 7.7 Mbytes

Source

  • Journal Name: Combustion Theory and Modelling, vol. 11, no. 5, October 1, 2007, pp. 781--822; Journal Volume: 11; Journal Issue: 5

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-220736
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 936483
  • Archival Resource Key: ark:/67531/metadc901185

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 14, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 7, 2016, 10:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kapila, A K; Schwendeman, D W; Bdzil, J B & Henshaw, W D. A Study of Detonation Diffraction in the Ignition-and-Growth Model, article, April 14, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc901185/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.