Date Submitted:	WASTE SITE RECLASSIFICATION FORM Operable Unit(s): 100-FR-J-2 PEK	Control Number: 2008-028
Originator: J. M. Capron	Waste Site Code: $120-F-1$ $ \partial 8/\delta$	
Phone: <u>372-9227</u>	Type of Reclassification Action:	
	Closed Out 🔲 Interim Closed Out 🛛 No Action 🗌 RCRA Postclosure 🔲 Rejected 🔲 Consolidated 🗌	

This form documents agreement among parties listed authorizing classification of the subject unit as Closed Out, Interim Closed Out, No Action, RCRA Postclosure, Rejected, or Consolidated. This form also authorizes backfill of the waste management unit, if appropriate, for Closed Out and Interim Closed Out units. Final removal from the NPL of No Action and Closed Out waste management units will occur at a future date.

Description of current waste site condition:

The 120-F-1 waste site consisted of two dumping areas located 660 m (2,170 ft) southeast of the 105-F Reactor containing laboratory equipment and bottles, demolition debris, light bulbs and tubes, small batteries, small drums, and pesticide contaminated soil. It is probable that 108-F was the source of the debris but the material may have come from other locations within the 100-F Area. The site has been remediated and, with regulatory agency concurrence, backfilled. Remediation and verification sampling of this site have been performed in accordance with remedial action objectives and goals established by the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100 DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington* (Remaining Sites ROD), U.S. Environmental Protection Agency, Region 10, Seattle, Washington. The selected action involved: (1) evaluating the site using available process information, (2) remediating the site, (3) demonstrating through verification sampling that cleanup goals have been achieved, and (4) proposing the site for reclassification to Interim Closed Out.

Basis for reclassification:

In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses (as bounded by the rural-residential scenario) and allow for unrestricted use of shallow-zone soils (i.e., surface to 4.6 m [15 ft] deep). The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River. The 120-F-1 excavation has a maximum depth of approximately 6.5 m (21 ft), which includes a shallow zone and a deep zone. However, the entire excavation area is considered one decision unit, and is closed out using the more restrictive shallow-zone cleanup criteria; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone are not required. The basis for reclassification is described in detail in the *Remaining Sites Verification Package for the 120-F-1, Glass Dump Waste Site* (attached).

Waste Site Controls:

Engineered Controls: Yes \square No \boxtimes Institutional Controls: Yes \square No \boxtimes O&M requirements: Yes \square No \boxtimes If any of the Waste Site Controls are checked Yes specify control requirements including reference to the Record of Decision, TSD Closure Letter, or other relevant documents.

R. F. Guercia Date DOE Federal Project Director (printed) Signature N/A Date Signature Ecology Project Manager (printed) R. A. Lobos EPA Project Manager (printed) fature Date

REMAINING SITES VERIFICATION PACKAGE FOR THE 120-F-1 GLASS DUMP WASTE SITE

Attachment to Waste Site Reclassification Form 2008-028

May 2008

REMAINING SITES VERIFICATION PACKAGE FOR THE 120-F-1 GLASS DUMP WASTE SITE

EXECUTIVE SUMMARY

The 120-F-1 waste site is located within the 100-FR-2 Operable Unit on the Hanford Site, approximately 660 m (2,170 ft) southeast of the 105-F Reactor. The 120-F-1 waste site includes two distinct dumping areas.

The 120-F-1 waste site was originally described as a single, open trench filled with fluorescent tubes, incandescent light bulbs, instrument vacuum tubes, small alkaline batteries, chemical bottles and laboratory apparatus with a second area of disturbed soil with surficial plastic debris approximately 46 m (150 ft) to the southeast (BHI 1994). Due to its proximity, the probable source of the debris found at the 120-F-1 waste site is believed to be the 108-F Building, but the site may have contained debris from other locations within the 100-F Area. Prior to remediation, the original access road was overgrown with 0.9 m (3-ft-) high sagebrush, indicating that the site had not been used for many years. The exact dates of site operation are unknown.

The 120-F-1 waste site was interim stabilized March 23, 1998 (BHI 1998a). The trench was covered with 30 sheets of plywood to provide a demarcation layer to aid in future remediation. A protective layer of soil, from material mounded to the side of the trench during the original excavation, was placed over the plywood in a layer approximately 0.2 to 0.6 m (0.6 to 2 ft) deep. The site was further protected by a barrier attached to metal posts and warning signs. Samples collected during the 1998 interim stabilization detected contamination of lead and mercury but no radiological contamination (BHI 1998a).

In preparation for remedial action at the site, a standard geophysical investigation was conducted in the vicinity of the glass dump. The second area of debris to the southeast was identified as a waste dumping area in the geophysical interpretation (BHI 2004). The southeastern dumping area proved to be larger than the aforementioned glass dump and contained concrete, wire debris, small drums with heavy oil-type petroleum hydrocarbons, and some stained soil with pesticides (dichlorodiphenyldichloroethylene [DDE] and dichlorodiphenyltrichloroethane [DDT]). The second area was remediated as part of the 120-F-1 Glass Dump Waste Site.

Confirmatory sampling was not performed because the presence of contamination was already documented during interim stabilization. On January 21, 2006, an industrial hygiene investigation of the 120-F-1 waste site was conducted to determine whether beryllium was present in the phosphor material used in the fluorescent tubes dumped at the 120-F-1 waste site (BHI 2006). Beryllium was used in the manufacture of fluorescent light bulbs prior to 1949. The previously interim-stabilized waste site was opened using a front-end loader. At this juncture, it was discovered that the plywood barrier had failed and the fluorescent tubes were crushed. Pieces of the fluorescent tubes and accompanying soils were sampled. The samples were analyzed for metals, including mercury and beryllium. Beryllium was detected in one of three samples at a concentration below its average background concentration. It was determined

that the fluorescent tubes were not manufactured with beryllium and that beryllium would not be a health concern during remove, treat, and dispose (RTD) activities at the 120-F-1 waste site. However, mercury and, to a much lesser extent, metals such as manganese, nickel, and cadmium were detected and determined to be possible airborne inhalation hazards. Therefore, wetting methods for dust suppression were indicated for the pending RTD of the site.

Remedial action at the 120-F-1 waste site began in September 2007 and was completed in March 2008. Two distinct areas were excavated resulting in disposal of approximately 1,505 bank cubic meters of contaminated materials to the Environmental Restoration Disposal Facility.

A summary of the cleanup evaluation for the soil sample results against the applicable criteria is presented in Table ES-1. The results of the verification sampling are used to make reclassification decisions for the 120-F-1 waste site in accordance with the *Tri-Party Agreement Handbook Management Procedures*, TPA-MP-14 (DOE-RL 2007).

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?	
Direct Exposure – Radionuclides	Attain 15-mrem/yr dose rate above background over 1,000 years.	Radionuclides are not site COPCs.	Yes	
Direct Exposure – Nonradionuclides	Attain individual COPC RAGs.	All individual COPC concentrations are below the direct exposure criteria.	Yes	
Risk Requirements – Nonradionuclides	Attain a hazard quotient of <1 for all individual noncarcinogens.	All individual hazard quotients are less than 1.		
	Attain a cumulative hazard quotient of <1 for noncarcinogens.	The cumulative hazard quotient (4.2 x 10^{-2}) is less than 1.	Yes	
	Attain an excess cancer risk of $<1 \times 10^{-6}$ for individual carcinogens.	The individual excess cancer risk for carcinogens are less than $1 \ge 10^{-6}$.		
	Attain a cumulative excess cancer risk of $<1 \times 10^{-5}$ for carcinogens.	The total excess cancer risk (1.1×10^{-6}) is less than 1×10^{-5} .		
Groundwater/River Protection –	Attain single-COPC groundwater and river protection RAGs.			
Radionuclides	Attain national primary drinking water standards: ^a 4 mrem/yr (beta/gamma) dose rate to target receptor/organs.			
	Meet drinking water standards for alpha emitters: the most stringent of 15 pCi/L MCL or 1/25th of the derived concentration guides from DOE Order 5400.5. ^b	Radionuclides are not site COPCs.	Yes	
	Meet total uranium standard of 30 µg/L (21.2 pCi/L).			

Table ES-1. Summary of Remedial Action Goals for the 120-F-1 Site. (2 Pages)

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?
Groundwater/River Protection – Nonradionuclides	Attain individual nonradionuclide groundwater and river cleanup requirements.	Residual concentrations of selenium, diesel range TPH, and motor oil range TPH are above the groundwater and river protection soil RAGs. However, RESRAD modeling predicts these constituents will not reach groundwater (and, therefore, the Columbia River) within 1,000 years. ^d	Yes

 Table ES-1.
 Summary of Remedial Action Goals for the 120-F-1 Site.
 (2 Pages)

^a "National Primary Drinking Water Regulations" (40 Code of Federal Regulations 141).

^b Radiation Protection of the Public and the Environment (DOE Order 5400.5).

^c Remedial Design Report/Remedial Action Work Plan for the 100 Area (DOE-RL 2005b).

^d Based on the *100 Area Analogous Sites RESRAD Calculations* (BHI 2005), these constituents are not predicted to migrate more than 2 m (6.6 ft) vertically in 1,000 years (based on the lowest soil-partitioning coefficient distribution [for TPH] of 50 mL/g).

COPC = contaminant of potential concern

MCL = maximum contaminant level (drinking water standard)

RAG = remedial action goal

RESRAD = RESidual RADioactivity (dose model)

TPH = total petroleum hydrocarbons

Verification sampling for both the northwest and the southeast excavations within the 120-F-1 waste site was performed in December 2007 (WCH 2007b) to determine if the remedial action goals had been met. The contaminants of potential concern (COPCs) for verification sampling included inductively coupled plasma metals, hexavalent chromium, mercury, semivolatile organic compounds, and polychlorinated biphenyls (PCBs) (WCH 2007a). In the southeast excavation, total petroleum hydrocarbons were also COPCs.

Several iterations of material removal and sampling for limited analytes were conducted in the northwest excavation after the initial verification sampling results showed elevated contaminant levels. The verification sample results from the northwest excavation showed elevated levels of several pesticides and metals. Additional material was removed and the boundary of the waste site was increased. A second sample design was prepared for the northwest portion, and this area was sampled for PCBs and pesticides on February 4, 2008. The second set of samples also showed elevated levels of pesticides. Again, material was removed and the site boundary was increased. The northwest excavation was then sampled for pesticide analytes only on February 19, 2008, using a third, revised sample design. Slightly elevated pesticide levels were still present and additional material was removed from the area, which again changed the remediation boundary. Sampling for pesticide analytes was performed on March 5, 2008 in the northwest excavation using a fourth sample design. The fourth set of sampling results showed detectable levels of pesticides at a single sample site. A final remediation was performed at this specific area after which the same location was resampled. Pesticides were undetected in the sample. The full set of verification samples for the northwest excavation was then taken on March 18, 2008, using the sampling coordinates from the fourth sample design.

In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action

objectives and the corresponding remedial action goals established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005b) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington* (EPA 1999). These results show that residual soil concentrations support future land uses that can be represented (or bounded) by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations support unrestricted future use of shallow zone soil (i.e., surface to 4.6 m [15 ft]) and contaminant levels remaining in the soil are protective of groundwater and the Columbia River. Although a portion of the excavation extends into the deep zone, the site is being closed out using shallow zone criteria; therefore, no deep zone institutional controls are required.

A comparison against ecological risk screening levels has been made for the site contaminants of potential concern (COPCs) and other constituents. Screening levels were not exceeded for the site constituents, with the exception of antimony, boron, manganese, mercury, and vanadium. Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. It is believed that the presence of these constituents does not pose a risk to ecological receptors because concentrations of antimony, manganese, and vanadium are below site background levels, and boron concentrations are consistent with those seen elsewhere at the Hanford Site (no established background value is available for boron). A single verification sample contained a concentration of mercury approximately two times above Hanford Site background. All other samples of mercury are below the ecological screening levels.

REMAINING SITES VERIFICATION PACKAGE FOR THE 120-F-1 GLASS DUMP WASTE SITE

STATEMENT OF PROTECTIVENESS

This report demonstrates that the 120-F-1 glass dump waste site meets the objectives for interim closure as established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (RDR/RAWP) (DOE-RL 2005b) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington* (Remaining Sites ROD) (EPA 1999). These results show that residual soil concentrations support future land uses that can be represented (or bounded) by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations support unrestricted future use of shallow zone soil (i.e., surface to 4.6 m [15 ft]) and contaminant levels remaining in the soil are protective of groundwater and the Columbia River. Although a portion of the excavation extends into the deep zone, the site is being closed out using shallow zone criteria; therefore, no deep zone institutional controls are required.

A comparison against ecological risk screening levels has been made for the site contaminants of potential concern (COPCs) and other constituents. Screening levels were not exceeded for the site constituents, with the exception of antimony, boron, manganese, mercury, and vanadium. Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. It is believed that the presence of these constituents does not pose a risk to ecological receptors because concentrations of antimony, manganese, and vanadium are below site background levels, and boron concentrations are consistent with those seen elsewhere at the Hanford Site (no established background value is available for boron). A single verification sample contained a concentration of mercury approximately two times above Hanford Site background. All other samples of mercury are below the ecological screening levels.

GENERAL SITE INFORMATION AND BACKGROUND

The 120-F-1 glass dump waste site, part of the 100-FR-2 Operable Unit, was located approximately 660 m (2,165 ft) southeast of the 105-F Reactor (Figure 1). The site originally consisted of an uncovered trench filled with waste (northwest excavation), but a second dumping area (southeast excavation) was later added as described below.

The 120-F-1 waste site was designated in the RDR/RAWP (DOE-RL 2005b) and the Remaining Sites ROD (EPA 1999) as an area for remove/treat/dispose (RTD) due to reports of fluorescent tubes, vacuum tubes, small batteries, and empty chemical bottles in an open trench. In accordance with the *Sampling and Analysis Instruction for the 120-F-1 Glass Dump Site* (BHI 1998b), the site was surveyed for volatile organic compounds and mercury vapors. No

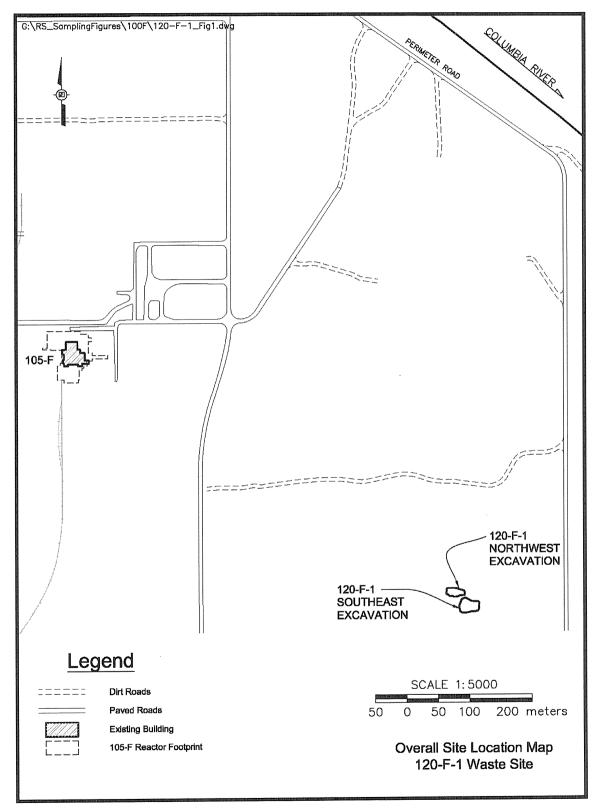


Figure 1. 120-F-1 Waste Site Location Map.

organic vapors were detected, but mercury vapors were detected in the immediate vicinity of the broken fluorescent tubes.

Interim stabilization and limited sampling was performed on March 23, 1998. Interim stabilization was conducted as a housekeeping activity to reduce and stabilize hazards and to deter accidental or inadvertent entry. Evaluation of the data from samples collected during interim stabilization is provided in the *120-F-1 Glass Dump Interim Stabilization Final Report* (BHI 1998a). The data evaluation concluded that no radiological contamination was present and the lead and mercury results associated with the fluorescent bulbs reaffirmed that RTD was required at the 120-F-1 waste site.

PRE-REMEDIATION ACTIVITIES

On January 21, 2006, an industrial hygiene investigation of the 120-F-1 waste site was conducted to determine whether beryllium was present in the phosphor material used in the fluorescent tubes dumped at the 120-F-1 waste site (BHI 2006). Beryllium was used in the manufacture of fluorescent light bulbs prior to 1949. The previously interim-stabilized waste site was opened using a front-end loader. At this juncture, it was discovered that the plywood barrier had failed and the fluorescent tubes were crushed. Pieces of the fluorescent tubes and accompanying soils were sampled. The samples were analyzed for metals, including mercury and beryllium. Beryllium was detected in one of three samples at a concentration below its average background concentration. It was determined that the fluorescent tubes were not manufactured with beryllium and that beryllium would not be a health concern during RTD of the 120-F-1 waste site. However, mercury and, to a much lesser extent, metals such as manganese, nickel, and cadmium were detected and determined to be possible airborne inhalation hazards. Therefore, wetting methods for dust suppression were indicated for the pending RTD of the site.

Nonintrusive Investigation Results

In preparation for remedial action at the site, a standard geophysical investigation was conducted in the vicinity of the glass dump (BHI 2004). The second area of debris was identified in the geophysical interpretation, just southeast of the original glass dump. The second, southeast dumping area was larger than the original, northwest glass dump and contained concrete, wire debris, small drums with heavy oil-type petroleum hydrocarbons, and stained soil with pesticides (dichlorodiphenyldichloroethylene [DDE] and dichlorodiphenyltrichloroethane [DDT]).

Confirmatory Sample Design

The 120-F-1 site was sent directly to remediation without confirmatory sampling based on process knowledge and sampling results (BHI 1994, 1998a).

REMEDIAL ACTION SUMMARY

Remediation of the 120-F-1 waste site was performed during September 2007. Approximately 1,505 bank cubic meters (BCM) of debris from both of the 120-F-1 dump sites was excavated and disposed of at the Environmental Restoration Disposal Facility (ERDF). Eight in-process samples were collected prior to the initial verification sampling (Appendix A). From the northwest excavation, one sample of suspect asbestos-containing material (ACM) (J152H5), one sample of the soil beneath the ACM (J152H6), and two additional soil samples (J153H3 and J153H4). From the southeast excavation, in process samples were collected from an ERDF container with oil saturated soil (J152V6), the site of the excavated soil (J155N6), a site with yellow staining before excavation even after verification sampling due to elevated levels of pesticides in the samples. A final post-excavation civil survey of the waste site is presented in Figure 2.

The northwest excavation contained fluorescent light bulbs and laboratory glassware, as well as most of the pesticide contaminated soil from the waste site. The southeast excavation contained a significant amount of demolition debris such as concrete, wire, and steel, as well as breached oil drums and pesticide contaminated soil. The southeast excavation is deeper than the northwest excavation because of the buried debris and stained soil. Selected photos of the material found at the 120-F-1 waste site are presented in Appendix B.

VERIFICATION SAMPLING ACTIVITIES

Remedial action goals (RAGs) are the specific numeric goals against which the cleanup verification data are evaluated to demonstrate attainment of the remedial action objectives for the site. Verification sampling for the 120-F-1 waste site was initially performed on December 3 and December 17, 2007 (WCH 2007b) to collect data from both excavations to determine if the RAGs had been met. Inadvertently, hexavalent chromium analysis for these samples was not requested while analyses for anions, cyanide, and sulfide were added. Several iterations of material removal and sampling for limited analytes were conducted in the northwest excavation after the initial verification sampling results showed elevated contaminant levels (Appendix A). The verification sample design for the northwest area was updated to account for changes in the excavation boundary. The final verification sampling for the northwest excavation was conducted on March 18, 2008. Hexavalent chromium sampling for the southeast excavation was performed on February 19, 2008. The following subsections provide additional discussion of the information used to develop the verification sampling design. The results of verification sampling are also summarized to support interim closure of the site.

Contaminants of Potential Concern

The waste site COPCs for the 120-F-1 waste site are described in the verification work instruction (WCH 2007a). COPCs for verification sampling in the northwestern excavation are inductively coupled plasma (ICP) metals, hexavalent chromium, mercury, semivolatile organic compounds by semivolatile organic analysis, pesticides, and polychlorinated biphenyls (PCBs).

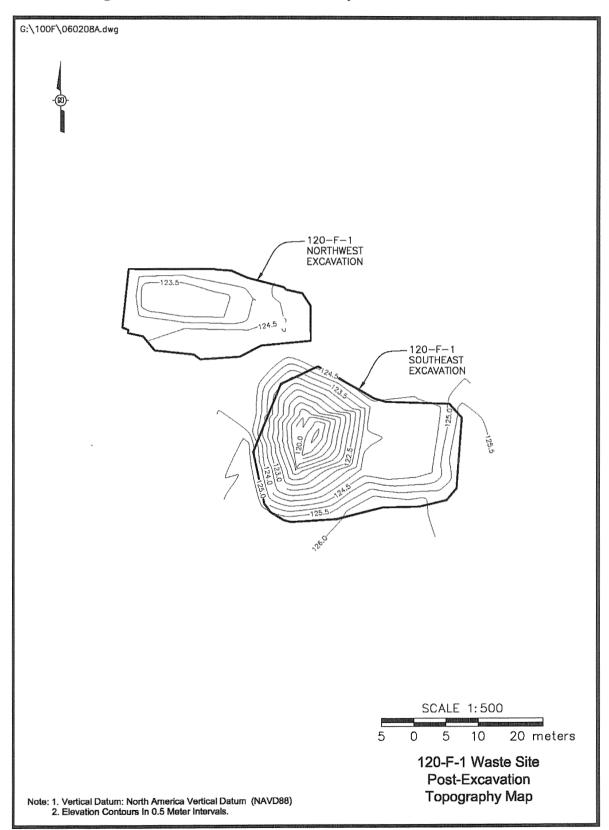


Figure 2. Post-Excavation Civil Survey of the 120-F-1 Waste Site.

In the southeast excavation, the COPCs are the same as in the northwest excavation with the addition of total petroleum hydrocarbons. All analyses are discussed in the Data Evaluation portion of this remaining sites verification package.

Verification Sample Design

This section describes the basis for selection of an appropriate sample design and determination of the number of verification samples that were collected. The 120-F-1 waste site was divided into two decision units for the purpose of verification sampling. The first decision unit consisted of the southeast excavation and the second decision unit consisted of the northwest excavation.

Verification Sampling – Excavation Footprint

The decision rule for demonstrating compliance with the cleanup criteria requires comparison of the true population mean, as estimated by the 95% upper confidence limit (UCL) on the sample mean, with the cleanup level. Therefore, a statistical sampling design was the preferred verification sampling approach for this site because the distribution of potential residual soil contamination over the site was uncertain. The Washington State Department of Ecology publication, *Guidance on Sampling and Data Analysis Methods* (Ecology 1995), recommends that systematic sampling with sample locations distributed over the entire study area be used. This sampling approach is referred to by the Washington State Department of Ecology as "areawide sampling."

Statistical parameters (i.e., standard deviation within the populations) for residual contaminant levels following remediation at the 120-F-1 waste site were unknown at the time of sample design development. Therefore, the standard deviation of the residual contaminant population was assumed to be less than 25% of the corresponding decision thresholds for the population. This assumption was verified later using the resulting verification sampling data in Appendix C. The assumption held true for all analytes with the exception of lead in the southeast excavation. This topic will be considered in the data quality assessment for the data set.

Each excavation footprint was delineated in Visual Sample Plan¹ and used as the basis for location of a random-start systematic grid for verification soil sample collection locations. A total of 10 verification soil samples were calculated to be collected on a random-start, triangular grid for each sampling area. Because the nature of the debris found at the two dumping areas within the 120-F-1 waste site was significantly different and because the COPCs for the two areas are different, each area will be separately evaluated with 10 samples collected within each area. A triangular grid was selected for this investigation based on studies that indicate triangular grids are superior to square grids (Gilbert 1987). Additional discussion of the development of the statistical verification design is available in the 120-F-1 verification work instruction (WCH 2007a).

Verification samples from both excavations were collected in December 2007 for all COPCs except for hexavalent chromium. In its place, IC anions, cyanide, and sulfide analyses were inadvertently requested. The sample results showed elevated levels of several pesticides

¹ Visual Sample Plan is a site map-based user-interface program that may be downloaded at http://vsp.pnl.gov.

(chlordane, heptachlor, dieldrin, endrin, and DDD) and had a higher than acceptable practical quantitation limit for several PCB samples from the northwest excavation (Appendix A, Table A-2). Additional material was removed from the northwest excavation, and a second sample design for the northwest excavation only was developed due to an increase in the excavation boundary. Samples were collected on February 4, 2008, for PCB and pesticide analyses only. The results of these samples showed several elevated pesticide values (Appendix A, Table A-3), and additional material was removed from the northwest excavation. The excavation boundary was again expanded and an updated sample design was prepared. Samples were collected from these locations on February 19, 2008. Sample results for 3 of the 10 sample locations showed slightly elevated levels of one or more pesticides (Appendix A, Table A-4). Additional material was again removed and samples were collected at locations from a new sample design on March 5, 2008. Only one sample (NW-5) showed detection of pesticides (Appendix A, Table A-5). Additional material was removed from this location, but the excavation boundary did not change. This single sample location was resampled on March 11, 2008, with no detected pesticides (Appendix A, Table A-6). With regulatory agency concurrence (WCH 2008a), this final sampling design was then used to collect verification samples from all 10 locations in the northwest excavation for the full suite of analyses. The revised sample design for the northwest excavation, presented in Appendix D, differed from that in the original design (WCH 2007a) only in the specific sample locations due to the enlarged waste site boundary. The statistical assumptions and parameters were not altered in the design revision.

Summaries of the samples collected and the analyses performed for the verification sampling event are presented in Table 1 and the locations are shown in Figure 3. All sampling was performed in accordance with ENV-1, *Environmental Monitoring & Management*, to fulfill the requirements of the *100 Area Remedial Action Sampling and Analysis Plan* (DOE-RL 2005a).

Sample	Sample	Sample Actual Coordinates ^b		Constitutes		Constitutes		Sample Analysis ^c
Location	Media	Northing Easting	Number	Затрж мнацузь				
SE-1	Soil	N 147190.5 E 581051.3	J16332	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides				
SE-2	Soil	N 147185.4 E 581057.7	J16333	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides				
SE-3	Soil	N 147198.5 E 581052.6	J16335	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides				
SE-4	Soil	N 147193.4 E 581058.9	J16336	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides				
SE-5	Soil	N 147188.4 E 581065.2	J16337	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides				
SE-6	Soil	N 147201.5 E 581060.1	J16338	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides				

 Table 1. Verification Sample Summary for the 120-F-1 Waste Site.^a (3 Pages)

	1		1	T		
Sample	Sample Media	Actual Coordinates ^b	HEIS	Sample Analysis ^c		
Location		Northing Number Easting				
SE-7	Soil	N 147196.4 E 581066.5	J16339	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides		
SE-8	Soil	N 147191.3 E 581072.8	J16340	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides		
SE-9	Soil	N 147199.4 E 581074.0	J16341	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides		
SE-10	Soil	N 147194.3 E 581080.4	J16342	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides		
SE-1	Soil	N 147190.5 E 581051.3	J16B36	Hexavalent chromium		
SE-2	Soil	N 147185.4 E 581057.7	J16B37	Hexavalent chromium		
SE-3	Soil	N 147198.5 E 581052.6	J16B38	Hexavalent chromium		
SE-4	Soil	N 147193.4 E 581058.9	J16B39	Hexavalent chromium		
SE-5	Soil	N 147188.4 E 581065.2	J16B40	Hexavalent chromium		
SE-6	Soil	N 147201.5 E 581060.1	J16B41	Hexavalent chromium		
SE-7	Soil	N 147196.4 E 581066.5	J16B42	Hexavalent chromium		
SE-8	Soil	N 147191.3 E 581072.8	J16B43	Hexavalent chromium		
SE-9	Soil	N 147199.4 E 581074.0	J16B44	Hexavalent chromium		
SE-10	Soil	N 147194.3 E 581080.4	J16B45	Hexavalent chromium		
NW-1	Soil	N 147211.5 E 581035.4	J16DT7	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions		
NW-2	Soil	N 147210.0 E 581041.3	J16DT8	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions		
NW-3	Soil	N 147217.4 E 581033.8	J16DT9	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions		
NW-4	Soil	N 147215.9 E 581039.7	J16DV0	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions		
NW-5	Soil	N 147214.3 E 581045.6	J16DV1	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions		

 Table 1. Verification Sample Summary for the 120-F-1 Waste Site.^a (3 Pages)

Sample	Sample	Actual Coordinates ^b	HEIS	Sample Analysis ^c				
Location	Media	Northing Easting	Number	Sampic Analysis				
NW-6	Soil	N 147212.7 E 581051.5	J16DV2	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions				
NW-7	Soil	N 147221.8 E 581038.1	J16DV3	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions				
NW-8	Soil	N 147220.2 E 581044.0	J16DV4	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions				
NW-9	Soil	N 147218.6 E 581049.9	J16DV5	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions				
NW-10	Soil	N 147217.1 E 581055.8	J16DV6	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions				
Duplicate of J16333	Soil	N 147185.4 E 581057.7	J16334	ICP metals, mercury, SVOA, PCBs, pesticides, TPH, IC anions, total cyanide, sulfides				
Duplicate of J16B46	Soil	N 147194.3 E 581080.4	J16B46	Hexavalent chromium				
Duplicate of J16DV7	Soil	N 147217.1 E 581055.8	J16DV6	ICP metals, mercury, hexavalent chromium, pesticides, SVOA, PCBs, IC anions				
Equipment Blank	Silica sand	NA	J16354	ICP metals, IC anions				
Equipment Blank	Silica sand	NA	J16DT6	ICP metals, IC anions				

 Table 1. Verification Sample Summary for the 120-F-1 Waste Site.^a (3 Pages)

^a Source: Field logbook EFL-1174-4, pp. 27-29 (WCH 2007b) and 88-89 (WCH 2008b).

^b Washington State Plane (meters).

^c Analyses of IC anions, total cyanide, sulfides were inadvertently requested for the southeast excavation samples instead of hexavalent chromium. These analyses were not required for the verification sampling. Due to detections of some anions, this analysis was added to the northwest excavation samples for consistency. Hexavalent chromium samples for the southeast excavation were collected at a later time.

HEIS = Hanford Environmental Information System

ICP = inductively coupled plasma

IC = ion chromatography

NA = not applicable

PCB = polychlorinated biphenyl

SVOA = semi-volatile organic analysis

TPH = total petroleum hydrocarbons

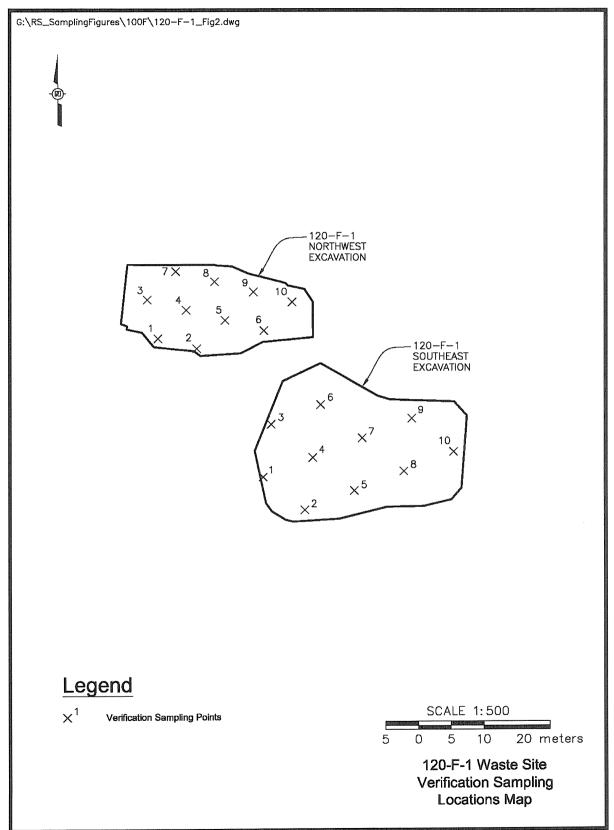


Figure 3. 120-F-1 Verification Sample Locations.

Verification Sampling Results

Verification samples were analyzed using U.S. Environmental Protection Agency-approved analytical methods. The laboratory-reported data results for all constituents are stored in the Environmental Restoration project-specific database prior to archival in the Hanford Environmental Information System and are presented in Attachment 1 of the 95% UCL calculation in Appendix C.

As noted earlier, the 120-F-1 waste site was divided into two sampling areas for verification sampling: the northwest excavation and the southeast excavation. Evaluation of the verification data from the excavation footprint was calculated using the 95% UCL on the true population mean for residual concentrations of COPCs as specified by the RDR/RAWP (DOE-RL 2005b). These calculations are provided in Appendix C. When a COPC was detected in fewer than 50% of the verification samples collected, the maximum detected value was used for comparison against the RAGs. If no detections for a given COPC were reported in the data set, then no statistical evaluation or calculations were performed for that COPC.

Comparisons of the statistical and maximum results for COPCs with the shallow zone RAGs for the southeast and northwest excavation footprints are summarized in Tables 2a and 2b, respectively. Both sampling areas are evaluated using the more restrictive shallow zone cleanup criteria, even though a portion of the southeast excavation exceeded 4.6 m (15 ft) in depth. Contaminants that were not detected by laboratory analysis are excluded from these tables. Calculated cleanup levels are not presented in the *Cleanup Levels and Risk Calculations Database* (Ecology 2005) under *Washington Administrative Code* (WAC) 173-340-740(3) for aluminum, calcium, iron, magnesium, potassium, silicon, and sodium; therefore, these constituents are not considered site COPCs.

	Statistical or	Soil Cl	eanup Levels, (1	Does the	Does the	
СОРС	Maximum Result (mg/kg)	Direct Exposure	Protective of Groundwater	Protective of the River	Maximum Exceed RAGs?	Result Pass RESRAD Modeling?
Arsenic	2.9 (<bg)< td=""><td>20</td><td>20</td><td>20</td><td>No</td><td></td></bg)<>	20	20	20	No	
Barium	58.2 (<bg)< td=""><td>5,600</td><td>132 ^b</td><td>224</td><td>No</td><td></td></bg)<>	5,600	132 ^b	224	No	
Beryllium	0.73 (<bg)< td=""><td>10.4 ^c</td><td>1.51^b</td><td>1.51^b</td><td>No</td><td></td></bg)<>	10.4 ^c	1.51 ^b	1.51 ^b	No	
Boron ^d	4.6	16,000	320	NA	No	
Chromium, total	7.4 (<bg)< td=""><td>80,000</td><td>18.5^b</td><td>18.5^b</td><td>No</td><td></td></bg)<>	80,000	18.5 ^b	18.5 ^b	No	
Cobalt	5.3 (<bg)< td=""><td>1,600</td><td>32</td><td>NA</td><td>No</td><td></td></bg)<>	1,600	32	NA	No	
Copper	12.6 (<bg)< td=""><td>2,960</td><td>59.2</td><td>22.0^b</td><td>No</td><td></td></bg)<>	2,960	59.2	22.0 ^b	No	
Hexavalent chromium ^d	1.8	2.1 ^c	4.8	2	No	
Lead	6.1 (<bg)< td=""><td>353</td><td>10.2^b</td><td>10.2 ^b</td><td>No</td><td></td></bg)<>	353	10.2 ^b	10.2 ^b	No	
Manganese	259 (<bg)< td=""><td>11,200</td><td>512^b</td><td>512^b</td><td>No</td><td></td></bg)<>	11,200	512 ^b	512 ^b	No	
Mercury	0.65	24	0.33 ^b	0.33 ^b	Yes	Yes ^e
Molybdenum ^d	0.85	400	8	NA	No	
Nickel	9.3 (<bg)< td=""><td>1,600</td><td>19.1^b</td><td>27.4</td><td>No</td><td></td></bg)<>	1,600	19.1 ^b	27.4	No	

Table 2a. Comparison of Maximum or Statistical Contaminant Concentrations to ActionLevels for the 120-F-1 Southeast Verification Sampling Event. (2 Pages)

Levels for the 120-r-1 Southeast Vernication Sampling Event. (2 Pages)									
	Statistical or	Soil Cl	eanup Levels, (1	mg/kg) ^a	Does the	Does the			
СОРС	Maximum Result (mg/kg)	Direct Exposure	Protective of Groundwater	Protective of the River	Maximum Exceed RAGs?	Result Pass RESRAD Modeling?			
Vanadium	38.5 (<bg)< td=""><td>560</td><td>85.1 ^b</td><td>NA</td><td>No</td><td></td></bg)<>	560	85.1 ^b	NA	No				
Zinc	37.5 (<bg)< td=""><td>24,000</td><td>480</td><td>67.8^b</td><td>No</td><td></td></bg)<>	24,000	480	67.8 ^b	No				
Fluoride	3.9	4,800	96	NA	No				
Nitrate (as Nitrogen)	4.2 (<bg)< td=""><td>128,000</td><td>1,000</td><td>2,000</td><td>No</td><td></td></bg)<>	128,000	1,000	2,000	No				
Sulfate	8,410 ^f	NA	25,000	50,000	No				
Bis(2-ethylhexyl) phthalate	0.11	71.4	0.625	0.36	No				
Aroclor-1254	0.023	0.5	0.017 ^g	0.017 ^g	No				
Aroclor-1260	0.010	0.5	0.017 ^g	0.017 ^g	No				
Dibenz(a,h)anthracene	0.025	0.33 ^g	0.33 ^g	0.33 ^g	No				
alpha-Chlordane	0.010	0.769	0.0165 ^g	0.0165 ^g	No				
gamma-Chlordane	0.013	0.769	0.0165 ^g	0.0165 ^g	No				
DDE	0.0018	2.94	0.0257	0.0033 ^g	No				
DDT	0.0021	2.94	0.0257	0.0033 ^g	No				
Endosulfan I	0.0018	480	9.6	0.0112	No				

Table 2a. Comparison of Maximum or Statistical Contaminant Concentrations to ActionLevels for the 120-F-1 Southeast Verification Sampling Event. (2 Pages)

^a Lookup values and RAGs obtained from the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005b) or calculated per WAC 173-340-720, WAC 173-340-730, and WAC 173-340-740, Method B, 1996, unless otherwise noted.

^b Where cleanup levels are less than background, cleanup levels default to background per WAC 173-340-700[4][d] (Ecology 1996).

^c Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3]) (Ecology 1996) using an airborne particulate mass-loading rate of 0.0001 g/m³ (WDOH 1997).

^d No Hanford Site-specific or Washington State background value available.

^e Based on the 100 Area Analogous Sites RESRAD Calculations (BHI 2005), residual concentrations of mercury are not expected to migrate more than 2 m (6.6 ft) vertically in 1,000 years based on the soil-partitioning distribution coefficient for mercury of 30 mL/g. The vadose zone underlying the remediation footprint is approximately 6.6 m (21.7 ft) thick. Therefore, residual concentrations of mercury are predicted to be protective of groundwater and the Columbia River.

^f See sulfate data discussion in following section.

² Where cleanup levels are less than RDLs, clean	up levels default to RDLs per	r WAC 173-340-707(2) (Ecology 1996)
---	-------------------------------	-------------------------------------

	= not applicable	RAG	= remedial action goal
BG	= background	RDL	= required detection limit
COPC	= contaminant of potential concern	RESRAD	= RESidual RADioactivity (dose assessment model)
NA	= not available	WAC	= Washington Administrative Code

Table 2b. Comparison of Maximum or Statistical Contaminant Concentrations to ActionLevels for the 120-F-1 Northwest Verification Sampling Event. (2 Pages)

	Statistical or	Soil Cl	eanup Levels, (1	Does the	Does the	
СОРС	Maximum Result (mg/kg)	Direct Exposure	Protective of Groundwater	Protective of the River	Maximum Exceed RAGs?	Result Pass RESRAD Modeling?
Antimony	0.91 (<bg)< td=""><td>32</td><td>5 ^b</td><td>5 ^b</td><td>No</td><td></td></bg)<>	32	5 ^b	5 ^b	No	
Arsenic	2.5 (<bg)< td=""><td>20</td><td>20</td><td>20</td><td>No</td><td></td></bg)<>	20	20	20	No	
Barium	65.8 (<bg)< td=""><td>5,600</td><td>132^b</td><td>224</td><td>No</td><td></td></bg)<>	5,600	132 ^b	224	No	
Beryllium	0.26 (<bg)< td=""><td>10.4 ^c</td><td>1.51^b</td><td>1.51^b</td><td>No</td><td></td></bg)<>	10.4 ^c	1.51 ^b	1.51 ^b	No	

Levels for the 120-F-1 Northwest Vernication Sampling Event. (2 Pages)								
	Statistical or	Soil Cl	eanup Levels, (1	Does the	Does the			
СОРС	Maximum Result (mg/kg)	Direct Exposure	Protective of Groundwater	Protective of the River	Maximum Exceed RAGs?	Result Pass RESRAD Modeling?		
Boron ^d	1.6	16,000	320	NA	No			
Chromium, total	11.7 (<bg)< td=""><td>80,000</td><td>18.5 ^b</td><td>18.5^b</td><td>No</td><td></td></bg)<>	80,000	18.5 ^b	18.5 ^b	No			
Cobalt	7.1 (<bg)< td=""><td>1,600</td><td>32</td><td>NA</td><td>No</td><td></td></bg)<>	1,600	32	NA	No			
Copper	12.2 (<bg)< td=""><td>2,960</td><td>59.2</td><td>22.0^b</td><td>No</td><td></td></bg)<>	2,960	59.2	22.0 ^b	No			
Hexavalent chromium ^d	0.30	2.1 °	4.8	2	No			
Lead	2.9 (<bg)< td=""><td>353</td><td>10.2 ^b</td><td>10.2^b</td><td>No</td><td></td></bg)<>	353	10.2 ^b	10.2 ^b	No			
Manganese	318 (<bg)< td=""><td>11,200</td><td>512^b</td><td>512^b</td><td>No</td><td></td></bg)<>	11,200	512 ^b	512 ^b	No			
Nickel	11.8 (<bg)< td=""><td>1,600</td><td>19.1 ^b</td><td>27.4</td><td>No</td><td></td></bg)<>	1,600	19.1 ^b	27.4	No			
Selenium	1.8	400	5	1	Yes	Yes ^e		
Vanadium	53.9 (<bg)< td=""><td>560</td><td>85.1</td><td>NA</td><td>No</td><td></td></bg)<>	560	85.1	NA	No			
Zinc	37.3 (<bg)< td=""><td>24,000</td><td>480</td><td>67.8^b</td><td>No</td><td></td></bg)<>	24,000	480	67.8 ^b	No			
Nitrate (as Nitrogen)	5.7 (<bg)< td=""><td>128,000</td><td>1,000</td><td>2,000</td><td>No</td><td></td></bg)<>	128,000	1,000	2,000	No			
Sulfate	6.4 (<bg)< td=""><td>NA</td><td>25,000</td><td>50,000</td><td>No</td><td></td></bg)<>	NA	25,000	50,000	No			
Bis(2-ethylhexyl) phthalate	0.12	71.4	0.625	0.36	No			
Di-n-butylphthalate	0.027	8,000	160	540	No			
alpha-Chlordane	0.0021	0.769	0.02 ^f	0.02 ^f	No			
gamma-Chlordane	0.0022	0.769	0.02 ^f	0.02 ^f	No			

Table 2b. Comparison of Maximum or Statistical Contaminant Concentrations to ActionLevels for the 120-F-1 Northwest Verification Sampling Event. (2 Pages)

^a Lookup values and RAGs obtained from the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005b) or calculated per WAC 173-340-720, WAC 173-340-730, and WAC 173-340-740, Method B, 1996, unless otherwise noted.

^b Where cleanup levels are less than background, cleanup levels default to background per WAC 173-340-700[4][d] (Ecology 1996).

^c Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3]) (Ecology 1996) using an airborne particulate mass-loading rate of 0.0001 g/m³ (WDOH 1997).

^d No Hanford Site-specific or Washington State background value available.

^e Based on the *100 Area Analogous Sites RESRAD Calculations* (BHI 2005), residual concentrations of selenium are not expected to migrate more than 1 m (3.3 ft) vertically in 1,000 years based on the soil-partitioning distribution coefficient for selenium of 150 mL/g. The vadose zone underlying the remediation footprint is approximately 6.6 m (21.7 ft) thick. Therefore, residual concentrations of selenium are predicted to be protective of groundwater and the Columbia River.

^f Where cleanup levels are less than RDLs, cleanup levels default to RDLs per WAC 173-340-707(2) (Ecology 1996).

	e creanap ie ere are rece man rez ze, creanap ie ere		
	= not applicable	RAG	= remedial action goal
BG	= background	RDL	= required detection limit
COPC	= contaminant of potential concern	RESRAD	= RESidual RADioactivity (dose assessment model)
NA	= not available	WAC	= Washington Administrative Code

VERIFICATION SAMPLE DATA EVALUATION

Evaluation of the verification sampling results in Tables 2a and 2b show that all direct exposure cleanup levels are met for the two sampling areas within the 120-F-1 waste site.

In the southeast excavation (Table 2a), groundwater and Columbia River protection RAGs were exceeded for mercury based on a single sample result. Analysis of the remaining nine samples did not detect mercury. Data were not collected on the vertical extent of residual contamination, but RESidual RADioactivity (RESRAD) modeling predicts that compounds having a soil-

partitioning coefficient (K_d) greater than 12 mL/g will not migrate through the 6.6 m (21.7-ft-) thick vadose zone between the shallow zone and groundwater at the deeper southeast portion of the waste site (BHI 2005). The K_d for mercury is 50 mL/g and, as discussed above, is not expected to migrate through the vadose zone. Therefore, the remediation performed in the southeast excavation of the 120-F-1 waste site is protective of groundwater and the Columbia River.

In the northwest excavation (Table 2b), the Columbia River protection RAG was exceeded for selenium based on a single sample result. Analyses of the remaining nine samples did not detect selenium. Data were not collected on the vertical extent of residual contamination, but RESRAD modeling predicts that compounds having a soil-partitioning coefficient (K_d) greater than 8 mL/g will not migrate through the 10.5 m (34.4-ft-) thick vadose zone between the shallow zone and groundwater at the shallower, northwest excavation of the site (BHI 2005). The K_d for selenium is 150 mL/g and, as discussed above, selenium is not predicted to migrate through the vadose zone within 1,000 years. Therefore, the remediation performed in the northwest excavation of the 120-F-1 waste site is protective of groundwater and the Columbia River.

All other COPCs for the 120-F-1 waste site were either not detected or were quantified below RAGs.

When using a statistical sampling approach, a RAG requirement for nonradionuclides is the WAC 173-340-740(7)(e) three-part test. The application of the three-part test for the 120-F-1 waste site is included in the statistical calculations (Appendix C). All residual COPC concentrations for both excavations within the 120-F-1 waste site pass the three-part test.

Assessment of the risk requirements for the 120-F-1 waste site is determined by calculation of the hazard quotient and carcinogenic (excess cancer) risk values for nonradionuclides. These calculations are located in Appendix C. The requirements include an individual hazard quotient of less than 1.0, a cumulative hazard quotient of less than 1.0, an individual contaminant carcinogenic risk of less than 1 x 10^{-6} , and a cumulative excess carcinogenic risk of less than 1 x 10^{-5} . These risk values were conservatively calculated for the entire waste site using the highest values from each of the sampling areas. Risk values were not calculated for constituents that were not detected or were detected at concentrations below Hanford Site or Washington State background values. The calculations indicated that all individual hazard quotients for noncarcinogenic constituents are less than 1.0. The cumulative hazard quotient for the 120-F-1 waste site is 4.2×10^{-2} . All individual cumulative carcinogenic risk values are less than 1 x 10^{-6} . Therefore, nonradionuclide risk requirements are met.

Sulfate Data Discussion

The sulfate data analysis in the southeast excavation was problematic due to a spread of three orders of magnitude in the sample results and the use of a lognormal distribution to calculate the 95% UCL. A 95% UCL value of 1,740,000 mg/kg was obtained from the 10 sample results (censored) using Ecology MTCAStat software and a lognormal distribution (Figure 4). MTCAStat software uses Land's method of statistical calculation and a H-statistic when the data

is determined to be lognormal. However, the maximum sulfate result from these 10 samples was 8,410 mg/kg with a mean of 5,202 mg/kg and a standard deviation of 2,660 mg/kg (Figure 4).

The 95% UCL result from MTCAStat software using a lognormal distribution and a H-statistic does not provide a realistic upper value for sulfate. Significant sample heterogeneity is apparent in the primary and duplicate samples for these samples where a 92% relative percent difference was calculated for sulfate (Appendix C). While 80% of the sulfate data were above the detection limit indicating a lognormal MTCAStat analysis is suitable, the maximum sulfate result is the appropriate value to use for comparison against the RAGs in this case.

The sulfate data were analyzed using ProUCL version 4.0 (EPA 2007) to determine if a better statistical test was appropriate. Results from this analysis indicated the data was gamma distributed and suggested using an adjusted gamma UCL (Figure 5). The 95% UCL value for sulfate using this test was 7,396 mg/kg.

The groundwater protection RAG for sulfate is based on a secondary maximum contaminant level (MCL) value. This RAG (25,000 mg/kg) is nearly three times the maximum value from the sample set (8,410 mg/kg). There is no direct exposure value for sulfate. There is a health based, drinking water advisory level for sulfate of 500 mg/L from EPA (EPA 2003). This equates to a soil concentration value of 50,000 mg/kg using the 100X rule as prescribed in the RDR/RAWP (DOE-RL 2005b).

For the sulfate results in the 120-F-1 southeast excavation, the MTCAStat 95% UCL value does not provide a realistic upper bound of concentration. Furthermore, the source of the sulfate RAG is a secondary MCL, which is driven by aesthetic concerns, not health risks. Therefore, it is appropriate to use the maximum sample result for comparison against the groundwater and Columbia River protection RAGs.

VERIFICATION SAMPLING DATA QUALITY ASSESSMENT

A data quality assessment (DQA) is performed to compare the verification sampling approach, the field logbook (WCH 2008b), and resulting analytical data with the sampling and data quality requirements specified by the project objectives and performance specifications.

<u>mg/kg</u>	Sample			<u></u>		
338	J16333/J16334					
1.2	J16332					
1.25	J16335	r				
8410	J16336					
153	J16337	Number of samples	Unce	nsored values		
2410	J16338	Uncensored	10	Mean	1141.22	
32.8	J16339	Censored	Lo	gnormal mean	5202.02	
11.4	J16340	Detection limit or PQL		Std. devn.	2659.44829	
51.3	J16341	Method detection limit		Median	42.05	
3.2	J16342	TOTAL	10	Min.	1.2	
				Max.	8410	
		r-squared is: 0. Recommendations: Use lognormal distribution.	.965 r-squa	red is:	0.486	
		UCL (Land's method) is 17371	219 6435668			

Figure 4. MTCAStat calculation for sulfate results from 120-F-1 southeast excavation.

Figure 5. Results of 95% UCL Analysis of Sulfate Results for Southeast Excavation Using ProUCL 4.0.

	A B C	DE	F	G	Н	1		К							
1		General UCL Statistics					ĭ								
2	User Selected Options														
3	From File	WorkSheet.wst													
4	Full Precision	OFF													
5	Confidence Coefficient	95%													
6	Number of Bootstrap Operations	2000													
7				- 11 ₀ 0000 - 1000000000											
8															
	C0														
10							<u> </u>								
11		······	General	Statistics											
12	Numt	per of Valid Observations	10			Num	ber of Disting	t Observation	s 10						
13								- Advantation of							
14	Raw St	atistics	A CONTRACTOR OF A CONTRACTOR	Kara		Log-transf	ormed Statis	tics							
15		Minimum	1.2				Minimu	um of Log Data	3 0.182						
16		Maximum	8410				Maximu	um of Log Data	9.037						
17		Mean	1141				Me	ean of log Data	3.911						
18		Median	42.05					SD of log Data	3.048						
19		SD	2659			1 - 1 - Jack Harrison									
20		Coefficient of Variation	2.33						1						
21		Skewness	2.777												
22			L			· · · .									
23			Relevant U	CL Statistics											
24	Normal Distr	ribution Test		Lognormal Distribution Test											
25	S	hapiro Wilk Test Statistic	0.512		and an an an an area		Shapiro Wil	k Test Statisti	0.948						
26	St	napiro Wilk Critical Value	0.842				Shapiro Will	k Critical Value	0.842						
27	Data not Normal at 5	% Significance Level			Data appea	r Lognorm	al at 5% Sig	nificance Leve	1						
28		Cancer of the second													
29	Assuming Nom	nal Distribution			Ass	uming Log	normal Distr	ibution							
30		95% Student's-t UCL	2683					95% H-UCI	17362755						
31	95% UCLs (Adjus	sted for Skewness)				95	% Chebyshe	v (MVUE) UCI	6239						
32		95% Adjusted-CLT UCL	3314			97.5	% Chebyshe	v (MVUE) UCI	8369						
33		95% Modified-t UCL	2806			999	% Chebyshe	v (MVUE) UCI	. 12555						
34															
35	Gamma Dist	ribution Test				Data	Distribution								
36		k star (bias corrected)	0.228	Data	a appear Ga	mma Distr	ibuted at 5%	Significance	_evel						
37		Theta Star	5012												
38		nu star													
39		e Chi Square Value (.05)				Nonparan	netric Statisti								
40		ted Level of Significance						95% CLT UCI							
41	Ad	justed Chi Square Value	0.703					Jackknife UCL	1						
42						95		Bootstrap UCI							
43		on-Darling Test Statistic						ootstrap-t UCI							
44		Darling 5% Critical Value						Bootstrap UCI	1						
45	-	ov-Smirnov Test Statistic				95%		Bootstrap UCI	1						
46		mirnov 5% Critical Value						Bootstrap UCL							
47	Data appear Gamma Distribu	Ited at 5% Significance L	evel					Aean, Sd) UCL							
48								Aean, Sd) UCL	1						
49	Assuming Gam					99% (Chebyshev(N	Aean, Sd) UCL	. 9509						
50		pproximate Gamma UCL							<u> </u>						
51	95%	% Adjusted Gamma UCL	7396					MINT 177							
52															
53	Potential U	ICL to Use			and the second second	Use 9	95% Adjusted	d Gamma UCL	/396						

The DQA for the 120-F-1 waste site established that the data are of the right type, quality, and quantity to support site verification decisions within specified error tolerances. All analytical data were found to be acceptable for decision-making purposes. The evaluation verified that the sample design was sufficient for the purpose of clean site verification. The cleanup verification sample analytical data are stored in the ENRE project-specific database for data evaluation prior to its archival in the HEIS and are summarized in Appendix C. The detailed DQA is presented in Appendix E.

SUMMARY FOR INTERIM CLOSURE

The 120-F-1 glass dump waste site has been remediated in accordance with the Remaining Sites ROD (EPA 1999) and the RDR/RAWP (DOE-RL 2005b). The site was remediated by removing approximately 1,505 BCM of material for disposal at the ERDF. Statistical sampling to verify the completeness of remediation was performed, and analytical results for the two decision units were shown to meet the cleanup objectives for direct exposure, groundwater protection, and river protection. Accordingly, an interim closure reclassification is supported for the 120-F-1 waste site. The 120-F-1 waste site excavation area has a maximum depth of approximately 6.5 m (21 ft), which includes a shallow zone and a deep zone. However, the entire excavation area is considered one decision unit, and will be closed out using the more restrictive shallow zone cleanup criteria; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone are not required.

REFERENCES

- 40 CFR 141, "National Primary Drinking Water Regulations," *Code of Federal Regulations*, as amended.
- BHI, 1994, 100-F Reactor Site Technical Baseline Report Including Operable Units 100-FR-1 and 100-FR-2, BHI-00031, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 1998a, *120-F-1 Glass Dump Interim Stabilization Final Report*, BHI-01197, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 1998b, Sampling and Analysis Instruction for the 120-F-1 Glass Dump Site, BHI-01022, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2004, Results of Geophysical Investigation at 100-F-Area Remaining Sites, Interoffice Memorandum to R. A. Carlson, CCN 112477, dated May 27, 2004, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2005, 100 Area Analogous Sites RESRAD Calculations, 0100X-CA-V0050, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.

- BHI, 2006, Industrial Hygiene Investigation of Potential Beryllium-Contaminated Fluorescent Light Bulbs, CCN 0571201 dated February 9, 2006, Bechtel Hanford, Inc., Richland, Washington.
- DOE Order 5400.5, *Radiation Protection of the Public and the Environment*, as amended, U.S. Department of Energy, Washington, D.C.
- DOE-RL, 2005a, *100 Area Remedial Action Sampling and Analysis Plan*, DOE/RL-96-22, Rev. 4, Draft B, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005b, *Remedial Design Report/Remedial Action Work Plan for the 100 Area*, DOE/RL-96-17, Rev. 5, Draft B, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2007, *Tri-Party Agreement Handbook Management Procedures*, RL-TPA-90-0001, Guideline Number TPA-MP-14, "Maintenance of the Waste Information Data System (WIDS)," Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Ecology, 1995, Washington State Department of Ecology Toxics Cleanup Program Guidance on Sampling and Data Analysis Methods, Publication No. 94-49, Washington State Department of Ecology, Olympia, Washington.
- Ecology, 1996, "Model Toxics Control Act--Cleanup," Washington Administrative Code (WAC) 173-340, Washington State Department of Ecology, Olympia, Washington
- Ecology, 2005, Cleanup Levels and Risk Calculations (CLARC) Database, Washington State Department of Ecology, Olympia, Washington, https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx>.
- EPA, 1999, Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington.
- EPA, 2000, *Guidance for Data Quality Assessment*, EPA QA/G-9, QA00 Update, U.S. Environmental Protection Agency, Office of Environmental Information, Washington, D.C.
- EPA, 2003, Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Sulfate, EPA 822-F-03-007, U.S. Environmental Protection Agency, Office of Water (4304T), Health and Ecological Criteria Division, Washington, D. C.
- EPA, 2006, *Integrated Risk Information System (IRIS)*, U.S. Environmental Protection Agency, Washington, D.C., available at http://www.epa.gov/iris.

- EPA, 2007, *ProUCL*, Version 4.0, U.S. Environmental Protection Agency, Washington, D.C. .
- ENV-1, *Environmental Monitoring & Management*, Washington Closure Hanford, Richland, Washington.
- Gilbert, R. O., 1987, *Statistical Methods for Environmental Pollution Monitoring*, Wiley & Sons, Inc., New York, New York.
- PNNL, 2002, *Visual Sample Plan*, Version 2.0, available at <u>http://dqo.pnl.gov/VSP</u>, Pacific Northwest National Laboratory, Richland, Washington.
- WAC 173-340, "Model Toxics Control Act -- Cleanup," Washington Administrative Code, amended 1996.
- WCH, 2007a, Work Instruction for Verification Sampling of the 120-F-1 Glass Dump Waste Site, 0100F-WI-G0069, Rev. 0, Washington Closure Hanford, Richland, Washington.
- WCH, 2007b, *100-F Remedial Sampling*, Logbook ELF-1174-4, pp. 27-29, 37-39, and 67-68, Washington Closure Hanford, Richland, Washington.
- WCH, 2008a, Revised 120-F-1 Verification Sampling, CCN 139173 dated February 14, 2008, to R. Lobos and D.C. Smith from J. M. Capron, Washington Closure Hanford, Richland, Washington.
- WCH, 2008b, *100-F Remedial Sampling*, Logbook EFL-1173-4 pp 37-39, 81-82, and 88-89, Washington Closure Hanford, Richland, Washington.

APPENDIX A

IN-PROCESS AND VERIFICATION SAMPLING RESULTS

						Table	A-1	In-Proce	ss Sample	s. (7	pages)									
Sample	HEIS	Sample Date		um-2	41 GEA	Bar	ium-	133	Ces	ium·	137	Co	balt	-60	Euro	opiun	n-152	Euro	piun	n-154
Campio	Number	F	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
soil	J152H3	5/3/2007	0.088	U	0.088				0.06	U	0.06	0.069	U	0.069	0.14	U	0.14	0.2	U	0.2
soil	J152H4	5/3/2007	0.11	U	0.11				0.113		0.038	0.035	U	0.035	0.091	U	0.091	0.12	U	0.12
container	J152V6	6/6/2007	0.22	U	0.22				0.1	U	0.1	0.088	U	0.088	0.18	U	0.18	0.28	U	0.28
stockpile	J155N6	6/6/2007	0.27	U	0.27				0.08	U	0.08	0.079	U	0.079	0.22	U	0.22	0.25	U	0.25
yellow stain	J15JB0	9/11/2007	0.065	U	0.065	0.059	U	0.059	0.07	U	0.07	0.067	U	0.067	0.165	U	0.165	0.249	U	0.249
												·····								
Sample	HEIS Number	Sample Date	Euro	opiun	n-155	Pota	issiu	m-40	Rad	lium	-226	Rad	lium	-228	Silver-1	08 M	etastable	Thoriu	m-22	28 GEA
	Number		pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
soil	J152H3	5/3/2007	0.13	U	0.13	12.4		0.38	0.414		0.099	0.621		0.28	0.621		0.28	0.578		0.08
soil	J152H4	5/3/2007	0.09	U	0.09	12		0.36	0.43		0.063	0.758		0.12	0.758		0.12	0.764		0.056
container	J152V6	6/6/2007	0.18	U	0.18	10.3		0.84	0.379		0.11	0.672		0.3	0.672		0.3	0.46		0.11
stockpile	J155N6	6/6/2007	0.19	U	0.19	11.3		0.9	0.441		0.13	0.575		0.39	0.575		0.39	0.588		0.12
yellow stain	J15JB0	9/11/2007	0.142	U	0.142	13.2		0.807	0.306		0.128	0.406		0.278	0.406		0.278	0.292		0.081
												-								
Sample	HEIS	Sample Date	Thoriu	ım-23	32 GEA	Uraniu	m-2.	35 GEA	Uraniu	m-2.	38 GEA									
-	Number		pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA									
soil	J152H3	5/3/2007	0.621		0.28	0.25	U	0.25	6.7	U	6.7]								
soil	J152H4	5/3/2007	0.758		0.12	0.15	U	0.15	3.8	U	3.8]								
container	J152V6	6/6/2007	0.672		0.3	0.27	U	0.27	9.5	U	9.5									
stockpile	J155N6	6/6/2007	0.575		0.39	0.31	U	0.31	8.7	U	8.7									
yellow stain	J15JB0	9/11/2007	0.406		0.278	0.246	U	0.246	8.19	U	8.19]								
								Asb	estos											
Sample	HEIS Number	Sample Date			Total A	Asbestos								N	otes		Ŧ			

Acronyms and notes apply to all of the tables in this appendix Note: Data qualified with B, C, and/or J are considered acceptable values.

5/3/2007

5/3/2007

non-detected

non-detected

C = blank contamination (inorganic compounds)

J152H5

J152H6

D = diluted

= estimate value J

suspect ACM

soil

PQL= Practical Quantitation Limit

R = rejected

Q = qualifier

A-1

U = undetected

X = tentatively identified compound

60 - 70 % fiberglass

3 - 5 % fiberglass

Rev. 0

Attachment to	
Waste	
Site R	
Attachment to Waste Site Reclassification Form 2008-028	
Form	
2008-028	

2.5

2.8

482

2780

1

1.2

С

С

C 1	Sample	Gamela Data	Alu	min	um	An	time	ony		rsen	ic	Ba	iriui	n	Be	rylli	ım
Sample	Number	Sample Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
soil	J152H3	5/3/2007	8910		6.2	1.4	U	1.4	1.8		1.8	97.4	С	0.09	0.53		0.04
soil	J152H4	5/3/2007	5670		4.6	1	U	1	2.8		1.3	102	C	0.06	0.36		0.03
container	J152V6	6/6/2007	3450	C	5.1	0.68	U	0.68	1.3	U	1.3	140	С	0.06	0.07		0.03
stockpile	J155N6	6/6/2007	5760	C	5.2	0.69	U	0.69	2.2		1.3	96.5	С	0.06	0.03	U	0.03
yellow stain initial	J15JB0	9/11/2007	1280	C	5	0.67	U	0.67	1.2	U	1.2	48.8	С	0.06	0.03	U	0.03
Yellow stain after RTD	J15P45	9/19/2007	5350		5.8	0.77	U	0.77	3.5		1.4	46.4	С	0.07	0.04	U	0.04
			-			•											
Sample	Sample	Sample Date	I	Boro	n	Ca	dmi	um	C	alciu		Chromi	um	(Total)	(Coba	lt
Sample	Number	Sample Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
soil	J152H3	5/3/2007	3.8		1.6	0.13	U	0.13	10100	C	3.2	12.1	С	0.34	9		0.28
soil	J152H4	5/3/2007	4.8		1.2	0.65		0.09	4770	C	2.4	8.8	С	0.25	7		0.28
container	J152V6	6/6/2007	20.4		1.1	0.23		0.15	6950	C	2.2	3.1		0.32	2.9		0.25
stockpile	J155N6	6/6/2007	3		1.1	0.33		0.16	6180	C	2.2	8.1		0.31	7.1		0.25
yellow stain initial	J15JB0	9/11/2007	3	C	1.1	0.15	U	0.15	7080	C	2.2	3.4		0.3	0.59		0.24
Yellow stain after RTD	J15P45	9/19/2007	1.3	U	1.3	0.18	U	0.18	7450	C	2.5	15.9	C	0.35	2.8		0.28
Sample	Sample	Sample Date	C	copp	er		xava romi			Iron		I	Lead		Ma	gnes	ium
	Number	· ·	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
soil	J152H3	5/3/2007	15.1		0.51				25300	C	12.6	5.6		1.2	6560		3.1
soil	J152H4	5/3/2007	13.8		0.38				18900	C	9.3	14		0.88	3710		2.3
container	J152V6	6/6/2007	7.2		0.28				7570		7.4	21.4		1	1950	С	2.5
stockpile	J155N6	6/6/2007	12.8		0.28				18200		7.5	14.9		1	3740	C	2.5

Table A-1. 120-F-1 In-Process samples. (7 pages)

9/19/2007 J15P45 Yellow stain after RTD

yellow stain initial

J15JB0

4.2

13.5

...

9/11/2007

0.27

0.32

0.21

2.3

U

0.21

0.24

8980

22400

С

С

7.2

8.4

2.8

3

Attachment to	
Attachment to Waste Site Reclassification Form 2008-028	
3-028	

Sample	Sample	Sample Date	Ma	ngan	iese	Μ	lercu	ıry	Mol	ybde	num	N	icke	1	Po	tassi	um
Sample	Number	Sample Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
soil	J152H3	5/3/2007	513	C	0.09	1.3		0.02	1		0.55	13.2		0.81	1480		20.8
soil	J152H4	5/3/2007	297	C	0.06	0.36		0.02	5.5		0.41	19.6		0.6	1330		15.4
container	J152V6	6/6/2007	163		0.22	0.26		0.01	1.2		0.49	5.6		0.83	639		9.8
stockpile	J155N6	6/6/2007	312		0.22	0.04		0.02	0.5	U	0.5	9.9		0.85	1210		10
yellow stain initial	J15JB0	9/11/2007	29.1	C	0.21	0.67		0.02	0.48	U	0.48	0.82		0.82	788	C	9.7
Yellow stain after RTD	J15P45	9/19/2007	118		0.25	0.05		0.02	0.56	U	0.56	7.4		0.95	1190	С	11.2

Sample	Sample Number	Sample Date	Se	lenit	ım	S	ilico	n	ŝ	Silve	r	So	odiur	n	Va	nadi	um
Sampie	Number	Sample Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
soil	J152H3	5/3/2007	1.6	U	1.6	1620	С	1.8	0.38	U	0.38	305	C	1.9	63.9		0.43
soil	J152H4	5/3/2007	1.2	U	1.2	541	С	1.3	0.51		0.28	503	C	1.4	46.6		0.32
container	J152V6	6/6/2007	1.3	U	1.3	1200		2.6	0.28	U	0.28	269	C	2.2	16.3		0.25
stockpile	J155N6	6/6/2007	1.3	U	1.3	1400		2.7	0.28	U	0.28	136	C	2.2	41.2		0.25
yellow stain initial	J15JB0	9/11/2007	1.3	U	1.3	959	С	2.6	0.27	U	0.27	678	C	2.1	10.2		0.24
Yellow stain after RTD	J15P45	9/19/2007	1.5	U	1.5	2650	С	3	0.32	U	0.32	1040	C	2.5	59.4		0.28

Sample	Sample	Sample Date		Zinc	:
Sample	Number	Sample Date	mg/kg	Q	PQL
soil	J152H3	5/3/2007	61.9	C	0.13
soil	J152H4	5/3/2007	83.2	C	0.09
container	J152V6	6/6/2007	86	C	0.12
stockpile	J155N6	6/6/2007	63.5	C	0.13
yellow stain initial	J15JB0	9/11/2007	10	C	0.12
Yellow stain after RTD	J15P45	9/19/2007	24	C	0.14

Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site

			r	Fable A	$\cdot 1.120$)-F-1 Ir	-Process	s San	iples. (7 Pages)			-					
Constituents		ole J1 soil /3/20	.52H3 07		ple J15 soil 5/3/2007		со	ole J15 ntaine /6/200	er	waste	ple J1 desig 9/11/0	nation	yel	ple J1: low st 11/20(ain	· ·		5 yellow 9/19/2007
	μg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
					Po	lychlor	inated B	ipheı	nyls									
Aroclor-1016	20	U	20	220	UD	220	14	U	14	14	U	14						
Aroclor-1221	20	U	20	220	UD	220	14	U	14	14	U	14						
Aroclor-1232	20	U	20	220	UD	220	14	U	14	14	U	14						
Aroclor-1242	20	U	20	220	UD	220	14	U	14	14	U	14						
Aroclor-1248	20	U	20	220	UD	220	14	U	14	14	U	14						
Aroclor-1254	20	U	20	640	D	220	38		14	8.3	J	14						
Aroclor-1260	20	U	20	220	UD	220	14	U	14	14	U	14						
						P	esticide	s										
Aldrin	1						1			ſ			1.4	UD	1.4	1.6	UD	1.6
alpha-BHC													1.4	UD	1.4	1.6	UD	1.6
alpha-Chlordane													1.4	UD	1.4	1.6	JD	1.6
beta-1,2,3,4,5,6-Hexachlorocyclohexane								1					1.4	UD	1.4	1.6	UD	1.6
delta-BHC		1		1				1					1.4	UD	1.4	1.6	UD	1.6
Dichlorodiphenyldichloroethane													1.4	UD	1.4	1.6	UD	1.6
Dichlorodiphenyldichloroethylene													22	D	1.4	1.6	UD	1.6
Dichlorodiphenyltrichloroethane													21	D	1.4	1.6	UD	1.6
Dieldrin													4.9	JXD	1.4	1.6	UD	1.6
Endosulfan I													2.4	JD	1.4	1.6	UD	1.6
Endosulfan II													3.7	JXD	1.4	1.6	UD	1.6
Endosulfan sulfate													1.4	UD	1.4	1.6	UD	1.6
Endrin													1.7	JD	1.4	1.6	UD	1.6
Endrin aldehyde													4.2	JXD	1.4	1.6	UD	1.6
Endrin ketone								L		L			7	XD	1.4	1.6	UD	1.6
gamma-BHC (Lindane)								<u> </u>					1.4	UD	1.4	1.6	UD	1.6
gamma-Chlordane													1.4	UD	1.4	1.6	UD	1.6
Heptachlor													1.4	UD	1.4	1.6	UD	1.6
Heptachlor epoxide													1.4	UD	1.4	1.6	UD	1.6
Methoxychlor													1.4	UD	1.4	1.6	UD	1.6
Toxaphene													14	UD	14	16	UD	16

Attachment to Waste Site Reclassification Form 2008-028

Rev. 0

	0-F-1 In	-Process	s Sam	ples. (7 Pages)													
Constituent	Samp 5/	ole J1 soil /3/200			ple J15 soil 5/3/2007		co	ole J15 ntaine /6/2007	er	waste	ple J1 desig 9/11/0	nation	yel	ple J1 low st /11/20	ain	-		45 yellow 9/19/2007
	μg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
							SVOAs											
1,2,4-Trichlorobenzene	500	U	500	370	U	370	360	U	360	360	U	360						
1,2-Dichlorobenzene	500	U	500	370	U	370	360	U	360	360	U	360						
1,3-Dichlorobenzene	500	U	500	370	U	370	360	U	360	360	U	360						
1,4-Dichlorobenzene	500	U	500	370	U	370	360	U	360	360	U	360						
2,4,5-Trichlorophenol	1300	U	1300	930	U	930	900	U	900	890	U	890						
2,4,6-Trichlorophenol	500	U	500	370	U	370	360	U	360	360	U	360						
2,4-Dichlorophenol	500	U	500	370	U	370	360	U	360	360	U	360						
2,4-Dimethylphenol	500	U	500	370	U	370	360	U	360	360	U	360						
2,4-Dinitrophenol	1300	U	1300	930	U	930	900	U	900	890	U	890	ļ					
2,4-Dinitrotoluene	500	U	500	370	U	370	360	U	360	360	U	360						
2,6-Dinitrotoluene	500	U	500	370	U	370	360	U	360	360	U	360						
2-Chloronaphthalene	500	U	500	370	U	370	360	U	360	360	U	360						
2-Chlorophenol	500	U	500	370	U	370	360	U	360	360	U	360						
2-Methylnaphthalene	500	U	500	65	J	370	360	U	360	360	U	360						
2-Methylphenol (cresol, o-)	500	U	500	370	U	370	360	U	360	360	U	360						
2-Nitroaniline	1300	U	1300	930	U	930	900	U	900	890	U	890						
2-Nitrophenol	500	U	500	370	U	370	360	U	360	360	U	360						i
3,3'-Dichlorobenzidine	500	U	500	370	U	370	360	U	360	360	U	360						
3-Nitroaniline	500	U	500	370	U	370	360	U	360	360	U	360						
4,6-Dinitro-2-methylphenol	1300	U	1300	930	U	930	900	U	900	890	U	890						
4-Bromophenylphenyl ether	1300	U	1300	930	U	930	900	U	900	890	U	890						
4-Chloro-3-methylphenol	500	U	500	370	U	370	360	U	360	360	U	360						
4-Chloroaniline	500	U	500	370	U	370	360	U	360	360	U	360						
4-Chlorophenylphenyl ether	500	U	500	370	U	370	360	U	360	360	U	360						
4-Methylphenol (cresol, p-)	500	U	500	370	U	370	360	U	360	360	U	360						
4-Nitroaniline	1300	U	1300	930	U	930	900	U	900	890	U	890						
4-Nitrophenol	1300	U	1300	930	U	930	900	U	900	890	U	890						
Acenaphthene	500	U	500	370	U	370	360	U	360	360	U	360		ļ				
Acenaphthylene	500	U	500	370	U	370	360	U	360	360	U	360	1	ļ				
Anthracene	500	U	500	580		370	360	U	360	360	U	360		I				<u></u>
Benzo(a)anthracene	500	U	500	42	J	370	41	J	360	360	U	360		ļ				ļ
Benzo(a)pyrene	500	U	500	370	U	370	65	J	360	30	J	360	<u> </u>					<u> </u>
Benzo(b)fluoranthene	500	U	500	370	U	370	63	J	360	31	J	360	ļ	ļ				
Benzo(ghi)perylene	500	U	500	370	U	370	47	J	360	39	J	360		ļ				
Benzo(k)fluoranthene	500	U	500	370	U	370	69	J	360	35	J	360	ļ					
Bis(2-chloro-1-methylethyl)ether	500	U	500	370	U	370	360	U	360	360	U	360	ļ					
Bis(2-Chloroethoxy)methane	500	U	500	370	U	370	360	U	360	360	U	360						Ĺ

Attachment to Waste Site Reclassification Form 2008-028

]	Table A-	1. 12	0-F-1 In	-Process	Sam	iples. (7 Pages)			r					
Constituent		le J1 soil 3/20(Sample J152H4 soil 5/3/2007				ole J15 ntaine 6/200	er	waste		155N6 gnation 17	Sample J15JB0 yellow stain 9/11/2007					45 yellow 9/19/200'
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
							s (continu	ied)										
Bis(2-chloroethyl) ether	500	U	500	370	<u> </u>	370	360	U	360	360	U	360						
Bis(2-ethylhexyl) phthalate	110	J	500	140	J	370	180	JB	360	72	JB	360						
Butylbenzylphthalate	500	U	500	370	U	370	360	U	360	360	U	360						
Carbazole	500	U	500	370	U	370	360	U	360	360	U	360						
Chrysene	500	U	500	99	J	370	86	J	360	24	J	360						
Di-n-butylphthalate	45	J	500	370	U	370	27	JB	360	48	JB	360						
Di-n-octylphthalate	500	U	500	370	U	370	360	U	360	360	U	360						
Dibenz[a,h]anthracene	500	U	500	370	U	370	360	U	360	360	U	360						l
Dibenzofuran	500	U	500	370	U	370	360	U	360	360	U	360						
Diethylphthalate	500	U	500	370	U	370	360	U	360	360	U	360						l
Dimethyl phthalate	500	U	500	370	U	370	360	υ	360	360	U	360						
Fluoranthene	500	U	500	71	J	370	63	J	360	28	J	360						
Fluorene	500	U	500	370	U	370	360	U	360	360	U	360						
Hexachlorobenzene	500	U	500	370	U	370	360	U	360	360	U	360						
Hexachlorobutadiene	500	U	500	370	U	370	360	U	360	360	U	360						
Hexachlorocyclopentadiene	500	U	500	370	U	370	360	U	360	360	U	360						
Hexachloroethane	500	U	500	370	U	370	360	U	360	360	U	360						
Indeno(1,2,3-cd)pyrene	500	U	500	370	U	370	43	J	360	35	J	360						
Isophorone	500	U	500	370	υ	370	360	U	360	360	U	360						
N-Nitroso-di-n-dipropylamine	500	U	500	370	υ	370	360	U	360	360	U	360						
N-Nitrosodiphenylamine	500	U	500	370	U	370	360	U	360	360	U	360						
Naphthalene	500	υ	500	59	J	370	360	U	360	360	U	360						Í
Nitrobenzene	500	U	500	370	U	370	360	U	360	360	U	360						
Pentachlorophenol	1300	U	1300	20000	D	9300	34	J	900	890	U	890						
Phenanthrene	500	U	500	370	U	370	33	J	360	18	J	360						Í
Phenol	500	U	500	370	υ	370	48	J	360	360	U	360						ļ
Pyrene	500	U	500	170	J	170	100.255	J	360	40	J	360						L
				Tota	al Pet	roleun	n Hydro	ocar	bon (T	PH)								
Total Petroleum Hydrocarbon (TPH)	201	U	201	18,000		3,700	244		144	142	U	142						

Rev. 0

F				able A	-1. 120	J-F-1 II	-Process	s San	ipies. (/ Pages)			·						
Constituent	Sample J152H3 soil 5/3/2007		Sample J152H4 soil 5/3/2007			co	ple J15 ntaine /6/200	er 7	waste		155N6 gnation)7	yel	ple J1 low st 11/200	ain		Sample J15P45 yellow stain @ 20 ft 9/19/2007			
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	
							VOAs												
1,1,1-Trichloroethane							6	U	6	6	U	6							
1,1,2,2-Tetrachloroethane							6	U	6	6	U	6							
1,1,2-Trichloroethane							6	U	6	6	U	6							
1,1-Dichloroethane							6	U	6	6	U	6							
1,1-Dichloroethene							6	U	6	6	U	6							
1,2-Dichloroethane							6	U	6	6	U	6							
1,2-Dichloroethene(Total)							6	U	6	6	U	6							
1,2-Dichloropropane							6	U	6	6	U	6							
2-Butanone							11	U	11	11	U	11							
2-Hexanone							11	U	11	11	U	11							
4-Methyl-2-Pentanone					[11	U	11	11	U	11							
Acetone		Τ					11	U	11	2	J	11	1						
Benzene		TT					6	U	6	6	U	6				1			
Bromodichloromethane	T						6	U	6	6	U	6				1			
Bromoform							6	U	6	6	U	6							
Bromomethane	1				-		11	U	11	11	U	11							
Carbon disulfide					1		6	U	6	6	U	6	1						
Carbon tetrachloride							6	U	6	6	U	6							
Chlorobenzene	1						6	U	6	6	U	6							
Chloroethane	1						11	U	11	11	U	11	[
Chloroform							6	U	6	6	U	6							
Chloromethane							11	U	11	11	U	6							
cis-1,2-Dichloroethylene							6	U	6	6	U	6				T			
cis-1,3-Dichloropropene					I		6	U	6	6	U	6							
Dibromochloromethane							6	U	6	6	U	6	1						
Ethylbenzene							6	U	6	6	U	6				1			
Methylenechloride							11	В	6	9	В	6							
Styrene							6	U	6	6	U	6							
Tetrachloroethene					1		6	U	6	6	U	6							
Toluene				1			6	U	6	6	U	6							
trans-1,2-Dichloroethylene	Ī						6	U	6	6	U	6			10000000000000000000000000000000000000	1			
trans-1,3-Dichloropropene							6	U	6	6	U	6							
Trichloroethene							6	U	6	6	U	6							
Vinyl chloride				İ	1	İ	11	U	11	11	Ū	11	1			1			
Xylenes (total)	1						6	U	6	6	U	6				1			

Number Number Desker O POL mayker Q POL MAX MAX <th>Sample</th> <th>HEIS</th> <th>Sample</th> <th>Al</th> <th>umini</th> <th>ım</th> <th>A</th> <th>ntime</th> <th>onv</th> <th>A</th> <th>rseni</th> <th>ic</th> <th>В</th> <th>ariu</th> <th>m</th> <th>Ber</th> <th>rylliu</th> <th>m</th> <th>B</th> <th>oron</th> <th></th> <th>Ca</th> <th>dmiu</th> <th>m</th>	Sample	HEIS	Sample	Al	umini	ım	A	ntime	onv	A	rseni	ic	В	ariu	m	Ber	rylliu	m	B	oron		Ca	dmiu	m
NN-2 16.63 122/007 5490 112 0.84 11 0.89 2 1.4 49.8 0.28 0.34 0.44 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.14 2.3 1.4 0.14 0.16 0.1														-										
NN-2 116344 123/2007 6500 11.5 0.77 0.31 0.44 0.15 4.7 1.5 0.15 4.7 1.5 0.15 4.7 1.5 0.15 4.7 1.5 0.16 0.14 0.05 0.14 0.05 0.14 0.05 0.14 0.05 0.14 0.16 0.27 0.16 0.15 0.17 0.31 0.31 0.31 0.15 1.5 0.16 0.15 0.17 0.31 0.31 0.15 1.5 0.16 0.15 0.1					×						Ť			Ň			<u> </u>						Ū	
NW-3 J 16345 J 12/20207 Stop I.1.5 0.87 U 0.87 L.0 0.84 6.57 0.28 0.36 0.14 2.3 1.4 0.14 U 0.14 U 0.16 U 0.15 U U 0.15 U 0.15 U 0.15 U U U <thu< th=""> <thu< th=""> U</thu<></thu<>																								0.15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																								
NW-6 11647 122/2027 550 12.8 0.96 2.0 0.83 0.32 0.37 0.16 1.0 1.6 0.16 1.0 0.16 1.0 0.16 1.0 0.16 1.0 0.16 1.0 0.15 NW-7 116349 127/2027 4600 11.7 0.88 0.0 88 2.3 1.5 81.3 0.29 0.33 0.15 2.3 1.5 0.57 0.15 1.5 0.55 0.15 <td></td> <td></td> <td>and the second se</td> <td></td> <td>Ū</td> <td>the second second second second second second second second second second second second second second second s</td>			and the second se																				Ū	the second second second second second second second second second second second second second second second s
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									and the second se															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		010010	12/5/2007	1000		11.7	0.00	<u> </u>																
NN-8 JIGSI L23/20207 4780 124 0.93 2.6 1.5 48.1 0.31 0.29 0.15 1.7 1.5 0.71 0.15 U 0.15		116350	12/3/2007	5340		12.2	0.92	П	0.92	24		15	72.3		0.31	0.31		0.15	1.9		1.5	0.49		0.15
NN-0 J1632 L2/A2007 S000 L23 0.92 V 0.92 2.3 1.5 67.2 0.31 0.33 0.15 1.6 1.5 0.15 U 0.15 Emplohik J16534 L2/A2007 4807 3.7 0.28 U 0.22 2.3 1.5 67.2 0.31 0.33 0.15 U 0.46 0.05 U 0.05 U 0.05 U 0.46 0.05 U 0.05 U 0.46 0.05 U 0.05 U 0.06 U 0.05 U 0.05<																								
NW-10 J16333 J12/A2007 4930 L22 0.92 U 0.92 2.3 1.5 5.8 0.31 0.33 0.15 1.5 U 1.5 0.0 0.035 0.15 1.5 U 0.5 U 0.05 0.046 U 0.046 U 0.056 U 0.055 U 0.055 U 0.055 U 0.055 U 0.057 U 0.057 U 0.057 U 0.035 U 0.056 U 0.056 U 0.057 U U																							U	
Leigh bith 1/6341 1/2/17/2007 80.7 3.7 0.28 U 0.24 U 0.46 U 0.46 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.045 0.26 0.04 0.36 C 0.45 U 0.09 0.04 0.04 0.36 C 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.045 0.045 0.045 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td>																				U				
normaly J163T2 12/11/2007 114 3.6 1.6 U 0.27 2.8 U 0.45 1.8 0.09 0.04 0.04 0.36 C 0.45 U 0.04 Sample Location Date Marka Q POL mg/kg											U						U			_			_	
Sample Location Number Mumber Date Date Date Colour Chromiun Cobalt Copper Iron Lead Magnesium NW-1 J16343 127/2007 420 C 11.2 8.8 0.56 5.8 0.56 12.8 C 0.56 18900 12.9 4.4 0.93 3.3 0.84 4090 7.7 NW-2 J16343 127/2007 3400 C 11.2 8.8 0.56 5.8 0.56 12.8 C 0.56 18900 11.2 8.4 4090 7.7 NW-3 J16345 127/2007 3350 C 11.5 6.2 0.58 6 0.58 17900 14.1 4.8 0.94 3.560 7.7 7.8 6.4 0.59 14.2 C 0.59																								
Location Number Date mg/kg Q PQL <	anomary	510512	12/11/2007	<u> </u>	I		1.0		0.27	2.0	<u> </u>	0.10	1 1.0		0.05	0.0.1	1	010 /	0.000					
Location Number Date mg/kg Q PQL <		Γ									~		Г <u>,</u>			Ι.	Τ							
NW-1 J16343 12/3/2007 42/3 (C) C L Reg (C) C Reg (C) C Reg (C) <					Calciu	m	C	irom	ium		Jobal	lt		opp	er	Iron			L	lead		Maş	gnesi	um
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
NW-3 J16345 12/3/2007 3350 C 11.5 6.2 0.58 6 0.58 11.9 C 0.58 17700 13 3.6 0.84 3780 7.2 NW-4 J16347 12/3/2007 3350 C 12.5 7.6 0.63 6 0.63 10.2 C 0.64 17800 14.1 4.8 0.94 3560 7.2 NW-6 J16347 12/3/2007 360 C 11.7 8.4 0.59 14.2 C 0.59 14.2 C 0.59 14.2 C 0.59 14.2 C 0.59 14.0 13.2 5.3 0.88 3340 7.3 Dup of J16349 J16350 12/3/2007 3460 C 12.2 10.4 0.61 6 0.61 13.7 C 0.68 0.93 3310 7.7 NW-9 J16351 12/3/2007 330 C 12.4 7.1 0.62 4.56 C </td <td>NW-1</td> <td>J16343</td> <td>12/3/2007</td> <td>4230</td> <td>C</td> <td>11.2</td> <td>8.8</td> <td></td> <td>0.56</td> <td>5.8</td> <td></td> <td>0.56</td> <td>12.8</td> <td>C</td> <td>0.56</td> <td>18900</td> <td></td> <td>12.6</td> <td>3.3</td> <td></td> <td>0.84</td> <td>4090</td> <td></td> <td>7</td>	NW-1	J16343	12/3/2007	4230	C	11.2	8.8		0.56	5.8		0.56	12.8	C	0.56	18900		12.6	3.3		0.84	4090		7
NW-4 J16346 12/3/2007 3350 C 12.5 7.6 0.63 6 0.63 10.2 C 0.64 17.800 14.4 6.8 0.94 3560 7.8 NW-5 J16347 12/3/2007 3600 C 11.7 8.4 0.59 6.4 0.59 14.2 C 0.59 14.1 4.8 0.96 3790 8 NW-7 J16349 12/3/2007 3400 C 11.7 8.4 0.59 5.2 0.59 14.2 C 0.59 14.1 4.8 0.94 3840 7.3 Dup of J16349 12/3/2007 3460 C 12.2 10.4 0.61 6 0.61 13.7 C 0.61 16900 13.7 9.1 0.92 3620 7.6 NW-8 J16352 12/3/2007 3030 C 12.2 6.6 0.61 5.5 0.61 10.6 C 0.61 15.6 0.61 1	NW-2	J16344	12/3/2007	3440	C	12.4	7.9		0.62	6.6		0.62	12.2	C	0.62	19300		13.9	4.4		0.93	3960		7.7
NW-5 JI6347 12/3/2007 3560 C 12.8 7.7 0.64 6.1 0.64 11.9 C 0.64 17500 14.4 6.8 0.96 3790 8 NW-6 J16349 12/3/2007 3760 C 11.7 15.3 0.59 6.4 0.59 14.2 C 0.59 18300 13.2 5.3 0.88 3840 7.3 Dup of J16349 12/3/2007 3700 C 11.7 15.3 0.52 0.59 14.2 C 0.59 18300 13.2 5.3 0.88 3160 7.3 Dup of J16350 12/3/2007 3720 C 12.4 7.1 0.62 4.9 0.62 16.5 C 0.61 13.7 0.1 0.92 3310 7.7 NW-0 J16353 12/3/2007 3030 C 12.2 6.2 0.61 10.6 C 0.61 13.7 0.42 0.310 7.7	NW-3	J16345	12/3/2007	3350	С	11.5	6.2		0.58	6		0.58	11.9	C	0.58	17700		13	3.6		0.87	3780		7.2
NW-6 JI6348 12/3/2007 3760 C 11.7 8.4 0.59 6.4 0.59 14.2 C 0.59 18300 13.2 5.3 0.88 3840 7.3 NW-7 JI6349 J2/3/2007 3470 C 11.7 15.3 0.59 5.2 0.59 14.2 C 0.59 14.100 13.2 5.3 0.88 3840 7.3 Dup of J16350 12/3/2007 3460 C 12.2 10.4 0.61 6 0.61 16.5 C 0.62 13900 13.9 6.8 0.93 3310 7.7 NW-8 J16351 12/3/2007 3050 C 12.2 6.2 0.61 5.5 0.61 10.66 C 0.61 13.8 3.8 0.92 3190 7.7 NW-10 J16351 12/3/2007 3030 C 12.2 6.2 0.61 5.5 0.61 10.66 C 0.61 13.8 0.28	NW-4	J16346	12/3/2007	3350	С	12.5	7.6		0.63	6		0.63	10.2	C	0.63	17800		14.1	4.8		0.94	3560		7.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	and the second s		12/3/2007	3560	C	12.8	7.7		0.64	6.1		0.64	11.9	C	0.64	17500		14.4	6.8		0.96	3790		8
NW-7 J16349 12/3/2007 3470 C 11.7 15.3 0.59 5.2 0.59 14.2 C 0.59 14100 13.2 5.3 0.88 3160 7.3 Dup of J16349 J16350 12/3/2007 3460 C 12.4 7.1 0.62 4.9 0.62 16.5 C 0.61 13.9 6.8 0.93 3310 7.7 NW-9 J16353 12/3/2007 3030 C 12.2 6.6 0.61 5.5 0.61 10.6 C 0.61 13.8 3.8 0.92 3190 7.7 NW-9 J16353 12/3/2007 3030 C 12.2 6.2 0.61 0.55 0.61 10.60 C 0.61 1380 13.8 3.8 0.92 31470 7.3 MW-10 J16353 12/3/2007 3030 C 3.7 0.19 0.18 0.61 10.6 C 0.61 16900 13.8 3.8 <td></td> <td></td> <td></td> <td>3760</td> <td>C</td> <td>11.7</td> <td>8.4</td> <td></td> <td>0.59</td> <td>6.4</td> <td></td> <td>0.59</td> <td>14.2</td> <td>C</td> <td>0.59</td> <td>18300</td> <td></td> <td>13.2</td> <td>5.3</td> <td></td> <td>0.88</td> <td>3840</td> <td></td> <td>7.3</td>				3760	C	11.7	8.4		0.59	6.4		0.59	14.2	C	0.59	18300		13.2	5.3		0.88	3840		7.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			12/3/2007	3470	C	11.7	15.3		0.59	5.2		0.59	14.2	C	0.59	14100		13.2			0.88	3160		7.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													1									[
NW-8 J16351 12/3/2007 3720 C 12.4 7.1 0.62 4.9 0.62 16.5 C 0.62 1390 13.9 6.8 0.93 3310 7.7 NW-9 J16352 12/3/2007 3030 C 12.3 6.6 0.61 5.6 0.61 10.6 C 0.61 1380 13.8 3.8 0.92 3100 7.7 Biologian J16353 12/3/2007 3030 C 12.2 6.2 0.61 5.5 0.61 10.6 C 0.61 1650 0.61 13.7 3.7 0.92 3470 7.6 Equip biank J16352 12/1/2007 23.9 C 3.7 0.19 U 0.19 0.25 0.19 156 4.2 0.34 0.28 10.3 2.3 anomaly J16342 12/3/2007 86.6 C 0.1 0.18 0.57 0.18 261 C 4 3.1 0.28		J16350	12/3/2007	3460	С	12.2	10.4		0.61	6		0.61	13.7	C	0.61	16900		13.7	9.1		0.92	3620		7.6
NW-9 J16352 12/3/2007 3050 C 12.3 6.6 0.61 5.6 0.61 10.6 C 0.61 1380 138 3.8 0.92 3190 7.7 NW-10 J16353 12/3/2007 3030 C 12.2 6.2 0.61 5.5 0.61 10.6 C 0.61 16900 13.7 3.7 0.92 3470 7.6 gammaly J16351 12/17/2007 88.6 C 3.6 0.41 U 0.18 0.57 0.18 261 C 4 3.1 U 0.27 47.7 3.3 Sample Mercury Molyberum Nick Potasium Seletitt Sample Date mg/kg Q PQL <				3720	С	12.4	7.1		0.62	4.9		0.62	16.5	C	0.62	13900	1	13.9	6.8	1	0.93	3310		7.7
NW-10 J16353 12/3/2007 3030 C 12.2 6.2 0.61 5.5 0.61 10.6 C 0.61 16900 13.7 3.7 0.92 3470 7.6 Equip blank J16354 12/17/2007 23.9 C 3.7 0.19 U 0.19 U 0.19 0.25 0.19 156 4.2 0.34 0.28 10.3 2.3 anomaly J16372 12/11/2007 88.6 C 3.6 0.41 U 0.18 0.36 U 0.18 0.57 0.18 261 C 4 3.1 U 0.27 47.7 3.3 Sample MEIS Sample Mangame Mercury Molyber Nor.et Potassum Selenium Selenium Sileon NW-2 J16344 12/3/2007 308 C 0.12 0.01 1.3 0.93 10.2 0.62 1300 12.4 1.9 U 1.9 2670			12/3/2007	3050		12.3	6.6		0.61	5.6		0.61	10.6	C	0.61	13800	1	13.8	3.8		0.92	3190		7.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								1	0.61	5.5		0.61	10.6	C	0.61	16900	1	13.7	3.7		0.92	3470		7.6
Jironaly Jirostra 12/11/2007 88.6 C 3.6 0.41 U 0.18 0.18 0.57 0.18 261 C 4 3.1 U 0.27 47.7 3.3 Sample HEIS Sample Date mg/kg Q PQL mg/kg Q <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.7</td> <td></td> <td>U</td> <td>0.19</td> <td>0.19</td> <td>U</td> <td>0.19</td> <td>0.25</td> <td>1</td> <td>0.19</td> <td>156</td> <td></td> <td>4.2</td> <td>0.34</td> <td></td> <td>0.28</td> <td>10.3</td> <td></td> <td>2.3</td>						3.7		U	0.19	0.19	U	0.19	0.25	1	0.19	156		4.2	0.34		0.28	10.3		2.3
Sample Location HEIS Number Sample Date Mangarese Mercury Molyberum Nickel Potasium Selenium Selenium Silicon NW-1 J16343 12/3/2007 260 C 0.11 0.009 0.84 U 0.84 10.9 0.56 847 11.2 1.7 U 1.7 1560 11.2 NW-2 J16344 12/3/2007 308 C 0.12 0.01 U 0.009 0.84 U 0.84 10.9 0.62 1300 12.4 1.9 U 1.7 1560 11.2 NW-3 J16345 12/3/2007 266 C 0.12 0.01 U 0.09 0.87 0.87 10.3 0.58 1010 11.5 1.7 U 1.7 2100 11.5 NW-4 J16346 12/3/2007 288 C 0.13 0.23 0.01 2.3 0.96 11.4 0.64 1130 12.8 1.9 U <						3.6	0.41	U	0.18	0.36	U	0.18	0.57		0.18	261	C	4	3.1	U	0.27	47.7		3.3
Location Number Date mg/kg Q PQL mg/kg Q PQL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>•</td><td></td><td></td><td></td></t<>												•						•			•			
Location Number Date mg/kg Q PQL mg/kg Q PQL <t< td=""><td>Sample</td><td>HEIS</td><td>Sample</td><td>M</td><td>angar</td><td>iese</td><td>N</td><td>Aerci</td><td>iry</td><td>Mo</td><td>lybde</td><td>num</td><td></td><td>Nick</td><td>el</td><td>Po</td><td>tassiu</td><td>ım</td><td>Sel</td><td>eniu</td><td>m</td><td>S</td><td>ilico</td><td>1</td></t<>	Sample	HEIS	Sample	M	angar	iese	N	Aerci	iry	Mo	lybde	num		Nick	el	Po	tassiu	ım	Sel	eniu	m	S	ilico	1
NW-1 J16343 12/3/2007 260 C 0.11 0.009 U 0.009 0.84 U 0.84 10.9 0.56 847 11.2 1.7 U 1.7 1560 11.2 NW-2 J16344 12/3/2007 308 C 0.12 0.01 U 0.01 1.3 0.93 10.2 0.62 1300 12.4 1.9 U 1.9 2670 12.4 NW-3 J16345 12/3/2007 266 C 0.12 0.009 U 0.087 0.87 10.3 0.58 1010 11.5 1.7 U 1.7 2100 11.5 NW-4 J16346 12/3/2007 318 C 0.13 0.23 0.01 2.3 0.96 11.4 0.64 1130 12.5 1.9 U 1.9 2.50 12.5 NW-5 J16348 12/3/2007 288 C 0.12 0.56 0.009 1.7 0.88 10.4<		Number	Date	mg/kg	0	POL	mg/kg	0	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
NW-2 J16344 12/3/2007 308 C 0.01 U 0.01 1.3 0.93 10.2 0.62 1300 12.4 1.9 U 1.9 2670 12.4 NW-3 J16345 12/3/2007 266 C 0.12 0.009 U 0.009 0.87 0.87 10.3 0.58 1010 11.5 1.7 U 1.7 2100 11.5 NW-4 J16346 12/3/2007 318 C 0.13 0.01 U 0.94 U 0.94 9 0.63 1270 12.5 1.9 U 1.9 2560 12.5 NW-5 J16347 12/3/2007 288 C 0.13 0.23 0.01 2.3 0.96 11.4 0.64 1130 12.8 1.9 U 1.9 1.0 12.8 NW-6 J16348 12/3/2007 287 C 0.12 0.37 0.01 3.3 0.88 10.4 0.59		J16343	12/3/2007		C	0.11	0.009	U	0.009	0.84	U	0.84	10.9	Τ	0.56	847	Τ	11.2	1.7	U	1.7	1560		11.2
NW-3 J16345 12/3/2007 266 C 0.12 0.009 U 0.009 0.87 0.87 10.3 0.58 1010 11.5 1.7 U 1.7 2100 11.5 NW-4 J16346 12/3/2007 318 C 0.13 0.01 U 0.94 U 0.94 9 0.63 1270 12.5 1.9 U 1.9 2560 12.5 NW-5 J16347 12/3/2007 288 C 0.13 0.23 0.01 2.3 0.96 11.4 0.64 1130 12.8 1.9 U 1.9 1500 12.8 NW-6 J16348 12/3/2007 288 C 0.12 0.56 0.009 1.7 0.88 10.4 0.59 1170 11.7 1.8 U 1.8 1890 11.7 NW-7 J16349 12/3/2007 287 C 0.12 0.37 0.01 3.3 0.88 9.1 0.59 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.01</td> <td>U</td> <td>0.01</td> <td>1.3</td> <td></td> <td>0.93</td> <td>10.2</td> <td></td> <td>0.62</td> <td>1300</td> <td></td> <td>12.4</td> <td>1.9</td> <td>U</td> <td>1.9</td> <td>2670</td> <td></td> <td>12.4</td>							0.01	U	0.01	1.3		0.93	10.2		0.62	1300		12.4	1.9	U	1.9	2670		12.4
NW-4 J16346 12/3/2007 318 C 0.13 0.01 U 0.94 U 0.94 9 0.63 1270 12.5 1.9 U 1.9 2560 12.5 NW-5 J16347 12/3/2007 288 C 0.13 0.23 0.01 2.3 0.96 11.4 0.64 1130 12.8 1.9 U 1.9 1500 12.8 NW-6 J16348 12/3/2007 288 C 0.12 0.56 0.009 1.7 0.88 10.4 0.59 1170 11.7 1.8 U 1.8 1890 11.7 NW-7 J16349 12/3/2007 267 C 0.12 0.37 0.01 3.3 0.88 9.1 0.59 1160 11.7 1.8 U 1.8 3040 11.7 Dup of						0.12	0.009	U	0.009	0.87		0.87	10.3		0.58	1010		11.5	1.7	U	1.7	2100		11.5
NW-5 J16347 12/3/2007 288 C 0.13 0.23 0.01 2.3 0.96 11.4 0.64 1130 12.8 1.9 U 1.9 1500 12.8 NW-6 J16348 12/3/2007 288 C 0.12 0.56 0.009 1.7 0.88 10.4 0.59 1170 11.7 1.8 U 1.8 1890 11.7 NW-7 J16349 12/3/2007 267 C 0.12 0.37 0.01 3.3 0.88 9.1 0.59 1160 11.7 1.8 U 1.8 1890 11.7 Dup of						0.13	0.01	U	0.01	0.94	U	0.94	9		0.63	1270		12.5	1.9	U	1.9	2560		12.5
NW-6 J16348 12/3/2007 288 C 0.12 0.56 0.009 1.7 0.88 10.4 0.59 1170 11.7 1.8 U 1.8 1890 11.7 NW-7 J16349 12/3/2007 267 C 0.12 0.37 0.01 3.3 0.88 9.1 0.59 1160 11.7 1.8 U 1.8 3040 11.7 Dup of J16350 12/3/2007 282 C 0.12 0.25 0.008 2.2 0.92 10.1 0.61 12.0 1.8 U 1.8 2390 12.2 NW-8 J16351 12/3/2007 285 C 0.12 0.25 0.008 2.2 0.92 10.1 0.61 1230 12.2 1.8 U 1.8 2390 12.2 NW-8 J16352 12/3/2007 282 C 0.12 0.02 0.01 0.92 U 0.92 8.8 0.61 1230 <t< td=""><td></td><td></td><td></td><td>288</td><td></td><td>0.13</td><td>0.23</td><td></td><td>0.01</td><td>2.3</td><td></td><td>0.96</td><td>11.4</td><td></td><td>0.64</td><td>1130</td><td></td><td>12.8</td><td>1.9</td><td>U</td><td>1.9</td><td>1500</td><td></td><td>12.8</td></t<>				288		0.13	0.23		0.01	2.3		0.96	11.4		0.64	1130		12.8	1.9	U	1.9	1500		12.8
NW-7 J16349 12/3/2007 267 C 0.12 0.37 0.01 3.3 0.88 9.1 0.59 1160 11.7 1.8 U 1.8 3040 11.7 Dup of J16349 J16350 12/3/2007 282 C 0.12 0.25 0.008 2.2 0.92 10.1 0.61 1230 12.2 1.8 U 1.8 2390 12.2 NW-8 J16351 12/3/2007 235 C 0.12 1.5 0.02 1.9 0.93 10.5 0.62 932 12.4 1.9 U 1.8 2390 12.4 NW-9 J16352 12/3/2007 282 C 0.12 0.02 1.9 0.93 10.5 0.62 932 12.4 1.9 U 1.8 2390 12.4 NW-9 J16352 12/3/2007 285 C 0.11 0.92 U 0.92 8.8 0.61 1230 12.3 1.8 <			and the second se						0.009	1.7		0.88	10.4	T	0.59	1170		11.7	1.8	U	1.8	1890		11.7
Dup of J16349 J16350 12/3/2007 282 C 0.12 0.25 0.008 2.2 0.92 10.1 0.61 1230 12.2 1.8 U 1.8 2390 12.2 NW-8 J16351 12/3/2007 235 C 0.12 1.5 0.02 1.9 0.93 10.5 0.62 932 12.4 1.9 U 1.9 1710 12.4 NW-9 J16352 12/3/2007 282 C 0.12 0.02 0.92 U 0.92 8.8 0.61 1230 12.3 1.8 U 1.8 3180 12.3 NW-9 J16353 12/3/2007 265 C 0.12 0.01 0.92 U 0.92 8.6 0.61 1230 12.3 1.8 U 1.8 2570 12.2 Equip blank J16354 12/17/2007 4.2 0.04 0.009 U 0.28 0.19 U 0.19 37.3 3.7								1	0.01	3.3	1	0.88	9.1		0.59	1160		11.7	1.8	U	1.8	3040		11.7
J16349 J16350 12/3/2007 282 C 0.12 0.25 0.008 2.2 0.92 10.1 0.61 1230 12.2 1.8 U 1.8 2390 12.2 NW-8 J16351 12/3/2007 235 C 0.12 1.5 0.02 1.9 0.93 10.5 0.62 932 12.4 1.9 U 1.9 1710 12.4 NW-9 J16352 12/3/2007 282 C 0.12 0.02 0.92 U 0.92 8.8 0.61 1230 12.3 1.8 U 1.8 2390 12.4 NW-9 J16352 12/3/2007 282 C 0.12 0.02 0.01 0.92 U 0.92 8.8 0.61 1230 12.3 1.8 U 1.8 3180 12.3 NW-10 J16353 12/3/2007 265 C 0.11 0.01 0.92 U 0.92 8.6 0.61 1884 12.2 1.8 U 1.8 2570 12.2 12.4 Eq		1	1	1	1		1	1		1	1		1	1			1	1				1		
NW-8 J16351 12/3/2007 235 C 0.12 1.5 0.02 1.9 0.93 10.5 0.62 932 12.4 1.9 U 1.9 1710 12.4 NW-9 J16352 12/3/2007 282 C 0.12 0.02 0.01 0.92 U 0.92 8.8 0.61 1230 12.3 1.8 U 1.8 3180 12.3 NW-10 J16353 12/3/2007 265 C 0.01 U 0.92 U 0.92 8.6 0.61 1884 12.2 1.8 U 1.8 2570 12.2 Equip blank J16354 12/17/2007 4.2 0.04 0.009 U 0.28 0.19 U 0.19 37.3 3.7 0.56 U 0.56 0.56 U 0.56		J16350	12/3/2007	282	C	0.12	0.25	1	0.008	2.2	1	0.92	10.1		0.61	1230		12.2	1.8	U	1.8	2390		12.2
NW-9 J16352 12/3/2007 282 C 0.12 0.02 0.01 0.92 U 0.92 8.8 0.61 1230 12.3 1.8 U 1.8 3180 12.3 NW-10 J16353 12/3/2007 265 C 0.12 0.01 U 0.92 U 0.92 8.6 0.61 1230 12.3 1.8 U 1.8 3180 12.3 NW-10 J16353 12/3/2007 265 C 0.12 0.01 U 0.92 U 0.92 8.6 0.61 884 12.2 1.8 U 1.8 2570 12.2 Equip blank J16354 12/17/2007 4.2 0.04 0.009 U 0.28 U 0.28 0.19 U 0.19 37.3 3.7 0.56 U 0.56 0.56 <								1			1						1			U				
NW-10 J16353 12/3/2007 265 C 0.12 0.01 U 0.92 U 0.92 8.6 0.61 884 12.2 1.8 U 1.8 2570 12.2 Equip blank J16354 12/17/2007 4.2 0.04 0.009 U 0.028 U 0.28 0.19 U 0.19 37.3 3.7 0.56 U 0.56 U 0.56 U 0.56											U			1			1			U				12.3
Equip blank J16354 12/17/2007 4.2 0.04 0.009 U 0.009 0.28 U 0.28 0.19 U 0.19 37.3 3.7 0.56 U 0.56 U 0.56 U 0.56								U			_			1	0.61			12.2		U		2570		
					Ť									ΤU			1						U	
					1			1									1						-	
	L	1			i					•				_				•	•	•	•			

Table A-2. 120-F-1 Northwest Excavation Sampling Results from Initial Verification Samples. (8 Pages)

Atta
chn
nent
to
Wa
aste
Site
Rec
class
sific
atic
'nF
orn
1 20
-80
Attachment to Waste Site Reclassification Form 2008-028

Sample	HEIS Number	Sample Date		Silver		Sodium			Va	nadii	um		Zinc		Total hydro	•		Bromide			C	Chloride		
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q		mg/kg	Q	PQI	
NW-1	J16343	12/3/2007	0.28	U	0.28	204	С	5.6	50.1		0.39	36.6	C	1.7	139	U	139	2.3	U	2.3	2.3	U	2.3	
NW-2	J16344	12/3/2007	0.31	U	0.31	190	С	6.2	45.7		0.43	38.7	C	1.9	148	U	148	2.6	U	2.6	2.6	U	2.6	
NW-3	J16345	12/3/2007	0.29	U	0.29	156	С	5.8	41.9		0.4	34	C	1.7	146	U	146	2.4	U	2.4	2.4	U	2.4	
NW-4	J16346	12/3/2007	0.31	U	0.31	163	С	6.3	41.4		0.44	44.6	C	1.9	148	U	148	2.3	U	2.3	2.3	U	2.3	
NW-5	J16347	12/3/2007	0.38		0.32	153	С	6.4	41.8		0.45	44.1	C	1.9	148	U	148	2.4	U	2.4	2.4	U	2.4	
NW-6	J16348	12/3/2007	0.72		0.29	179	С	5.9	44.6		0.41	43.7	C	1.8	148	U	148	2.6	U	2.6	2.6	U	2.6	
NW-7	J16349	12/3/2007	0.46		0.29	129	С	5.9	32.8		0.41	38.9	C	1.8	147	Ū	147	2.6	U	2.6	2.6	U	2.6	
Dup of																								
J16349	J16350	12/3/2007	0.31	U	0.31	147	С	6.1	39.9		0.43	37.8	C	1.8	147	U	147	2.4	U	2.4	2.4	U	2.4	
NW-8	J16351	12/3/2007	0.31	U	0.31	135	C	6.2	34		0.43	43.9	C	1.9	140	U	140	2.3	U	2.3	2.3	U	2.3	
		10/2/2007	0.31	U	0.31	123	С	6.1	30.9		0.43	34.5	C	1.8	150	U	150	2.7	U	2.7	2.7	U	2.7	
NW-9	J16352	12/3/2007	0.51		0.01																			
NW-9 NW-10	J16352 J16353	12/3/2007	0.31	U	0.31	154	С	6.1	40.9		0.43	32.3	C	1.8	149	U	149	2.2	U	2.2	2.2	U	2.2	
	J16353	12/3/2007	0.31	Ū	0.31						L				1	L			1					
		12/3/2007 Sample	0.31		0.31 le	F	C Iuori	ide	N	litrat	te	1	Nitrat	e	Pho	ospha	nte	Su	ulfate	2	S	Sulfide		
NW-10 Sample Location	J16353 HEIS Number	12/3/2007 Sample Date	0.31 0.31	U Cyanic Q	0.31 le PQL	F mg/kg	luori Q	ide PQL	N mg/kg	Q	te PQL	ng/kg	Nitrat	e PQL	Pho mg/kg	ospha Q	ite PQL	Su mg/kg	ulfate	PQL	s mg/kg	Sulfid	e PQI	
NW-10 Sample Location NW-1	J16353 HEIS Number J16343	12/3/2007 Sample Date 12/3/2007	0.31 (mg/kg 0.49	U Cyanic Q U	0.31 le PQL 0.49	F mg/kg 2.3	'luori Q U	ide	N mg/kg 2.26		te PQL 2.3	1 mg/kg 2.26	Nitrat Q U	e PQL 2.3	Pho mg/kg 2.3	ospha Q U	nte PQL 2.3	Su mg/kg 2.3	ulfate	PQL 2.3	mg/kg 0.22	Sulfid Q U	e PQI 0.22	
NW-10 Sample Location	J16353 HEIS Number J16343 J16344	12/3/2007 Sample Date 12/3/2007 12/3/2007	0.31 C mg/kg 0.49 0.56	U Cyanic Q	0.31 le <u>PQL</u> 0.49 0.56	F mg/kg 2.3 2.6	luori Q	ide PQL 2.3 2.6	N mg/kg 2.26 4.94	Q	te PQL 2.3 2.6	mg/kg 2.26 2.58	Nitrat Q U U	e PQL 2.3 2.6	Pho mg/kg 2.3 2.6	ospha Q U U	nte PQL 2.3 2.6	mg/kg 2.3 104	ulfate	PQL 2.3 2.6	mg/kg 0.22 27.6	Sulfid Q U U	e PQI 0.22 27.6	
NW-10 Sample Location NW-1 NW-2 NW-3	J16353 HEIS Number J16343 J16344 J16345	12/3/2007 Sample Date 12/3/2007 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54	U Cyanic Q U U U U	0.31 le 0.49 0.56 0.54	F mg/kg 2.3 2.6 2.4	luori Q U U U	ide PQL 2.3 2.6 2.4	N mg/kg 2.26 4.94 3.05	Q U	te PQL 2.3 2.6 2.4	mg/kg 2.26 2.58 2.43	Nitrat Q U U U	e PQL 2.3 2.6 2.4	Pho mg/kg 2.3 2.6 2.4	ospha Q U U U	nte PQL 2.3 2.6 2.4	St mg/kg 2.3 104 10.1	ulfato Q U	PQL 2.3 2.6 2.4	mg/kg 0.22 27.6 24	Sulfid Q U U U	e PQI 0.22 27.6 24	
NW-10 Sample Location NW-1 NW-2	J16353 HEIS Number J16343 J16344	12/3/2007 Sample Date 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54 0.55	U Cyanic Q U U	0.31 e PQL 0.49 0.56 0.54 0.55	F mg/kg 2.3 2.6 2.4 2.3	'luori Q U U	ide PQL 2.3 2.6 2.4 2.3	N mg/kg 2.26 4.94 3.05 2.33	Q U U	PQL 2.3 2.6 2.4 2.3	mg/kg 2.26 2.58 2.43 2.33	Vitrat Q U U U U U	e PQL 2.3 2.6 2.4 2.3	Pho mg/kg 2.3 2.6 2.4 2.3	DSPha Q U U U U U	tte PQL 2.3 2.6 2.4 2.3	Sumg/kg 2.3 104 10.1 2.3	Ulfate	PQL 2.3 2.6 2.4 2.3	mg/kg 0.22 27.6 24 29.6	Sulfid Q U U U U U	e PQI 0.22 27.6 24 29.6	
NW-10 Sample Location NW-1 NW-2 NW-3	J16353 HEIS Number J16343 J16344 J16345	12/3/2007 Sample Date 12/3/2007 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54	U Cyanic Q U U U U	0.31 le 0.49 0.56 0.54	F mg/kg 2.3 2.6 2.4	luori Q U U U	ide PQL 2.3 2.6 2.4 2.3 2.4 2.3 2.4	N mg/kg 2.26 4.94 3.05	Q U	te PQL 2.3 2.6 2.4 2.3 2.4 2.3	mg/kg 2.26 2.58 2.43 2.33 2.45	Vitrat Q U U U U U U U U	e PQL 2.3 2.6 2.4 2.3 2.4	Pho mg/kg 2.3 2.6 2.4 2.3 2.4 2.3 2.4	ospha Q U U U	PQL 2.3 2.6 2.4 2.3 2.4	Sumg/kg 2.3 104 10.1 2.3 2.4	Ulfato Q U U U	PQL 2.3 2.6 2.4 2.3 2.4	mg/kg 0.22 27.6 24 29.6 27.3	Sulfide Q U U U U U U	e PQI 0.22 27.6 24 29.6 27.3	
NW-10 Sample Location NW-1 NW-2 NW-3 NW-4	J16353 HEIS Number J16343 J16344 J16345 J16346	12/3/2007 Sample Date 12/3/2007 12/3/2007 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54 0.55	U Cyanic Q U U U U	0.31 e PQL 0.49 0.56 0.54 0.55	F mg/kg 2.3 2.6 2.4 2.3	luori Q U U U U	ide PQL 2.3 2.6 2.4 2.3 2.4 2.3 2.4 2.6	N mg/kg 2.26 4.94 3.05 2.33 2.45 2.56	Q U U	PQL 2.3 2.6 2.4 2.3 2.4 2.5	Mg/kg 2.26 2.58 2.43 2.33 2.45 2.56	Vitrat Q U U U U U U U U U	e PQL 2.3 2.6 2.4 2.3 2.4 2.6	Pho mg/kg 2.3 2.6 2.4 2.3 2.4 2.3 2.4 3.3	DSPha Q U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.3	St mg/kg 2.3 104 10.1 2.3 2.4 2.6	Ulfato Q U U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.4 2.6	s mg/kg 0.22 27.6 24 29.6 27.3 21.8	Sulfid Q U U U U U U U U	e PQI 0.22 27.6 24 29.6 27.3 21.8	
NW-10 Sample Location NW-1 NW-2 NW-3 NW-4 NW-5	J16353 HEIS Number J16343 J16344 J16345 J16346 J16347	12/3/2007 Sample Date 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54 0.55 0.55	U Cyanic Q U U U U U U U	0.31 le PQL 0.49 0.56 0.54 0.55 0.55	F mg/kg 2.3 2.6 2.4 2.3 2.4 2.3 2.4	luori Q U U U U U U	ide PQL 2.3 2.6 2.4 2.3 2.4 2.3 2.4	N mg/kg 2.26 4.94 3.05 2.33 2.45	Q U U U	te PQL 2.3 2.6 2.4 2.3 2.4 2.3	mg/kg 2.26 2.58 2.43 2.33 2.45	Vitrat Q U U U U U U U U	e PQL 2.3 2.6 2.4 2.3 2.4	Pho mg/kg 2.3 2.6 2.4 2.3 2.4 2.3 2.4	DSPha Q U U U U U	PQL 2.3 2.6 2.4 2.3 2.4	Sumg/kg 2.3 104 10.1 2.3 2.4	Ulfato Q U U U	PQL 2.3 2.6 2.4 2.3 2.4	mg/kg 0.22 27.6 24 29.6 27.3	Sulfide Q U U U U U U	e PQI 0.22 27.6 24 29.6 27.3 21.8	
NW-10 Sample Location NW-1 NW-2 NW-3 NW-4 NW-5 NW-6	J16353 HEIS Number J16343 J16344 J16345 J16346 J16347 J16348	12/3/2007 Sample Date 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54 0.55 0.55 0.55	U Cyanic Q U U U U U U U U	0.31 PQL 0.49 0.56 0.54 0.55 0.55 0.55	F mg/kg 2.3 2.6 2.4 2.3 2.4 2.3 2.4 2.6	luori Q U U U U U U U U	ide PQL 2.3 2.6 2.4 2.3 2.4 2.3 2.4 2.6	N mg/kg 2.26 4.94 3.05 2.33 2.45 2.56	Q U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.3	Mg/kg 2.26 2.58 2.43 2.33 2.45 2.56	Vitrat Q U U U U U U U U U	e PQL 2.3 2.6 2.4 2.3 2.4 2.6	Pho mg/kg 2.3 2.6 2.4 2.3 2.4 2.3 2.4 3.3	Despha Q U U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.3	St mg/kg 2.3 104 10.1 2.3 2.4 2.6	Ulfato Q U U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.4 2.6	s mg/kg 0.22 27.6 24 29.6 27.3 21.8	Sulfid Q U U U U U U U U	e PQI 0.22 27.6 24 29.6 27.3	
NW-10 Sample Location NW-1 NW-2 NW-3 NW-4 NW-5 NW-6 NW-7	J16353 HEIS Number J16343 J16344 J16345 J16346 J16347 J16348	12/3/2007 Sample Date 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54 0.55 0.55 0.55	U Cyanic Q U U U U U U U U	0.31 PQL 0.49 0.56 0.54 0.55 0.55 0.55	F mg/kg 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.4	luori Q U U U U U U U U U U	ide PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.4	N mg/kg 2.26 4.94 3.05 2.33 2.45 2.56 2.55 2.38	Q U U U U U	re PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.6 2.4 2.6 2.4	rmg/kg 2.26 2.58 2.43 2.33 2.45 2.56 2.55 2.38	Nitrat Q U U U U U U U U U U U U U	e PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.6	Pho mg/kg 2.3 2.6 2.4 2.3 2.4 3.3 2.6 2.7	Despha Q U U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.4 2.6 2.4	St mg/kg 2.3 104 10.1 2.3 2.4 2.6 2.6 2.6 2.4	Ulfate Q U U U U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.4	smg/kg 0.22 27.6 24 29.6 27.3 21.8 22.5 22.8	Sulfid Q U U U U U U U U U U U U	e PQI 0.22 27.6 24 29.6 27.3 21.8 22.5 22.8	
NW-10 Sample Location NW-1 NW-2 NW-3 NW-3 NW-4 NW-5 NW-6 NW-7 Dup of	J16353 HEIS Number J16343 J16344 J16344 J16345 J16346 J16347 J16348 J16349	12/3/2007 Sample Date 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54 0.55 0.55 0.55 0.55	U Cyanic Q U U U U U U U U U	0.31 PQL 0.49 0.56 0.54 0.55 0.55 0.55 0.53	F mg/kg 2.3 2.6 2.4 2.3 2.4 2.3 2.4 2.6 2.6	luori Q U U U U U U U U U	ide PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6	N mg/kg 2.26 4.94 3.05 2.33 2.45 2.56 2.55	Q บ บ บ บ บ	te PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.4 2.3	rmg/kg 2.26 2.58 2.43 2.33 2.45 2.56 2.55	Vitrat Q U U U U U U U U U U U	e PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.6 2.4 2.3 2.4 2.6 2.4 2.3 2.4 2.6 2.4 2.3 2.4 2.6 2.4 2.3 2.4 2.4 2.5 2.4 2.4 2.5 2.4 2.5 2.4 2.5 2.6 2.4 2.5 2.4 2.5 2.6 2.4 2.5 2.4 2.5 2.6 2.4 2.5 2.4 2.5 2.6 2.4 2.5 2.4 2.5 2.6 2.4 2.5 2.6 2.4 2.5 2.4 2.5 2.6 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Pho mg/kg 2.3 2.6 2.4 2.3 2.4 3.3 2.6 2.6 2.7 2.3	Despha Q U U U U U U	PQL 2.3 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6	St mg/kg 2.3 104 10.1 2.3 2.4 2.6 2.6 2.6 2.4 2.3	Ulfate Q U U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.4 2.3	smg/kg 0.22 27.6 24 29.6 27.3 21.8 22.5	Sulfid Q U U U U U U U U U U	e PQI 0.22 27.6 24 29.6 27.3 21.8 22.5	
NW-10 Sample Location NW-1 NW-2 NW-3 NW-4 NW-5 NW-5 NW-6 NW-7 Dup of J16349	J16353 HEIS Number J16343 J16344 J16345 J16346 J16347 J16348 J16349 J16350	12/3/2007 Sample Date 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007	0.31 mg/kg 0.49 0.56 0.54 0.55 0.55 0.55 0.55 0.53 0.48	U Vanic Q U U U U U U U U U U U	0.31 PQL 0.49 0.56 0.55 0.55 0.55 0.55 0.53 0.48	F mg/kg 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.4	luori Q U U U U U U U U U U	ide PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.4	N mg/kg 2.26 4.94 3.05 2.33 2.45 2.56 2.55 2.38	Q U U U U U U U U U	re PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.6 2.4 2.6 2.4	rmg/kg 2.26 2.58 2.43 2.33 2.45 2.56 2.55 2.38	Nitrat Q U U U U U U U U U U U U U	e PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.6	Pho mg/kg 2.3 2.6 2.4 2.3 2.4 3.3 2.6 2.7	ospha Q U U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.4 2.6 2.4	St mg/kg 2.3 104 10.1 2.3 2.4 2.6 2.6 2.6 2.4	Ulfate Q U U U U U U U U	PQL 2.3 2.6 2.4 2.3 2.4 2.6 2.6 2.6 2.4	smg/kg 0.22 27.6 24 29.6 27.3 21.8 22.5 22.8	Sulfid Q U U U U U U U U U U U U	e PQJ 0.22 27.6 24 29.6 27.1 21.5 22.5 22.5	

Table A-2, 120-F-1 Northwest Excavation Sampling Results from Initial Verification Samples, (8 Pages)

Constituent	Sample		tion NW-1 te 12/3/08	Sample I Sample	e Dat	tion NW-2 e 12/3/08	Sample Sample		ion NW-3 212/3/08	Sample Sample	e Date	ion NW-4 e 12/3/08
	µg/kg	Q	PQL	µg/kg		PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
1016	1 14			chlorinate	-		15	1 11	15	1.5	1 11	15
Aroclor-1016	14	U	14	15 15		15 15	15 15	U U	15 15	15 15	U U	<u>15</u> 15
Aroclor-1221	14	<u>บ</u> บ	14 14	15	U	15	15	U	15	15		15
Aroclor-1232	14			15	U		15	U	15	15		15
Aroclor-1242	14	<u>บ</u> บ	<u>14</u> 14	15	U	15 15	15	U	15	15		15
Aroclor-1248	14	-			U		15	U	15	15		15
Aroclor-1254	14	U	14	15 15	U	15 15	15	U	15	15	U	15
Aroclor-1260	14	U	14	Pestici		15	15	0	15	15	101	15
Aldrin	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Alpha-BHC Alpha-Chlordane	1.4	JD	1.4	1.5	UD	1.5	9.7	D	1.5	29	D	1.5
Beta-BHC	1.8	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Delta-BHC	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Dichlorodiphenyldichloroethane	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Dichlorodiphenyldichloroethylene	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Dichlorodiphenyltrichloroethane		UD		1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Dieldrin	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Endosulfan I	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Endosulfan II		UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Endosulfan sulfate	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	JD	1.6
Endrin Fradrin aldabuda	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Endrin aldehyde	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Endrin ketone Gamma-BHC (Lindane)	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
	2	JD	1.4	1.5	UD	1.5	9.5	D	1.5	32	D	1.5
gamma-Chlordane Heptachlor	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	11	D	1.5
Heptachlor epoxide	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Methoxychlor	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.5	UD	1.5
Toxaphene	14	00		latile Org						15	100	
1,2,4-Trichlorobenzene	350	U	350	370	U	370	370	U	370	370	U	370
1,2-Dichlorobenzene	350	U	350	370	Ū	370	370	U	370	370	U	370
1,3-Dichlorobenzene	350	Ŭ	350	370	U	370	370	U	370	370	U	370
1,4-Dichlorobenzene	350	Ū	350	370	U	370	370	U	370	370	U	370
2,4,5-Trichlorophenol	870	Ū	870	940	U	940	870	U	870	930	U	930
2,4,6-Trichlorophenol	350	U	350	370	U	370	370	U	370	370	U	370
2,4-Dichlorophenol	350	Ū	350	370	U	370	370	υ	370	370	U	370
2,4-Dimethylphenol	350	Ū	350	370	U	370	370	U	370	370	U	370
2,4-Dinitrophenol	870	U	870	940	U	940	910	U	910	930	U	930
2,4-Dinitrotoluene	350	U	350	370	U	370	370	U	370	370	U	370
2,6-Dinitrotoluene	350	Ū	350	370	U	370	370	U	370	370	U	370
2-Chloronaphthalene	350	Ū	350	370	U	370	370	U	370	370	U	370
2-Chlorophenol	350	U	350	370	U	370	370	U	370	370	U	370
2-Methylnaphthalene	350	U	350	370	U	370	370	U	370	370	U	370
2-Methylphenol (cresol, o-)	350	Ŭ	350	370	U	370	370	U	370	370	U	370
2-Nitroaniline	870	Ũ	870	940	U	940	910	U	910	930	U	930
2-Nitrophenol	350	U	350	370	U	370	370	U	370	370	U	370

 Table A-2.
 120-F-1 Northwest Excavation Sampling Results from Initial Verification Samples.
 (8 Pages)

Constituent	Sample I Sample	J163 Loca e Da	tion NW-1 te 12/3/08	Sample I Sample	J1634 Locat e Dat	44 tion NW-2 e 12/3/08	Sample : Sample	J1634 Locati e Date	5 ion NW-3 : 12/3/08	Sample Sample	J1634 Locat e Date	6 ion NW-4 212/3/08
	µg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	µg/kg	Q	PQL
3,3'-Dichlorobenzidine	350	U	emivolatile 350	370		370	370	U	370	370	U	370
4-Methylphenol (p-cresol)	350	U	350	370	U	370	370	U	370	370	U	370
3-Nitroaniline	870	U	870	940	U	940	910	U	910	930	U	930
4,6-Dinitro-2-methylphenol	870	U	870	940	U	940	910	U	910	930	Ū	930
4-Bromophenyl-phenylether	350	U	350	370	U	370	370	U	370	370	U	370
4-Chloro-3-methylphenol	350	Ū	350	370	U	370	370	U	370	370	U	370
4-Chloroaniline	350	U	350	370	Ŭ	370	370	Ū	370	370	Ū	370
4-Chlorophenyl-phenylether	350	U	350	370	Ū	370	370	U	370	370	Ū	370
4-Nitroaniline	870	U	870	940	Ū	940	910	U	910	930	U	930
4-Nitrophenol	870	U	870	940	U	940	910	U	910	930	U	930
Acenaphthene	350	U	350	370	U	370	370	U	370	370	U	370
Acenaphthylene	350	U	350	370	U	370	370	U	370	370	U	370
Anthracene	350	U	350	370	U	370	370	U	370	370	U	370
Benzo(a)anthracene	350	U	350	370	U	370	370	U	370	370	U	370
Benzo(a)pyrene	350	U	350	370	U	370	370	U	370	370	U	370
Benzo(b)fluoranthene	350	U	350	370	U	370	370	U	370	370	U	370
Benzo(g,h,i)perylene	350	U	350	370	U	370	370	U	370	370	U	370
Benzo(k)fluoranthene	350	U	350	370	U	370	370	U	370	370	U	370
Bis(2-chloro-1-methylethyl)ether	350	U	350	370	U	370	370	U	370	370	U	370
Bis(2-chloroethoxy)methane	350	U	350	370	U	370	370	U	370	370	U	370
Bis(2-chloroethyl) ether	350	U	350	370	U	370	370	U	370	370	U	370
Bis(2-ethylhexyl) phthalate	23	JB	350	34	JB	370	41	JB	370	56	JB	370
Butylbenzylphthalate	350	U	350	370	U	370	370	U	370	370	U	370
Carbazole	350	U	350	370	U	370	370	U	370	370	U	370
Chrysene	350	U	350	370	U	370	370	U	370	370	U	370
Dibenz(a,h)anthracene	350	U	350	370	U	370	370	U	370	370		370
Dibenzofuran	350	U	350	370	U	370	370	U	370	370		370
Diethylphthalate	350	U	350	370	U	370	370 370		370 370	370 370	UU	370 370
Dimethylphthalate	350	U	350	370 370	<u>บ</u> บ	370 370	370		370	370	U	370
Di-n-butylphthalate	350 350	U U	350 350	370	U	370	370		370	370	U	370
Di-n-octylphthalate	350	U	350	370	U	370	370	U	370	370	U	370
Fluoranthene	350	U	350	370	U	370	370	U	370	370	U	370
Hexachlorobenzene	350	U	350	370	U	370	370	U	370	370	U	370
Hexachlorobutadiene	350	U	350	370	U	370	370	U	370	370	Ū	370
Hexachlorocyclopentadiene	350	U	350	370	U	370	370	Ū	370	370	Ū	370
Hexachloroethane	350	U	350	370	U	370	370	Ū	370	370	U	370
Indeno(1,2,3-cd)pyrene	350	U	350	370	U	370	370	U	370	370	U	370
Isophorone	350	U	350	370	U	370	370	Ū	370	370	U	370
Naphthalene	350	U	350	370	U	370	370	U	370	370	U	370
Nitrobenzene	350	U	350	370	U	370	370	U	370	370	U	370
N-Nitroso-di-n-dipropylamine	350	U	350	370	U	370	370	U	370	370	U	370
N-Nitrosodiphenylamine	350	Ū	350	370	U	370	370	U	370	370	U	370
Pentachlorophenol	870	U	870	940	U	940	910	U	910	930	U	930
Phenanthrene	350	U	350	370	U	370	370	U	370	370	U	370
Phenol	350	U	350	370	U	370	370	U	370	370	U	370
Pyrene	350	U	350	370	U	370	370	U	370	370	U	370

Table A-2. 120-F-1 Northwest Excavation Sampling Results from Initial Verification Samples. (8 Pages)

Constituent	Sample I Sample	Date	on NW-5 12/3/08	Sample I Sample	Date	on NW-6 12/3/08	Sample I Sample	e Date	ion NW-7 e 12/3/08	Dur Sample		6349 12/3/08
	µg/kg	Q	PQL	µg/kg		PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
1011	1 12			lorinated			7.400	TUD	7.400	7000	lupl	7000
Aroclor-1016	15	<u>บ</u> บ	15	7400	UD	7400	7400	UD UD	7400 7400	7000	UD UD	7000
Aroclor-1221	15		15	7400	UD	7400		UD	7400	7000	UD	7000 7000
Aroclor-1232	15		15 15	7400 7400	UD UD	7400	7400	UD	7400	7000	UD	7000
Aroclor-1242 Aroclor-1248	15	U	15	7400	UD	7400	7400	UD	7400	7000	UD	7000
Aroclor-1254	15	U	15	7400	UD	7400	7400	UD	7400	7000	UD	7000
Aroclor-1260	15	U	15	7400	UD	7400	7400	UD	7400	7000	UD	7000
A10c101-1200	15		15	Pesticid		7400	7400	100	7400	7000	00	/000
Aldrin	3	UD	3	18		18	74	UD	74	70	UD	70
Alpha-BHC	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Alpha-Chlordane	250	D	3	2100	D	18	4900	D	74	12000	D	70
Beta-BHC	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Delta-BHC	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Dichlorodiphenyldichloroethane	12	JXD	3	18	UD	18	74	UD	74	530	XD	70
Dichlorodiphenyldichloroethylene	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Dichlorodiphenyltrichloroethane	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Dieldrin	3	UD	3	72	JD	18	180	JX	74	440	XD	70
Endosulfan I	3	UD	3	18	UD	18	74	UD	74	88	JD	70
Endosulfan II	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Endosulfan sulfate	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Endrin	13	JD	3	100	D	18	240	JD	74	70	UD	70
Endrin aldehyde	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Endrin ketone	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Gamma-BHC (Lindane)	3	UD	3	18	UD	18	74	UD	74	70	UD	70
gamma-Chlordane	230	D	3	2000	D	18	4600	D	74	12000	D	70
Heptachlor	56	D	3	820	D	18	2000	D	74	5700	D	70
Heptachlor epoxide	9.1	JD	3	18	UD	18	74	UD	74	70	UD	70
Methoxychlor	3	UD	3	18	UD	18	74	UD	74	70	UD	70
Toxaphene	30	UD	30	180	UD	180	740	UD	740	700	UD	700
	070	1 1		atile Orga			270		270	250	U	350
1,2,4-Trichlorobenzene	370	U	370	370	U U	370	370 370	U U	370 370	350 350		350
1,2-Dichlorobenzene	370	U U	370 370	370 370		370	370	U	370	350		350
1,3-Dichlorobenzene	370	U	370	370		370	370	U	370	350	U	350
1,4-Dichlorobenzene	930	U	930	920	U	920	920	U	920	880		880
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	370	U	370	370	U	370	370	U	370	350	U	350
2,4-Dichlorophenol	370	U	370	370	U	370	370	U	370	350	U	350
2,4-Dimethylphenol	370	U	370	370		370	370	U	370	350	U	350
2,4-Dinitrophenol	930	U	930	920	U	920	920	U	920	880	U	880
2,4-Dinitrotoluene	370	U	370	370	U	370	370	U	370	350	U	350
2,6-Dinitrotoluene	370	U	370	370	U	370	370	U	370	350	Ū	350
2-Chloronaphthalene	370	U	370	370	U	370	370	Ŭ	370	350	Ū	350
2-Chlorophenol	370	U	370	370	U	370	370	Ū	370	350	U	350
2-Methylnaphthalene	370	U	370	370	U	370	370	Ũ	370	350	U	350
2-Methylphenol (cresol, o-)	370	U	370	370	Ū	370	370	U	370	350	U	350
2-Nitroaniline	930	U	930	920	U	920	920	U	920	880	U	880
2-Nitrophenol	370	U	370	370	U	370	370	U	370	350	U	350

 Table A-2.
 120-F-1 Northwest Excavation Sampling Results from Initial Verification Samples.
 (8 Pages)

Constituent	Sample I Sample	J1634 Locati Date	7 on NW-5 12/3/08	Sample I Sample	J1634 Locati Date	8 on NW-6 12/3/08	Sample I Sample	J1634 Locat Dat	49 tion NW-7 e 12/3/08	Dup Sample	J1635() of J1 e Date) 6349 12/3/08
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
	1		ivolatile O						070	250	т	
3,3'-Dichlorobenzidine	370	U	370	370	U	370	370	U	370	370	U	370
4-Methylphenol (p-cresol)	370	U	370	370	U	370	370	U	370	370	U	370
3-Nitroaniline	930	U	930	930	U	930	920	U	920	920	U	920
4,6-Dinitro-2-methylphenol	930	U	930	930	U	930	920	U	920	920	U	920
4-Bromophenyl-phenylether	370	U	370	370	U	370	370	U	370	370	U	370
4-Chloro-3-methylphenol	370	U	370	370	U	370	370	U	370	370	U	370
4-Chloroaniline	370	U	370	370	U	370	370	U	370	370	U	370
4-Chlorophenyl-phenylether	370	U	370	370	U	370	370	U	370	370	U	370
4-Nitroaniline	930	U	930	930	U	930	920	U	920	920	U	920
4-Nitrophenol	930	U	930	930	U	930	920	U	920	920	U	920
Acenaphthene	370	U	370	370	U	370	370	U	370	370	U	370
Acenaphthylene	370	U	370	370	U	370	370	U	370	370	U	370
Anthracene	370	U	370	370	U	370	370	U	370	370	U	370
Benzo(a)anthracene	370	U	370	370	U	370	370	U	370	370	U	370
Benzo(a)pyrene	370	U	370	370	U	370	370	U	370	370	U	370
Benzo(b)fluoranthene	370	U	370	370	U	370	370	U	370	370	U	370
Benzo(g,h,i)perylene	370	U	370	370	U	370	370	U	370	370	U	370
Benzo(k)fluoranthene	370	U	370	370	U	370	370	U	370	370	U	370
Bis(2-chloro-1-methylethyl)ether	370	U	370	370	U	370	370	U	370	370	U	370
Bis(2-chloroethoxy)methane	370	U	370	370	U	370	370	U	370	370	U	370
Bis(2-chloroethyl) ether	370	U	370	370	U	370	370	U	370	370	U	370
Bis(2-ethylhexyl) phthalate	31	JB	370	120	JB	370	170	JB	370	69	JB	370
Butylbenzylphthalate	370	U	370	370	U	370	370	U	370	370	U	370
Carbazole	370	U	370	370	U	370	370	U	370	370	U	370
Chrysene	370	U	370	370	U	370	370	U	370	370	U	370
Dibenz(a,h)anthracene	370	U	370	75	J	370	110	J	370	370	U	370
Dibenzofuran	370	U	370	370	U	370	370	U	370	370	U	370
Diethylphthalate	370	U	370	370	U	370	370	U	370	370	U	370
Dimethylphthalate	370	U	370	370	U	370	370	U	370	370	U	370
Di-n-butylphthalate	370	U	370	370	U	370	370	U	370	370	U	370
Di-n-octylphthalate	370	U	370	370	U	370	370	U	370	370	U	370
Fluoranthene	370	U	370	47	J	370	370	U	370	370	U U	370 370
Fluorene	370	U	370	370	U	370	370	U U	370 370	370 370	U	370
Hexachlorobenzene	370	U	370	370	U	370	370				U	370
Hexachlorobutadiene	370	U	370	370	U	370	370 370	บ บ	370 370	370 370	U	370
Hexachlorocyclopentadiene	370	U	370	370	U	370	370	U	370	370	U	370
Hexachloroethane	370		370	370	U	370	370	U	370	370	U	370
Indeno(1,2,3-cd)pyrene	370	U	370	370	U	370		U	370	370	U	370
Isophorone	370		370	370	U	370	370	U		370	U	370
Naphthalene	370	U	370	370	U	370	370		370	370		370
Nitrobenzene	370	U	370	370	U	370	370	U	370	370	UU	370
N-Nitroso-di-n-dipropylamine	370	U	370	370	U	370	370	U	370 370	370	U	370
N-Nitrosodiphenylamine	370	U	370	370	U	370	370	U			U	
Pentachlorophenol	930	U	930	930	U	930	920	U	920	920	U	920
Phenanthrene	370	U	370	370	U	370	370	U	370	370	- Income of the second	370
Phenol	370	U	370	370	U	370	370	U	370	370	U	370 370
Pyrene	370	U	370	370	U	370	370	U	370	370	U	570

 Table A-2.
 120-F-1 Northwest Excavation Sampling Results from Initial Verification Samples.
 (8 Pages)

Constituent	Sample I Sample	J163 Loca Dat	51 ation NW-8 te 12/3/08	Sample Sampl	J16. Loca le Da	ation NW-9 te 12/3/08	Sample Sample	J1635 Locat 10 2 Date	3 ion NW- 12/3/08	
	μg/kg	Q	PQL	µg/kg		PQL	µg/kg	Q	PQL	l
Augustan 1017	7000	111		lorinated			1.5	T	1.5	r
Aroclor-1016	7000	U	7000	7600		7600	15	U	15	
Aroclor-1221 Aroclor-1232	7000	U	7000	7600	U	7600	15	U	15	4
Aroclor-1232 Aroclor-1242	7000	U	7000	7600	U	7600	15	U	15	
Aroclor-1242 Aroclor-1248	7000	U	7000	7600	U	7600	15	U	15	
Aroclor-1248 Aroclor-1254	7000	U U	7000	7600	UU	7600	15		15	
		U	7000	7600		7600	15	U	15	
Aroclor-1260	7000	0	7000	7600 Pesticid		7600	15	U	15	L
Aldrin	70	U	70	9.5		0.5	1.5	Tup	1.5	[
Alpha-BHC	70	U	70 70	9.5	U U	<u>9.5</u> 9.5	1.5 1.5	UD UD	1.5 1.5	
Alpha-BHC Alpha-Chlordane	12000	D	70	9.5	D	9.5	43		1.5	
Beta-BHC	70	U	70	9.5	U	9.5	1.5		1.5	
Delta-BHC	70	U	70	9.5	U	9.5	1.5	UD	1.5	
Dichlorodiphenyldichloroethane	530	X	70	420	X	9.5	1.5	UD	1.5	
Dichlorodiphenyldichloroethylene	70	Û	70	9.5	Û	9.5	1.5	UD	1.5	
Dichlorodiphenyltrichloroethane	70	U	70	9.5	U	9.5	1.5	UD	1.5	
Dieldrin	440	X	70	34	JX	9.5	1.5	UD	1.5	l l
Endosulfan I	88	JD	70	9.5	U	9.5	1.5	UD	1.5	
Endosulfan II	70	U	70	9.5	U	9.5	1.5	UD	1.5	
Endosulfan sulfate	70	U	70	9.5	U	9.5	1.5	UD	1.5	
Endrin	70	U	70	47	D	9.5	2.5	JD	1.5	
Endrin aldehyde	70	U	70	9.5	U	9.5	1.5	UD	1.5	
Endrin ketone	70	U	70	9.5	U	9.5	1.5	UD	1.5	
Gamma-BHC (Lindane)	70	U	70	9.5	U	9.5	1.5	UD	1.5	
gamma-Chlordane	12000	D	70	880	D	9.5	40	D	1.5	
Heptachlor	5700	D	70	370	D	9.5	20	D	1.5	
Heptachlor epoxide	70	U	70	9.5	U	9.5	1.5	UD	1.5	
Methoxychlor	70	U	70	9.5	U	9.5	1.5	UD	1.5	
Toxaphene	700	U	700	95	U	95	15	UD	15	
	t	t	Semivola	tile Orga	nic A	nalytes				
1,2,4-Trichlorobenzene	350	U	350	380	U	380	370	U	370	
1,2-Dichlorobenzene	350	U	350	380	U	380	370	U	370	
1,3-Dichlorobenzene	350	U	350	380	U	380	370	U	370	
1,4-Dichlorobenzene	350	U	350	380	U	380	370	U	370	
2,4,5-Trichlorophenol	880	U	880	950	U	950	930	U	930	
2,4,6-Trichlorophenol	350	U	350	380	U	380	370	U	370	
2,4-Dichlorophenol	350	U	350	380	U	380	370	U	370	
2,4-Dimethylphenol	350	U	350	380	U	380	370	U	370	
2,4-Dinitrophenol	880	U	880	950	U	950	930	U	930	
2,4-Dinitrotoluene	350	U	350	380	U	380	370	U	370	
2,6-Dinitrotoluene	350	U	350	380	U	380	370	U	370	
2-Chloronaphthalene	350	U	350	380	U	380	370	U	370	
2-Chlorophenol	350	U	350	380	U	380	370	U	370	
2-Methylnaphthalene	350	U	350	380	U	380	370	U	370	
2-Methylphenol (cresol, o-)	350	U	350	380	U	380	370	U	370	
2-Nitroaniline	880	U	880	950	U	950	930	U	930	
2-Nitrophenol	350	U	350	380	U	380	370	U	370	

Table A-2. 120-F-1 Northwest Excavation Sampling Results from Initial Verification Samples. (8 Pages)

Constituent	Sample I Sample	J163 Loca 2 Da	851 htion NW-8 te 12/3/08	Sample Sampl	J16: Loc: e Da	352 ation NW-9 te 12/3/08	Sample Sample	J1635 Locat 10 e Date	3 ion NW- 12/3/08	[]
	μg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	
						es (continued		T		r
3,3'-Dichlorobenzidine	350	U	350	380	U	380	370	U	370	
4-Methylphenol (p-cresol)	350	U	350	380	U	380	370	U	370	
3-Nitroaniline	880	U	880	950	U	950	930	U	930	
4,6-Dinitro-2-methylphenol	880	U U	880	950	U	950	930	U	930	
4-Bromophenyl-phenylether	350	_	350	380	U	380	370	U	370	
4-Chloro-3-methylphenol	350	U	350	380	U	380	370	U	370	
4-Chloroaniline	350	U	350	380	U	380	370	U	370	
4-Chlorophenyl-phenylether	350	U	350	380	U	380	370	U	370	1
4-Nitroaniline	880	U U	880 880	<u>950</u> 950	UU	<u>950</u> 950	930 930	U U	930 930	1
4-NitrophenolAcenaphthene	350	U	350	380	U	380	370		370	
Acenaphthylene	350	U	350	380	U	380	370		370	
Anthracene	350	U	350	380	U	380	370	U	370	
Benzo(a)anthracene	350	U	350	380	U	380	370		370	
Benzo(a)pyrene	350	U	350	380	U	380	370	U	370	
Benzo(b)fluoranthene	350	U	350	380	U	380	370	U	370	
Benzo(g,h,i)perylene	350	U	350	380	U	380	370	U	370	
Benzo(k)fluoranthene	350	U	350	380	U	380	370	U	370	
Bis(2-chloro-1-methylethyl)ether	350	Ŭ	350	380	U	380	370	Ŭ	370	
Bis(2-chloroethoxy)methane	350	Ũ	350	380	U	380	370	Ū	370	
Bis(2-chloroethyl) ether	350	Ū	350	380	Ū	380	370	Ū	370	
Bis(2-ethylhexyl) phthalate	78	JB	350	73	JB	380	74	JB	370	
Butylbenzylphthalate	350	U	350	380	U	380	370	U	370	
Carbazole	350	U	350	380	U	380	370	U	370	
Chrysene	350	U	350	380	U	380	370	U	370	
Dibenz(a,h)anthracene	350	U	350	380	U	380	38	J	370	
Dibenzofuran	350	U	350	380	U	380	370	U	370	
Diethylphthalate	350	U	350	380	U	380	370	U	370	
Dimethylphthalate	350	U	350	380	U	380	370	U	370	
Di-n-butylphthalate	350	U	350	380	U	380	370	U	370	
Di-n-octylphthalate	350	U	350	380	U	380	370	U	370	
Fluoranthene	350	U	350	380	U	380	370	U	370	
Fluorene	350	U	350	380	U	380	370	U	370	
Hexachlorobenzene	350	U	350	380	U	380	370	U	370	
Hexachlorobutadiene	350	U	350	380	U	380	370	U	370	
Hexachlorocyclopentadiene	350	U	350	380	U	380	370	U	370	
Hexachloroethane	350	U	350	380	U	380	370	U	370	
Indeno(1,2,3-cd)pyrene	350	U	350	380	U	380	370	U	370	
Isophorone	350	U	350	380	U	380	370	U	370	
Naphthalene	350	U	350	380	U	380	370	U	370	
Nitrobenzene	350	U	350	380	U	380	370	U	370	
N-Nitroso-di-n-dipropylamine	350	U	350	380	υ	380	370	U	370	
N-Nitrosodiphenylamine	350	U	350	380	U	380	370	U	370	
Pentachlorophenol	880	U	880	950	U	950	930	U	930	
Phenanthrene	350	U	350	380	U	380	370	U	370	
Phenol	350	U	350	380	U	380	370	U	370	
Pyrene	350	U	350	380	U	380	370	U	370	L

 Table A-2.
 120-F-1 Northwest Excavation Sampling Results from Initial Verification Samples.
 (8 Pages)

[1			[°		<u> </u>	<u> </u>	r		
		169K Jocat		1	169F Jocat	K7 tion NW-2	-	[169] Locat	K8 tion NW-3	J Sample L	169K ocati		-	[169I Locat	.0 ion NW-5
Constituent	-		e 2/4/08			te 2/4/08			te 2/4/08	Sample			1 [^]		e 2/4/08
	μg/kg	0	PQL	µg/kg	0	POL	µg/kg	0	PQL	μg/kg	0	PQL	µg/kg	0	POL
	<u>μ</u> g/κg			A construction of the second second second second second second second second second second second second second		lorinated			TQL	µg/кg		<u> </u>	μ <u>μ</u> g/ κ <u>g</u>	IVI	
Aroclor-1016	14	U	14	14	U	14	14	U	14	14	U	14	14	U	14
Aroclor-1221	14	Ŭ	14	14	Ŭ	14	14	Ū	14	14	Ū	14	14	Ū	14
Aroclor-1232	14	Ū	14	14	U	14	14	U	14	14	U	14	14	U	14
Aroclor-1242	14	U	14	14	U	14	14	U	14	14	U	14	14	U	14
Aroclor-1248	14	U	14	14	U	14	14	U	14	14	U	14	14	U	14
Aroclor-1254	14	U	14	14	U	14	14	U	14	14	U	14	14	U	14
Aroclor-1260	14	U	14	14	U	14	14	U	14	14	U	14	14	U	14
						Pesticide	es								
Aldrin	1.5	U	1.5	2.3	J	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Alpha-BHC	1.5	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Alpha-Chlordane	12		1.5	260		1.6	6.1	J	1.4	190		1.6	50		1.4
Beta-BHC	1.5	U	1.5	1.8	J,I	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Delta-BHC	1.5	U	1.5	1.4	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Dichlorodiphenyldichloroethane	1.5	U	1.5	16	Ι	1.6	1.4	U	1.4	9.3	Ι	1.6	1.4	U	1.4
Dichlorodiphenyldichloroethylene	1.5	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Dichlorodiphenyltrichloroethane	1.5	U	1.5	20		1.6	1.4	U	1.4	2.6	J	1.6	1.4	U	1.4
Dieldrin	1.4	U	1.5	13		1.6	1.4	U	1.4	7.8		1.6	2.2	J	1.4
Endosulfan I	1.5	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Endosulfan II	1.4	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Endosulfan sulfate	1.4	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Endrin	1.5	U	1.5	20		1.6	1.4	U	1.4	12		1.6	3.6	J	1.4
Endrin aldehyde	1.5	U	1.5	3.0	J,I	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Endrin ketone	1.5	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Gamma-BHC (Lindane)	1.5	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
gamma-Chlordane	13	 	1.5	280	<u> </u>	1.6	5.4	J	1.4	190		1.6	42		1.4
Heptachlor	1.6	J	1.5	110	ļ	1.6	1.4	U	1.4	87		1.6	11		1.4
Heptachlor epoxide	1.5	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	2.0	J,I	1.4
Methoxychlor	1.5	U	1.5	1.6	U	1.6	1.4	U	1.4	1.6	U	1.6	1.4	U	1.4
Toxaphene	15	U	15	16	U	16	14	U	14	16	U	16	14	U	14

 Table A-3.
 120-F-1 Northwest Excavtion Pre-Verification Sampling Results.
 (2 Pages)

Attachment to Waste Site Reclassification Form 2008-028

1401	$\frac{e A-3. 1}{1}$	WU-1	1 HOI CH	I DAG	.u v i				Jumphing	itesuits.		uges)	1		1
Constituent	Sample I	e Dat	L1 tion NW-6 te 2/4/08	Sample I	e Dat		Sample I	e Dat		J Sample L Sample	Date	on NW-9	Sample	10 e Dat	L5 tion NW- te 2/4/08
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
				Po	lych	lorinated B	Biphenyls								
Aroclor-1016	14	U	14	14	U	14	14	U	14	14	U	14	15	U	15
Aroclor-1221	14	U	14	14	U	14	14	U	14	14	U	14	15	U	15
Aroclor-1232	14	U	14	14	U	14	14	U	14	14	U	14	15	U	15
Aroclor-1242	14	U	14	14	U	14	14	U	14	14	U	14	15	U	15
Aroclor-1248	14	U	14	14	U	14	14	U	14	14	U	14	15	U	15
Aroclor-1254	14	U	14	14	U	14	14	U	14	14	U	14	23		15
Aroclor-1260	14	U	14	14	U	14	14	U	14	14	U	14	9.8	J	15
						Pesticides	S								
Aldrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Alpha-BHC	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Alpha-Chlordane	2.7	J	1.4	1.4	U	1.4	4.7	J	1.4	1.4	U	1.4	1.4	U	1.5
Beta-BHC	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Delta-BHC	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Dichlorodiphenyldichloroethane	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Dichlorodiphenyldichloroethylene	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Dichlorodiphenyltrichloroethane	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Dieldrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Endosulfan I	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Endosulfan II	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Endosulfan sulfate	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Endrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Endrin aldehyde	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Endrin ketone	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Gamma-BHC (Lindane)	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
gamma-Chlordane	2.6	J	1.4	1.4	U	1.4	4.9	J	1.4	1.4	U	1.4	1.4	U	1.5
Heptachlor	1.4	U	1.4	1.4	U	1.4	2.6	J	1.4	1.4	U	1.4	1.4	U	1.5
Heptachlor epoxide	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Methoxychlor	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.5
Toxaphene	14	U	14	14	U	14	14	U	14	14	U	14	14	U	15

 Table A-3.
 120-F-1 Northwest Excavtion Pre-Verification Sampling Results.
 (2 Pages)

Attachment to Waste Site Reclassification Form 2008-028

1 404		20 I	1 1 (OI (II	I CST LA	ava		vermea	uon	Samping	5 INCOUR	J• (4	(I ages)			
Constituent	Sample I		7 ion NW-1 2/19/08	Sample I		18 ion NW-2 2/19/08	Sample I		49 ion NW-3 e 2/19/08	Sample I		50 ion NW-4 e 2/19/08	Sample L		1 on NW-5 2/19/08
	µg/kg	0	PQL	μg/kg	0	PQL	µg/kg	0	PQL	µg/kg	Q	PQL	μg/kg	0	PQL
	1 <u></u> 2	1	¥	Pestici	des	-		L			<u>. </u>	X			x
Aldrin	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Alpha-BHC	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Alpha-Chlordane	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	81		2.1	2.0	U	2.0
Beta-BHC	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Delta-BHC	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Dichlorodiphenyldichloroethane	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Dichlorodiphenyldichloroethylene	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Dichlorodiphenyltrichloroethane	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Dieldrin	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	3.1	J	2.1	2.0	U	2.0
Endosulfan I	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Endosulfan II	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Endosulfan sulfate	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Endrin	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Endrin aldehyde	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Endrin ketone	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Gamma-BHC (Lindane)	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
gamma-Chlordane	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	89		2.1	2.0	U	2.0
Heptachlor	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	25		2.1	2.0	U	2.0
Heptachlor epoxide	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Methoxychlor	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1	2.1	U	2.1	2.0	U	2.0
Toxaphene	20	U	20	21	U	21	21	U	21	21	U	21	20	U	20

 Table A-4. 120-F-1 Northwest Excavation Pre-Verification Sampling Results. (2 Pages)

Constituent	Sample I	J16B Locat	52	J Sample I	16B Loca	53 tion NW-7 e 2/19/08 PQL	J Sample I	16B Jocat	54	J Sample I	16B5 Locati		Sample	10 Date	56 tion NW- 2/19/08 PQL
			~~~~~	den un den beienen beienen		Pesticides					×1		· · · · · · · · · · · · · · · · · · ·		
Aldrin	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Alpha-BHC	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Alpha-Chlordane	33		2.0	2.2	U	2.2	2.0	U	2.0	8.4	J	2.1	2.1	U	2.1
Beta-BHC	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Delta-BHC	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Dichlorodiphenyldichloroethane	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Dichlorodiphenyldichloroethylene	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Dichlorodiphenyltrichloroethane	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Dieldrin	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Endosulfan I	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Endosulfan II	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Endosulfan sulfate	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Endrin	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Endrin aldehyde	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Endrin ketone	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Gamma-BHC (Lindane)	2.0	U	2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
gamma-Chlordane	39 -		2.0	2.2	U	2.2	2.0	U	2.0	7.4	J	2.1	2.1	U	2.1
Heptachlor	16		2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Heptachlor epoxide	17		2.0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Methoxychlor	2.0	U	2,0	2.2	U	2.2	2.0	U	2.0	2.1	U	2.1	2.1	U	2.1
Toxaphene	20	U	20	22	U	22	20	U	20	21	U	21	21	U	21

### Table A-4. 120-F-1 Northwest Excavation Pre-Verification Sampling Results. (2 Pages)

Г	$1 - 3 \cdot 12$	-0-T	-1 1101 th	WEST DAG		tion i i te-	v ci inca	uon	Sampun	s Misuns.		ages)			
Constituent	Sample I			Sample I		05 ion NW-2 e 3/5/08	Sample I		D6 tion NW-3 te 3/5/08	J Sample L Sample		on NW-4	Sample		)8 ion NW-5 e 3/5/08
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
						Pesticide	es								
Aldrin	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Alpha-BHC	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Alpha-Chlordane	1.3	U	1.3	4.2	J	1.3	1.3	U	1.3	1.3	U	1.3	160		1.3
Beta-BHC	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Delta-BHC	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Dichlorodiphenyldichloroethane	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Dichlorodiphenyldichloroethylene	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Dichlorodiphenyltrichloroethane	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Dieldrin	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	11		1.3
Endosulfan I	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.7	J	1.3
Endosulfan II	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endosulfan sulfate	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endrin	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endrin aldehyde	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endrin ketone	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Gamma-BHC (Lindane)	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
gamma-Chlordane	1.3	U	1.3	4.6	J	1.3	1.3	U	1.3 .	1.3	U	1.3	180		1.3
Heptachlor	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	65		1.3
Heptachlor epoxide	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Methoxychlor	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Toxaphene	13	U	13	13	U	13	13	U	13	13	U	13	13	U	13

 Table A-5.
 120-F-1 Northwest Excavation Pre-Verification Sampling Results.
 (2 Pages)

Rev. 0

Constituent	J Sample I	16DI Jocat	D9 tion NW-6 te 3/5/08	J Sample I Sample	16D Loca e Da	F0 tion NW-7 te 3/5/08	J Sample I Sample	16DI Locat e Dat	71 ion NW-8 e 3/5/08	Sample L	16DF .ocati	2 ion NW-9 e 3/5/08	Sample	10	F3 tion NW- ce 3/5/08
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
		·				Pesticide					,,				
Aldrin	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Alpha-BHC	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Alpha-Chlordane	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Beta-BHC	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Delta-BHC	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Dichlorodiphenyldichloroethane	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Dichlorodiphenyldichloroethylene	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Dichlorodiphenyltrichloroethane	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Dieldrin	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endosulfan I	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endosulfan II	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endosulfan sulfate	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endrin	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endrin aldehyde	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Endrin ketone	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Gamma-BHC (Lindane)	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
gamma-Chlordane	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Heptachlor	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Heptachlor epoxide	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Methoxychlor	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3	1.3	U	1.3
Toxaphene	13	U	13	13	U	13	13	U	13	13	U	13	13	U	13

Table A-5. 120-F-1 Northwest Excavation Pre-Verification Sampling Results. (2 Pages)

Rev. 0

			······
Constituent	Sample I Sample	e Da	ation NW-5 te 3/11/08
	μg/kg	Q	PQL
Pesticides			1.2
Aldrin	1.3	U	1.3
Alpha-BHC	1.3	U	1.3
Alpha-Chlordane	1.3	U	1.3
Beta-BHC	1.3	U	1.3
Delta-BHC	1.3	U	1.3
Dichlorodiphenyldichloroethane	1.3	U	1.3
Dichlorodiphenyldichloroethylene	1.3	U	1.3
Dichlorodiphenyltrichloroethane	1.3	U	1.3
Dieldrin	1.3	U	1.3
Endosulfan I	1.3	U	1.3
Endosulfan II	1.3	U	1.3
Endosulfan sulfate	1.3	U	1.3
Endrin	1.3	U	1.3
Endrin aldehyde	1.3	U	1.3
Endrin ketone	1.3	U	1.3
Gamma-BHC (Lindane)	1.3	U	1.3
gamma-Chlordane	1.3	U	1.3
Heptachlor	1.3	U	1.3
Heptachlor epoxide	1.3	U	1.3
Methoxychlor	1.3	U	1.3
Toxaphene	13	U	13

## Table A-6. 120-F-1 Northwest Excavation Pre-Verification Sampling Results.

## **APPENDIX B**

# PHOTOS FROM 120-F-1 GLASS DUMP WASTE SITE





Laboratory Bottles, Incandescent Bulbs, and Fluorescent Bulbs From 120-F-1.



Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site



Laboratory Bottles, Incandescent Bulbs, and Batteries From 120-F-1.

Metal Debris from 120-F-1.





Yellow Stained Soil from 120-F-1 Southwest Excavation.

Breached, Oily Drum from 120-F-1.



## **APPENDIX C**

# **CALCULATION BRIEF**

## APPENDIX C

# CALCULATIONS

The calculations in this appendix are kept in the active Washington Closure Hanford project files and are available upon request. When the project is completed, the file will be stored in a U.S. Department of Energy, Richland Operations Office, repository. This calculation has been prepared in accordance with ENG-1, *Engineering Services*, ENG-1-4.5, "Project Calculation," Washington Closure Hanford, Richland, Washington. The following calculations are provided in this appendix:

120-F-1 Cleanup Verification 95% UCL Calculation, 0100F-CA-V0350, Rev. 0.....C-2

120-F-1 Waste Site Cleanup Verification Hazard Quotient and Carcinogenic Risk Calculation, 0100F-CA-V0355, Rev. 1......C-37

## **DISCLAIMER FOR CALCULATIONS**

The calculations provided in this appendix have been generated to document compliance with established cleanup levels. These calculations should be used in conjunction with other relevant documents in the administrative record.

	C	ALCULATI	ON COVE	R SHEET		Acrobat 8.0
Project Ti	itle: <u>100-F Field Remedia</u>	tion			Jol	o No. 14655
Area: 10	0-F					the state
Discipline	e: Environmental	······	*Cal	culation No: 01	57 00F-CA-V03	4/3/05 think
Subject:	120-F-1 Cleanup Verifica	tion 95% UCL Cal	culation			
Compute	r Program: Excel		Progra	m No: Excel 20	003	
The atta	iched calculations have bee should be used in	n generated to docur conjunction with oth				e calculations
Committe	ed Calculation 🛛 🕅	Preliminar	уГ	Superseded	۲ Vo	ided [
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date
0	Cover = 1 Sheets = 16 Attm. 1 = 18 Total = 35	H. M. Sulloway	L. D. Habel	NA	J. D. Fancher	4/2/18
			/			
			······			
		SUMM	ARY OF RE	VISION		

WCH-DE-018 (05/08/2007)

*Obtain Calc. No, from Document Control and Form from Intranet

.

Was	Washington Closure Hanford		ALCULATION SHEET		
	Originator H. M. Sulloway Julk Project 100-F Field Remediation Jo Subject 120-F-1 CLEANUP VERIFICATION 95% UCL CALCI	Date 04/03/08 bb No. 14655 JLATIONS	Calc. No. 0100F-CA-V0350 Checked L. D. Habel 24	Rev. No Date <u>4/3/0</u> Sheet No1 of 16	
Su	nmary				
Put         Ca           per noi         cor           cor         cor           Ta         Str           str         Str           str	Subject 120-F-1 CLEANUP VERIFICATION 95% UCL CALC	om DOE-RL (200 (RPD) for primar essary. om DOE-RL (200 for Nonradioact, Washington. s Plan (SAP), DC Plan for the 100 / ichland, Washing ublication #92-54 upplement S-6, A , Publication #92 Calculations (CL atabase, Washin ome.aspx>. ngton Administration of for each analy e hazard quotier	anup standards for the subje Control Act (MTCA) 3-part te y-duplicate sample pairs for by-duplicate sample pairs for <i>ive Analytes</i> , DOE/RL-92-24 DE/RL-96-22, Rev. 4, U.S. De Area (RDR/RAWP), DOE/RL ton. I, Washington Department of <i>analyzing Site or Background</i> 2-54, Washington Department <i>LARC II)</i> , Publication #94-14: gton State Department of Ec <i>tive Code</i> . elow, and in the RDR/RAWP te, the WAC 173-340-740(7) it and carcinogenic risk calcu	Sheet No. <u>4 of 16</u> ct site. Also, st for each contaminant of cology (1996). , Rev. 4, epartment of -96-17, Ecology, <i>Data with</i> t of Ecology, 5, ology, (DOE-RL 2004b). (e) 3-part test for	
Th we for by als dis	e subject calculations were performed on data from soil verification re entered into an EXCEL 2003 spreadsheet and calculations performulae within the cells. The statistical evaluation of data for use in a this calculation. In addition to the statistical soil samples collected o included in Attachment 1. As the maximum detected values for th cussion is provided in the RSVP), calculations on these data sets a aluation of data quality within the RSVP for this site.	ormed by using th accordance with t at this site, nonst nese data sets ar	te built-in spreadsheet function the RDR/RAWP (DOE-RL 20 atistical data were collected, re used instead of the 95% U	ons and/or creating 05b) is documented and the results are CL (additional	

7

<u>Washington Closure Hanford</u>	CALCULATION S	HEET	
Originator H. M. Sulloway	Date 04/03/08	Calc. No. 0100F-CA-V0350	Rev. No. 1
Project 100-F Field Remediation	Job No. 14655	Checked L. D. Habel / H-	Date 4/3/08
Subject 120-F-1 CLEANUP VERIFICATION	195% UCL CALCULATIC	DNS	Sheet No. 8 of 16
1 Summary (continued)			
2 Results:			

3 The results presented in the tables that follow include the summary of the results of the 95% UCL calculations for the shallow zone 4 excavation, the WAC 173-340-740(7)(e) 3-part test evaluation, and the RPD calculations, and are for use in risk analysis and the RSVP 5 for this site.

		95% UCL	Maximum	
8	Analyte	<b>Result</b> ^a	Value ^a	Units
9	Arsenic	2.9		mg/kg
10	Barium	58.2		mg/kg
11	Beryllium	0.73		mg/kg
12	Boron	4.6		mg/kg
	Chromium	7.4		mg/kg
	Cobalt	5.3		mg/kg
	Copper	12.6		mg/kg
	Lead	6.1		mg/kg
	Manganese	259		mg/kg
18	Nickel	9.3		mg/kg
19	Vanadium	38.5		mg/kg
20	Zinc	37.5		mg/kg
21	Bis(2-ethylhexyl)phthalate	0.11		mg/kg
22	Hexavalent chromium		1.8	mg/kg
23	Mercury		0.65	mg/kg
24	Molybdenum		0.85	mg/kg
25	Sulfate		8410	mg/kg
26	Chloride		34	mg/kg
27	Fluoride		3.9	mg/kg
28	Nitrate		18.6	mg/kg
29	Phosphate		46.5	mg/kg
	Aroclor-1254		0.023	mg/kg
	Aroclor-1260		0.010	mg/kg
	alpha-Chlordane		0.010	mg/kg
	gamma-Chlordane		0.013	mg/kg
	Dibenz(a,h)anthracene		0.025	mg/kg
	DDE		0.0018	mg/kg
	DDT		0.0021	mg/kg
37	Endosulfan I		0.0018	mg/kg

#### WAC 173-340-740(7)(e) Evaluation:

WAC 173-340 3-Part Test for most stringent RAG: 95% UCL > Cleanup Limit? NO > 10% above Cleanup Limit? NO Any sample > 2x Cleanup Limit? NO

#### Relative Percent Difference Results, J16333 and J16334 - QA/QC Analysis^b

Analyte	Duplicate Analysis
Aluminum	8.6%
Barium	12.3%
Calcium	2.6%
Chromium	1.7%
Copper	5.9%
Iron	25.3%
Magnesium	10.8%
Manganese	15.8%
Silicon	7.9%
Vanadium	22.1%
Zinc	14.9%
Sulfate	91.7%

Relative percent difference evaluation was not

required for analytes not included in this table.

38 The 95% UCL result or maximum value, depending on data censorship, as described in the methodology section. 39

40 Abbreviations/Acronyms: The following abbreviations and/or acronyms are used in this calculation: QA/QC = quality assurance/quality control

41 B = blank contamination (organics)

42 BG = background

43 C = blank contamination (inorganics)

44 COC = contaminant of concern

45 COPC = contaminant of potential concern

46 D = diluted

47 DE = direct exposure

48 GW = groundwater

49 J = estimate

50 MDA = minimal detectable activity 51 MTCA = Model Toxics Control Act

52 PQL = practical quantitation limit

SAP = sampling and analysis plan TDL = target detection limit

U = undetected UCL = upper confidence limit

RAG = remedial action goal RDL = required detection limit

action work plan

RPD = relative percent difference

RDR/RAWP = remedial design report/remedial

RSVP = remaining sites verification package

RESRAD = RESidual RADioactivity (dose model)

Washington Closure Hanford	CALCULATION SHEET	
Originator <u>H. M. Sulloway</u> Project <u>100-F Field Remediation</u> Subject <u>120-F-1 CLEANUP VERIFICATI</u>	Date <u>04/03/08</u> Caic. No. <u>0100F-C</u> Job No. <u>14655</u> Checked L. D. Hat ON 95% UCL CALCULATIONS	
1 Summary (continued)		
<ul> <li>Results:</li> <li>The results presented in the tables that follow</li> <li>excavation, the WAC 173-340-740(7)(e) 3-pa</li> <li>for this site.</li> </ul>		
Northwest Excavation Results Summ           7         Excavation		3-340-740(7)(e) Evaluation:

7	Excavation				
	Analyte	95% UCL	Maximum	Units	
8	Allalyte	Result ^a	Value ^a	Units	
9	Arsenic	2.5		mg/kg	
10	Barium	65.8		mg/kg	
11	Beryllium	0.26		mg/kg	
12	Boron	1.6		mg/kg	
13	Chromium	11.7		mg/kg	
14	Cobalt	7.1		mg/kg	
15	Copper	12.2		mg/kg	
	Lead	2.9		mg/kg	
17	Manganese	318		mg/kg	
18	Nickel	11.8		mg/kg	
19	Vanadium	53.9		mg/kg	
20	Zinc	37.3		mg/kg	
21	Sulfate	6.4		mg/kg	
22	Bis(2-ethylhexyl)phthalate	0.12		mg/kg	
23	Antimony		0.91	mg/kg	
24	Hexavalent chromium		0.30	mg/kg	
25	Selenium		1.8	mg/kg	
26	Chloride		7.6	mg/kg	
27	Nitrate		25.3	mg/kg	
	alpha-Chlordane		0.0021	mg/kg	
29	gamma-Chlordane		0.0022	mg/kg	
30	Di-n-butylphthalate		0.027	mg/kg	
24	^a The OEW LICE result or maximum value, depending on data				

WAC 173-340 3-Part Test for most stringent RAG: 95% UCL > Cleanup Limit? NO > 10% above Cleanup Limit? NO Any sample > 2x Cleanup Limit? NO

Relative Percent Difference Results, J16DV6 and J16DV7 - QA/QC Analysis ^b		
Analyte	Duplicate Analysis	
Aluminum	3.4%	
Barium	4.5%	
Calcium	2.8%	
Chromium	9.0%	
Copper	8.3%	
Iron	3.9%	
Magnesium	1.0%	
Manganese	1.9%	
Silicon	6.0%	
Vanadium	2.2%	
Zinc	1.4%	
Nitrate	24.4%	

31 ^aThe 95% UCL result or maximum value, depending on data

32 censorship, as described in the methodology section.33

^bRelative percent difference evaluation was not required for analytes not included in this table.

.

Project	H. M. Sulloway 100-F Field Re 120-F-1 CLEA	mediation	TION 95% UCL CA	CULATION	S			Date 04/03/08 No. 14655	-		Celc. No. 0100F-CA-V0350 Checked L. D. Habel 2-4						Rev. No Date Sheet No \$716 \$725			
		allow Zone V	rification Data			<b>-</b> .														
Sampling	HEIS	Sample	Arsen			Barium	Be	ryllium	T	Boron	CI	hromium	· · · · · · · · · · · · · · · · · · ·	Cobalt	T		Copper	1	.ead	
Area	Number	Date	mg/kg Q	PQL	mg/kg	Q PQL	mg/kg	Q POL	mg/kg	Q PQL	mg/kg	O POL	mg/kg	I Q	POL	mg/kg	Q POL	mg/kg	Q PQ	
SE-2	J~6333	12/17/2007	1.8	1.3	49.9	C : 0.26	0.56	0,13	1.7	1.3	6.0	0.53	4.7	1	0.53	12.3	C 0.53	11	0.7	
Dupl cate of	J16334	10/17/0007	d .c										······		0.00		A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESC			
J16333	0:0004	12/17/2007	1.5	1.5	44.1	C 0.30	0.43	0.15	1.8	1.5	6.1	0.60	4.0		0.6	11.6	C 0.60	9.0	0.9	
SE-1	J:6332	12/17/2007	3.3	1.4	28.8	C 0.28	0.50	0.14	5.6						0.57	10.0	0.00			
SE-3	J16335	12/17/2007	22	1.4	30.4	C 0.29				1.4	6.4	0.57	4.3		0.57	12.3	C 0.57	2.7	0.8	
SE-4	J16336	12/17/2007	2.2 2.5				0.41	0.14	1.4	U 1.4	5.0	0.58	3.8		0.58	12.1	C 0.58	2.8	0.0	
SE-5				1.4	54.7	C 0.29	0.69	0.14	1.4	1.4	7.2	0.57	6.1	;	0.57	13.3	C 0.57	3.7	0.8	
	J16337	12/17/2007	3.2	1.4	36.0	0.28	0.58	().14	5.6	1.4	7.3	0.57	4.6		0.57	13.3	0.57	2.6	0.8	
SE-6	J16338	12/17/2007	2.3	1.4 .	36.3	0.27	0.47	0.14	1.4	U 1.4	7.6	0.55	4.3		0.55	11.4	0.55	2.8	0.8	
SE-7	J16339	12/17/2007	2.4	1,5	52.3	0.30	0.70	0.15	1.8	1.5	7.3	0.60	4.9		0.6	11.1	0.60	5.5	0.8	
SE-8	J16340	12/17/2007	2.4	1.3	29.3	0.27	0.54	0.13	1.3	U 1.3	8.1	0.53	4.2		0.53	13.1	0.53	2.6	0.6	
SE-9	J16341	12/17/2007	2.5	1.5	70.2	0.31	0.77	0.15	2.4	1.5	5.7		5.4	<u> </u>			0.62	9.6	faith and different and and	
SE-10	J16342	12/17/2007	2.8	1.6	72.0	0.32			a service for the service service service and		ANALYZING STREET, IS STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, S	0.62		·	0.62	10.4			0.9	
	omputation in		L	1.0	1. (2.0	0.32	0.99	0.16	1.6	U 1.6	6.6	0.64	<u> </u>	<u> </u>	0.64	10.0	0.54	3.3	0.1	
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	· · · · · · · · · · · · · · · · · · ·				,													
Sampling	HEIS	Sample	Arseni			Barium	Be	ryllium		Boron	C	hromium		Cobalt			Copper		Lead	
Area	Number	Date	mg/kg Q	PQL	mg/kg	Q PQL	mg/kg	G POL	mg/kg	Q PQL	mg/kg	Q POL	mg/kg	QT	PQL	mg/kg	Q POL	mg/kg	Q PC	
SE-2	J16333/J16334		1.7		47.0	!	0.50		1.8		6.1		4.4			12.0		10		
SE-1	J16332	12/17/2007	3.3		25.8		0.50	······································	5.6		6.4		4.3	- i i		12.3		2.7		
SE-3	J16935	12/17/2007	2.2		30.4		0.41		0.7		5.0		3.8			12.1		2.8		
SE-4	J16936	12/17/2007	2.5		54.7		0.69					······				12,1				
SE-5	J16337	12/17/2007	3.2						1.4		7.2		6.1			13.3		3.7		
SE-6	J16338				36.0		0.58		5.6		7.3		4.6	: 		13.3		2.6		
		12/17/2007	2.3		36.3		0.47		0.7		7.6		4.3			11.4		2.8		
SE-7	J16339	12/17/2007	2.4		52.3		0.70		1.8		7.3	f	4.9			11.1	,	5.5	1	
SE-8	J16340	12/17/2007	2.4		29.3		0.54		0.7		8.1	:	1.2			13.1		2.6		
SE-9	J16341	12/17/2007	2.5		70.2	1	0.77		2.4		5.7	i	5.4			10.4		9.6		
SE-10	J16342	12/17/2007	2.8		72.0	1	1.0		0.8		6.6		6.1			10.0		3.3		
Statistical C	omputations								1 0.0		0.0	<u></u>	1			10.0	i	1		
			Arseni	~	1	Barium	D.	ryllium	1	Boron		h		Cabab		T	C	1	1 + 0 0	
			Alocin	0	+	Darrull		a ymani		DOIUI		hromium		Cobalt			Copper		Lead	
			Large data set (r	1 >10), use	Large dat	a set (n >10), use	Large data	set (n >10), use	Large dat	a set (n >10), use	Large dat	a set (n > 10), use	Large da	ta set (n.	>10), use	Large da	ta set (n >10), Lse		ta set (n >10	
	95% UCL	value based or	MTCAStat lo	gnormal		Stat lognormat		tat lognormal		Stat lognormal		Stat lognormal	· · ·	Stat logr			Stat lognormal		al and norm	
			distributi	~		stribution.		tribution.		stribution.		stribution.	<i>ç</i>	listributio			istribution.	distribution	rejected, us	
							cito	anouron.		entoution.		Stribution.		naniputoi			iethoution,	S	tatistic.	
		1	10		10		10		10		10		10			10		10	1	
	%	< Detection limi	0%		0%		0%		40%		0%					0%				
		Mear	2.5		45.7								0%					0%		
	Q1	ndard deviation					0.61		2.1	·	6.7		4.8			11.9		4.6		
			0.48		16.3		0.17		1.9	······	0.95		0.81			1.17		2.9	!	
		6 UCL on mean	2.9		58.2		0.73		4.6		7.4		5.3			12.6		6.1		
		detected value	3.3		72.0		1.C		5.6		8.1	1	6.1			13.3		11		
		Statistical value	2.9		58.2		0.73		4.6		7.4	:	5.3			12.6		6.1		
		· · · · · · · · · · · · · · · · · · ·	DE	GW & River				GW & River	1			GW & River	**						GW & R	
Mos	t-Stringent Cle	eanup Limit to	1 An 1/1/		132	GW Protection	1.51	Protection	320	GW Protection	18.5	Protection	32	GW	Protection	22.0	River Protection	10.2	Protect	
	t Stringent Cle	•	1 20	rotection	1				1			TOICCION							1 0000	
no	t Stringent Cle phradionuclide	and RAG type	1 20	rotection				1101000001												
no	t Stringent Cle onradionuclide 0 3-PART TES	and RAG type	20 F	rolection				110000001	1				1							
no	t Stringent Cle onradionuclide 0 3-PART TES 95% UCL >	and RAG type T Cleanup Limit	20 F	rolection	NO		NO		NO		NO		NO			NO		NO	·. ······	
nc WAC 173-34	t Stringent Cle onradionuclide 0 3-PART TES 95% UCL > > 10% above	and RAG type T Cleanup Limit Cleanup Limit	20 F <u>NO</u> NO	rolection	NO NO		NO NO		NO NO		NO NO		NO NO			<u>NO</u> NO		NO		
nc WAC 173-34	t Stringent Cle onradionuclide 0 3-PART TES 95% UCL >	and RAG type T Cleanup Limit Cleanup Limit	20 F	rotection	NO															
MAC 173-34 Ar	t Stringent Cle onradionuclide 0 3-PART TES 95% UCL > > 10% above	and RAG type T Cleanup Limit Cleanup Limit	NO NO NO The data set mee test criteria when	ts the 3-part	NO NO NO The data so test criteria	ef meets the 3-part when compared to ingent cleanup limit.	NO NO The data se test criteria	: meels the 3-part when compared to	NO NO The data s test criteria	et meets the 3-part when compared to ingent cleanup limit.	NO NO The data s	when compared to	NO NO The data	a when c	s the 3-part compared to cleanup limit	NO NO 1 he data : test criteri	set meets the 3-part a when compared to ringent cleanup limi	NO NO The data se test criteria	when compa	
NGC 173-34 Ar WAC	t Stringent Cle onradionuclide 0 3-PART TES 95% UCL > > 10% above 1y sample > 2X 173-340	and RAG type T Cleanup Limit Cleanup Limit	NO NO NO The data set mee test criteria when	ts the 3-part	NO NO NO The data so test criteria	when compared to	NO NO The data se test criteria	: meels the 3-part when compared to	NO NO The data s test criteria	when compared to	NO NO The data s	when compared to	NO NO The data	a when c	ompared to	NO NO 1 he data : test criteri	a when compared to	NO NO The data se test criteria	when comp	
nc VAC 173-34 Ar WAC	t Stringent Cle mradionuclide 0 3-PART TES 95% UCL > > 10% above y sample > 2X 173-340 pliance?	and RAG type T Cleanup Limit Cleanup Limit	NO NO NO The data set mee test criteria when the most stringent	ts the 3-part	NO NO NO The data so test criteria	when compared to	NO NO The data se test criteria the most strip	: meels the 3-part when compared to .gent cleanup limit	NO NO The data s test criteria	when compared to ingent cleanup limit.	NO NO The data s test criteria the most str	when compared to	NO NO The data	a when c	ompared to	NO NO 1 he data : test criteri	a when compared to	NO NO The data se test criteria	when comp	

Date	Contractor	41318	
Sheet No.	5 of 16	HAS	
		Lead	

Calc. No.

Checked

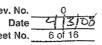
### Washington Closure Hanford

Originator H. M. Sulloway 744	
Project 100-F Field Remediation	
Subject 120-F-1 CLEANUP VERIFICATION 95% UCL CALCULATIONS	

Date 04/03/08 Job No. 14655

0100F-CA-V0350 L. D. Habel L.H

Rev. No. Sheet No.


Froject	100-1 Field Reffeolation	
Subject	120-F-1 CLEANUP VERIFICATION 95% UCL CALCULATIONS	
-		

Sampling	HEIS	Sample	M	angane	se		Nickel		Va Va	anadiu	m		Zinc		Bis(2-eth	/ihexyl)	hthalate
Area	Number	Date	mg/kg	Q	PQL	mg/kg	0	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	POL
SE-2	J16333	12/17/2007	232	1	0.11	8.4	: .	0.5	33.1		1.6	30.2	C	1.6	0.020	JB	0.35
Duplicate of J16333	of J16334	12/17/2007	198		0.12	7.7		0.6	26.5		1.8	26.0	С	1.8	0.021	JB	0.35
SE-1	J16332	12/17/2007	191		0.11	8.4		0.6	28.0	1 :	1.7	24.8	C	1.7	0.033	JB	0.34
SE-3	J16335	12/17/2007	191	1 ;	0.12	7.0	1	0.6	25.5		0.4	24.1	C	1.7	0.34	U	0.34
SE-4	J16336	12/17/2007	261	i	0.11	10.5		0.6	38.9	††	0.4	35.9	C	1.7	0.022	JB	0.36
SE-5	J16337	12/17/2007	229		0.11	8.8		0.6	33.3		0.4	28.1	C	1.7	0.35	U	0.35
SE-6	J16338	12/17/2007	206		0.11	9.9	··	0.6	25.7	1	0.4	28.4	C	1,6	0.028	J	0.35
SE-7	J16339	12/17/2007	247		0.12	8.4	· · · · · · · · · · · · · · · · · · ·	0.6	38.3		0.4	39.0	C	1.8	0.020	J	0.35
SE-8	J16340	12/17/2007	216		0.11	9.1	1	0.5	31.4	1	0.4	30.9	C	1.6	0.20	J	0.35
SE-9	J16341	12/17/2007	270		0.12	7.7		0.6	36.4		0.4	47.1	C	1.9	0.027	J	0.36
SE-10	J16342	12/17/2007	314	1	0.13	8.9		0,6	49.7		0.4	39.4	C	1.9	0.025	J	0.37
Statistical	Computation Inp	ut Data															
Sampling	HEIS	Sample	M	angane	SE		Nickel		- Va	anadiu	ım		Zinc		Bis(2-eth	ylhexyl)	ohthalate
Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
SE-2	J16333/J16334	12/17/2007	215			8.1	;		29.8	1		28.1	1		0.021		
SE-1	J15HP2	12/17/2007	191			8.4			28.0			24.8			0.033		
SE-3	J16335	12/17/2007	191			7.0			25.5			24.1			0.17		
SE-4	J16336	12/17/2007	261			10.5			38.9			35.9			0.022		
SE-5	J16337	12/17/2007	229			8.8	!		33.3	1		28.1			0.18		
SE-6	J16338	12/17/2007	206			9.9			25.7			28.4	1		0.028		
SE-7	J16339	12/17/2007	247			8.4			38.3			39.0			0.020		
SE-8	J16340	12/17/2007	216			9.1	1		31.4			30.9			0.20	!	
			070			7.7			36.4		47.1		0.027				
SE-9 SE-10	J16341 J16342	12/17/2007	270			1.1	i		30.4			47.1			0.027	<u> </u>	

28 Statistical Computations

29	Manganese	Nickel	Vanadium	Zinc	Bis(2-ethylhexyl)phthalate	
95% UCL value based on	Large data set (n >10), use MTCAStat lognormal distribution.                                   Large data set (n >10), lognormal and normal distribution rejected, use z-statistic.					
31 N	10	10	10	10	10	
32 % < Detection limit	0%	0%	0%	0%	20%	
33 Mean	234	8.7	33.7	32.6	0.072	
34 Standard deviation	39.1	1.0	7.42	7.47	0.076	
35 95% UCL on mean	259	9.3	38.5	37.5	0.11	
36 Maximum detected value	314	11	49.7	47.1	0.20	
37 Statistical value	259	9.3	38.5	37.5	0.11	
Most Stringent Cleanup Limit for nonradionuclide and RAG type	512 GW & River Protection	19.1 GW Protection	85.1 GW Protection	67.8 River Protection	0.36 River Protection	
39 WAC 173-340 3-PART TEST	· · · · · ·					
40 95% UCL > Cleanup Limit?	NO	NO	NO	NO	NO	
41 > 10% above Cleanup Limit?	NO	NO	NO	NO	NO	
42 Any sample > 2X Cleanup Limit?	NO	NO	NO	NO	NO	
WAC 173-340 Compliance?	The data set meets the 3-part test criteria when compared to the most stringent cleanup limit.	The data set meets the 3-part test criteria when compared to the most stringent cleanup limit.	The data set meets the 3-part test criteria when compared to the most stringent cleanup limit.	The data set meets the 3-part test criteria when compared to the most stringent cleanup limi		
44 C = blank contamination     DE = direct expc       45 D = diluted     GW = groundwa		ironmental Information System	MDA = minimum detectable activity MTCA = Model Toxcis Control Act	PQL = practical qua U = undetected		confidence limit hington Administrative

Rev. 0



Originator H. M. Sulloway JAMS Project 100-F Field Remediation Subject 120-F-1 CLEANUP VERIFICATION 95% UCL CALCULATIONS

Date 04/03/08 Job No. 14655

Calc. No. 0100F-CA-V0350 Checked L. D. Habel / H

•	 	 	and the second designed to be a second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second designed as the second design

Sampling	HEIS	Sample	A	rsenic		Barium		Berylliu	n		Boron		С	hromiu	m	Cobalt			Copper				Lead	
Area	Number	Date	mg/kg	Q PQL	mg/kg	Q PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	2 Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
NW-10	J16DV6	3/18/2008	2.7	1.4	77.4	: 0.3	0.34	1	0.14	1.9	1	1.4	11.6	:	0.6	8,2	1. 1	0.6	11.6		0.6	3.9		0.87
J16DV6	J16DV7	3/18/2008	3.0	1.4	81.0	0.3	0.34		0.14	1.9		1.4	10.6	1	0.58	7.8		0.58	12.6		0.58	4.4		0.86
NW-1	J16DT7	3/18/2008	2.0	1.4	65.3	0.3	0.26	~	0.14	1.6		1.4	11.1	• • • • • • • • • •	0.54	7.3	++	0.54	12.2		0.54	2.8		0.82
NW-2	J16DT8	3/18/2008	2.6	1.4	69.0	0.3	0.26		0.14	2.0	-	1.4	11.8		0.56	7,1		0.56	13.3		0.56	3.0		0.83
NW-3	J16DT9	3/18/2008	2.0	1.3	30.7	0.3	0.17	-1+	0.13	1.3	TU T	1.3	12.4		0.52	5.0		0.52	11.4	- i	0.52	1.6		0.78
NW-4	J16DV0	3/18/2008	2.1	1.3	30.7	0.3	0.15		0.13	1.3	TU T	1.3	13		0.52	4.8		0.52	10.4	1	0.52	1.7		0.78
NW-5	J16DV1	3/18/2008	2.3	1.3	27.0	0.3	0.17		0.13	1.3	U	1.3	9.3		0.51	4.9		0.51	10.5		0.51	2.1		0.76
NW-6	J16DV2	3/18/2008	2.4	1.3	39.7	0.3	0.21		0.13	1.6		1.3	11.1		0.51	5.7		0.51	13.3		0.51	2.2	!	0.76
NW-7	J16DV3	3/18/2008	2.3	1.3	63.3	0.3	0.24	1	0.13	1.5		1.3	8.8		0.53	8.5		0.53	10.3		0.53	1.6		0.79
NW-8	J16DV4	3/18/2008	2.5	1.4	52.9	0.3	0.23		0.14	1.4		1.4	9.4		0.55	7.2		0.55	10.9	1	0.55	2.8		0.83
NW-9	J16DV5	3/18/2008	2.6	1.4	29.2	0.3	0.16		0.14	1.4	υ	1.4	10.1		0.57	4.9		0.57	10.7		0.57	1.8		0.85
	omputation Inpu						······																	
Sampling Area	HEIS Number	Sample Date	A mg/kg	arsenic Q PQL	mg/kg	Barium Q PQL	ma/ka	Berylliu	m PQL	mq/kq	Boron	PQL	C mg/kg	hromiu	PQL	mg/kg	Coball	PQL	mg/kg	Copper	PQL	mg/kg	Lead	PQL
NW-10	J16DV6/J16DV7	3/18/2008	2.9		79.2	G FGL	0,34		PUL	1.9		PUL	11.1	- u	PUL	8.0		FUL	12.1		FUL	4.2		
NW-1	J16DT7	3/18/2008	2.0		65.3		0.26			1.6			11.1	- + j		7.3			12.2			2.8		
NW-2	J16DT8	3/18/2008	2.6		69.0		0.26		······································	2.0			11.8			7.1			13.3			3.0		
NW-3	J16DT9	3/18/2008	2.0		30.7		0.17	···		0.65			12.4			5.0			11,4			1.6		
NW-4	J16DV0	3/18/2008	2.1		30.7	·	0.15	1		0.65			13.0			4.8			10.4			1.7		
NW-5	J16DV1	3/18/2008	2.3		27.0		0.17	1		0.65			9.3			4.9	: I		10.5			2.1		
NW-6	J16DV2	3/18/2008	2.4		39.7		0.21			1.6			11.1			5.7			13.3			2.2		
NW-7	J16DV3	3/18/2008	2.3		63.3		0.24	1		1.5	1		8.8			8.5	1		10.3	;		1.6	:	
NW-8	J16DV4	3/18/2008	2.5		52.9		0.23			1.4			9.4			7.2			10.9			2.8		
NW-9	J16DV5	3/18/2008	2.6		29.2		0.16		·····	0.70			10.1	i		4.9			10.7			1.8		
Statistical C	omputations					Destaura				·		AN ION PLA 1 PRO					0-1-1		r	C			Lead	
			P	vrsenic		Barium		Berylliu	m	Lorgo	Boron		<u> </u>	Chromiu	JM	Lorgo	Cobali data set			Coppei				
				set (n >10), use	Large dal	a sel (n >10), use	Large da	ta set (n	>10), use	, <u> </u>	data set mal and				n >10), use		mal and	· · ·			>10), use			1 >10), use
	95% UCL	value based on		stat legnormal	1	Stat lognormal	MTCA	AStat log	normal			ted, use z-		AStat loç				ted, use z-		AStat log		1	Stat log	-
			dis	tribution.	d	istribution.	Ċ	listributio	on.	distributio	statistic		d	distributio	on.	distributio	statistic		0	listributic	n.	) (	listributio	אר.
		N	10		10		10			10			10			10			10	1		10	1	
	% <	Detection limit	0%		0%		0%			40%			0%			0%			0%			0%		
		Mean	2.4		48.7	······································	0.22			1.3			10.8		· · · · · · · · · · · · · · · · · · ·	6.3	•• •••		11.5			2.4		······································
	Star	ndard deviation	0.28	·····	19.5	······	0.059			0.55			1.39			1,4	· • •k• ••••		1.15			0.82		
		UCL on mean	2.5		65.8		0.26			1.6			11.7			7.1	-		12.2			2.9	,	!
	Maximum	detected value	3.0		81.0	······································	0.34			2.0	· · · · · · · · · · · · · · · · · · ·		13.0			8.5			13.3	1		4.4		!
	Ş	Statistical value	2.5		65.8		0.26			1.6			11.7			7.1			12.2			2.9		1
	st Stringent Cle	· ·	20	DE/GW & River	132	GW Protection	1.51		N & River	320	GW	Protection	18,5		W & River	32	G٧	Protection	22.0	Rive	r Protection	10.2		W & River
	onradionuclide	and RAG type		Protection				Ч	rotection					۲	Protection				<u> </u>				Г	TOLECHOIT
WAC 173-34		Cleanup Limit?	NO		NO		NO			NO			NO			NO			NO			NO		
	> 10% above	•	NO		NO NO		NO				-					NO			NO			NO	•	•
	> 10% above		NO		NO		NO NO			NO NO		••••	NO			NO			NO			- NO		
P	The sample > 2A	Gieanup Littitt?				****	NU				p					+			1			+		
1			The data se	t meets the 3-part	The data s	et meets the 3-part	The data	set mee	ts the 3-part	The data :	set mee	ts the 3-part	The data	set mee	ets the 3-part	The data	set mee	ts the 3-part	The data	set mee	s the 3-part	The data	set mee	ts the 3-r
WAC 173-34	10 Compliance?			when compared to	1	when compared to			compared to			compared to			compared to	1		compared to	1		compared to	test criter	a when	compared
				1		ringent cleanup limit.									cleanup limit.			sleanup limit	1			. the most s	tringent	cleanup I

				1156541611			1	4
39	WAC 173-340 3-PART TEST							
40	95% UCL > Cleanup Limit?	NO	NO	NO	NO	NO	NO	NC
41	> 10% above Cleanup Limit?	NO	NO	NO	NO	NO	NO	N
42	Any sample > 2X Cleanup Limit?	NO	NO	NO	NO	NO	NO	NC
43	WAC 173-340 Compliance?	test criteria when compared to	test criteria when compared to	test criteria when compared to	test criteria when compared to	test criteria when compared to the most stringent cleanup limit.	The data set meets the 3-part lest criteria when compared to the most stringent cleanup limit.	test cr
44	C = blank contamination GW = groundwa	ater	MDA = minimu	um detectable activity	PQL = practical quantitation limit	UCL = upper confi	dence limit	

45 DE = direct exposure

HEIS = Hanford Environmental Information System

MTCA = Model Toxcis Control Act

U = undetected

WAC = Washington Administrative Code

Rev. No.	101
Date -	13/08
Sheet No.	70/16

Originator H. M. Sulloway

Date 04/03/08

Calc. No. 0100F-CA-V0350

Subject 120-F-1 CLEANUP VERIFICATION 95% UCL CALCULATIONS

Jab No. 14655

Checked L. D. Habel 24

-----

2	Compline	LICIO	Comple		5.4 mm
1 N	lorthwest i	Excavation - Sh	allow Zone	Verification	Data

2	Sampling	HEIS	Sample	Ma	ngane	5 <b>C</b>	Nickel			Vanadium				Zinc				Bis(2-ethylhexyl)phthala			
Э	Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Qį	POL	mg/kg	Q	POL	mg/kg	Q	Pal	mg/kg	Q	PQL
4	NW-10	J16DV6	3/18/2008	378	<u> </u>	0.12	11.9		C.6	54.0	-	0.40	42.5	i :	1.7	5.5	1	2.7	0.018	J	0.36
5	Duplicate of J16DV6	J16DV7	3/18/2008	371		0.12	12,1		C.6	52.8		0.40	41.9		1.7	4.3		2.6	0.028	JB	0.36
6	NW-1	J16DT7	3/18/2008	305	1	0.11	11.6		C.5	53.7	i	0.38	37.7		1.6	3.9	;	2.4	0.025	JB	0.35
7	NW-2	J16DT8	3/18/2008	329	i	0.11	11.8		0.6	48.7		0.39	38.8		1.7	3.9		2.4	0.10	JB	0.35
8	NW-3	J16DT9	3/18/2008	239		0.10	11.0		C.5	35.6		0.36	28.7	5 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.6	2.2	U	2.2	0.084	JB	0.34
9	NW-4	J16DV0	3/18/2008	238	i .	0.10	13.0		C.5	34.3		0.36	27.7		1.6	4.0		2.2	0.072	JB	0.34
10	NW-5	J16DV1	3/18/2008	229		0.10	11.1		0.5	34.6		0.36	28.1		1.5	5.4		2.5	0.031	JB	0.35
11	NW-6	J16DV2	3/18/2008	269		0.10	11.3	· · · · · · · · · · · · · · · · · · ·	0.5	40.6	T	0.35	31.1		1.5	3.3		2.4	0.023	JB	0.34
12	NW-7	J16DV3	3/18/2008	324		0.11	11.3	1	0.5	67.7	1	0.37	40.9		1.6	2.5	U	2.5	0.34	U	0.34
13	NW-8	J16DV4	3/18/2008	307		0.11	11.0		0.6	55.2	:	0.39	38.1	1	1.7	13		2.6	0.064	JB	0,36
14	NW-9	J16DV5	3/18/2008	241		0.11	10.8		0.6	35.7		0.40	29.4	1	1.7	5.3		2.6	0.029	JB	C.34
15	P	Computation Inp	ut Data																		
16	Sampling	HEIS	Sample	and the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the second day of the seco	ngane			Nickel		V	anadiu	m		Zinc			Sulfate		Bis(2-eth	ylhexyl	
17	Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	POL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	G	PQL
18	NW-10	J16333/J16334	3/18/2008	375			12.0	· 		53.4	.i		42.2			4.9	 		0.023	1	
19	NW-1	J15HP2	3/18/2008	305	<u> </u>		11.6			53.7			37.7			3.9			0.025	į	
20	NW-2	J16DT8	3/18/2008	329			11.8			48.7	1		38.8			3.9	i		0.10		
21	NW-3	J16DT9	3/18/2008	239			11.0			35.6	1		28.7			1.1			0.084		
22	NW-4	J16DV0	3/18/2008	238	ļi		13.0	·		34.3			27.7	i		4.0			0.072		
23	NW-5	J16DV1	3/18/2008	229			11,1	<b>.</b>		34.6			28.1			5.4	_		0.031		
24	NW-6	J16DV2	3/18/2008	269	ļį		11.3		-	40.6			31.1			3.3			0.023		
25	NW-7	J16DV3	3/18/2008	324	ļļ.		11.3			67.7			40.9			1.3			0.17	i 	
26	NW-8	J16DV4	3/18/2008	307			11.0			55.2			38.1			13			0.064	! 	
27	NW-9	J16DV5	3/18/2008	241			10.8			35.7	i		29.4	;		5.3	<u> </u>		0.029		
28	Statistical C	Computations																			

29		Manganese	Nickel	Vanadium	Zinc	Sulfate	Bis(2-ethylhexyl)phthala
30	95% UCL value based on	Large data set (n >10), use MTCAStat lognormal cistribution.	Large data set (n >10), lognormal and normal distribution rejected, use z- statistic.	Large data set (n >10), use MTCAStat lognormal distribution.	Large data set (n >10), lognormal and normal distribut on rejected, use z- statistic.	Large data set (n >10), use MTCAStat lognermal distribution.	Large data set (n >10), us MTCAStat lognormal distribution.
31	N	10	10	10	10	- 10	10
32	% < Detection limit	0%	0%	0%	0%	20%	10%
33	Mean	286	11.5	46.0	34.3	4.6	0.062
34	Standard deviation	49.4	0.652	11.5	5.77	3.4	0.047
35	95% UCL on mean	318	11.8 :	53.9	37.3	6.4	0.12
36	Maximum detected value		13.0	67.7	42.5	13	0.10
37	Statistical value	318	11.8	53.9	37.3	6.4	0.12
38	Most Stringent Cleanup Limit for nonradionuclide and RAG type	610	19.1 GW Protection	85.1 GW Protection	67.8 River Protection	25,000 GW Protection	0.36 River Protect
39 W	/AC 173-340 3-PART TEST						
40	95% UCL > Cleanup Limit?	NO	NO	NO	NO	NO	NO
41	> 10% above Cleanup Limit?	NO	NO	NO	NO	NO	NO
42	Any sample > 2X Cleanup Limit?	NO	NO	NO	NO	NO	NO
43	WAC 173-340 Compliance?	The data set meets the 3-part test criteria when compared to the most stringent cleanup limit.	1 -	The data set meets the 3-part test criteria when compared to the most stringent cleanup limit.	test criter a when compared to	The data set meets the 3-part test criteria when compared to the most stringent cleanup limit.	The data set meets the 3-r test criteria when compared the most stringent cleanup l
	= blank contamination DE = direct exp = diluted GW = groundwa		ironmental Information System	MDA = minimum detectable activity MTCA = Model Toxcis Control Act	PQL = practical qua U = undetected		r confidence limit hington Administrative Code

Rev. 0



de

C-10

JALCOLA HON SHEET	CULATION SHEE	T
-------------------	---------------	---

				Δ						C/	ALCU	LATION S	HEET												
<u>V</u>	Vashington (	<u>Closure Hanf</u>	<u>ord</u> H. M. Sulloway										04/00	100		Calc. No	0100	- ~ ^	VOOTO			Rev. No.	0		
		Project	100-F Field Re	y Copy								Job No.	04/03			Checked			-V0350 abel 4-4	-			4/3/08		
		Subject	120-F-1 CLEA	NUP VERI	FICATION 95	% LICE CAL		IONS				JOD 140.	140	55		CHECKEL	۱ <u>ـــــ</u>	0.11	abel 2,44	-		Sheet No.	9 of 16		
		Casjoor						10110														oncer no.	00110		
	Duplicate An	alysis																							
2	Sampling	Sample	Sample		minum		rsenic			ium			yllium		Boi		. I	aici		1	romiu			balt	
3	Area	Number	Date	mg/kg	Q PQL	mg/kg	Q	PQL		Q PQ				PQL	mg/kg C		mg/kg	Q		mg/kg	Q	PQL			PQL
4	SE-2	J16333	12/17/2007	4960	C 10.5	1.8	<u> </u>	1.3	49.9	C 0.2	6	0.56		).13	1.7	1.3	4920	С	10.5	6.0		0.53	4.7		0.53
_	Duplicate of J16333	J16334	10/17/0007	4550				. r				0.10									·	0.00	4.0		0.60
ວ[ ຄັ້	Analysis:	J16334	12/17/2007	4550	C 11.9	1.5		1.5	44.1	C 0.3	5	0.43		).15	1.8	1.5	5050		11.9	6.1		0.60	4.0		0.60
7	11019515.	TDL		[	5	1	10			2			0.5		5	)	Т	100	<u>ן</u>	T	1			2	]
-la			> PQL?	Yesi	continue)	No-Stop		table)	Ves (c	ontinue)			continu	e)	Yes (co		Yes		, itinue)	Yes	(conti	nue)	Yes (c		ue)
9	Duplicate		5xTDL?		calc RPD)		,40000			alc RPD)		No-Stop			No-Stop (a				RPD)		(calc l		No-Stop (		
10	Analysis		PD		8.6%					.3%			(dooop)			000001000		2.69	· · · · · · · · · · · · · · · · · · ·		1.7%			······································	
11	-	Difference	e > 2 TDL?	the second second second second second second second second second second second second second second second s	applicable	No - i	accepta	ble		plicable		No - a	cceptab	le	No - acc	eptable	Not		licable	Not	applic	able	No - ac	cepta	ble
																			, ,						
12				·····								·····													<u></u>
	Sampiing	HEIS	Sample		opper		Iron			ead			nesium		Mang			Nick			stassi			icon	
14	Area	Number	Date	mg/kg		mg/kg		PQL		Q PQ		mg/kg		PQL	mg/kg (		mg/kg	Q		mg/kg	Q	PQL			PQL
15	SE-2	J16333	12/17/2007	12.3	C 0.53	13800	<u> .C</u>	11.9	11.1	0.7	9	3610		6.6	232	0.11	8.4		0.53	757	· · · · · · ·	10.5	1940		10.5
16	Duplicate of J16333	J16334	12/17/2007	11.6	C 0.60	10700	c	13.4	9.0	0.9	<u>_</u>	3240		7.5	198 [.]	0.12	7.7		0.60	675		11.9	2100		11.9
	Analysis:	010004	12/11/2007	1 1.0	0.00	10/00		10.4	3.0	0.3	<u> </u>	0240		1.5	100	0.12			1	L	1	11.0		i	
18		TDL			1	1	5			5	1		75		Į	Š	T	4		1	400		l	2	
19			> PQL?	Yes (	continue)	Yes	(contin	ue)	Yes (c	ontinue)		Yes (	continu	e)	Yes (co	ntinue)	Yes	(cor	ntinue)	Yes	(cont	inue)	Yes (c	ontin	ue)
20	Duplicate		5xTDL?	Yes (	calc RPD)	Yes	calc RI	PD)	No-Stop (	acceptabl	e)	Yes (d	calc RP	D)	Yes (ca	lc RPD)	No-Sto	p (ad	cceptable)	No-Sto	p (acc	eptable)	Yes (c		2D)
21	Analysis		PD		5.9%		25.3%					1	0.8%		15.	8%								.9%	
22	····· #19444 #	Difference	e > 2 TDL?	Nota	applicable	Not	applical	ole	No - ac	ceptable		Not a	pplicab	e	Not ap	olicable	No ·	acc	eptable	No -	accep	otable	Not a	oplicat	ble
23			1	1					1		T				1		l Bio //	) oth	ylhexyl)	٦					
24	Sampling	HEIS	Sample	S	odium	Va	nadiun	n	Z	inc		Ch	loride		Sul	fate			ilate						
24 25	Area	Number	Date	mg/kg	Q PQL	mg/kg	Q	PQL	mg/kg	Q PQ		mg/kg	Q	PQL	mg/kg	Q PQL	mg/kg			-					
26	SE-2	J16333	12/17/2007	200	C 5.3	33.1		0.37		C 1.0		3.1		2.4		24	0.021	JE		-					
	Duplicate of							0.01		<u> </u>										-					
27	J16333	01 J16334 12/17/2007 200		200	C 6.0	26.5		0.42	26.0	C 1.	8	3.4		2.3	183 1	23	0.34	U	0.34				·		
28 A	nalysis:	3:							· · · · · · · · · · · · · · · · · · ·	**			1												
29		TDL			50		2.5			1			2			5		0.3		-					
30		Both > PQL?			continue)		(contin			ontinue)			continu			ntinue)	No-Sto	p (a	cceptable)						
31	Duplicate		5xTDL?	No-Stop	(acceptable)		(calc R	PD)		alc RPD)		No-Stop	(accep	table)		Ic RPD)									
32	Analysis		PD				22.1%			.9%		<b>x</b> 1				.7%			ontoble	-					
33		Difference	e > 2 TDL?	No - a	acceptable	Not	applica	010	Not a	oplicable		NO - 8	acceptal	ole		plicable	<u>  100</u>	- acc	eptable						

Closure Hanf	
Originator	H. M. Sulloway derives
	100-F Field Remediation
Subject	120-F-1 CLEANUP VERIFICATION 95% UCL CALCULATIONS

CALCULATION SHEET

Date 04/03/08 Job No. 14655

Calc. No.	0100F-CA-V0350
Checked	L. D. Habei 🖉 🕂

1 Duplicate Analysis

Duplicate An	laiyaia																								
Sampling	Sample	Sample	Alur	minum		Ars	senic		Bariu	m	Be	erylliu	lm	B	oror	1	(	Calciu	ım	CI	nromii	m		Coba	lt
Area	Number	Date	mg/kg	Q P	QL m	ng/kg	Q PQL	mg/kg	Q	PQL	mg/kg	TQI	PQL	mg/kg	0	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
NW-10	J16DV6	3/18/2008	7520	2	.7	2.7	1.4	77.4		0.29	0.34		0.14	1.9		1.4	3820		11.6	11.6		0.58	8.2		0.58
Duplicate of							÷.,																		
J16DV6	J16DV7	3/18/2008	7270	1	1.5	3.0	1.4	81.0		0.3	0.34		0.14	1.9		1.4	3930		11.5	10.6		0.58	7.8		0.58
Analysis:						<u>ــــاس و جور و مورو می</u>					1	4		I							I			ina and a	
	TDL		I	5			5	1	2		<u> </u>	0.5	<b>WA</b> dagaan		2		[	100	) .		1			2	
	Both :	PQL?	Yes (c	continue	)	Yes (co	ontinue)	Ye	s (con	tinue)	Yes (	cont	inue)	Yes (c	onti	inue)	Yes	(con	tinue)	Yes	(conti	inue)	Yes	(cont	tinue)
Duplicate	Both >	5xTDL?	Yes (c	alc RPD	) N		acceptable	) Ye	s (calc	RPD)	No-Stop	acc	eptable)	No-Stop	acc	eptable)	Yes	(calc	RPD)	Yes	(calc	RPD)	No-Stc	) (acc	eptab
Analysis	R	PD	3	3.4%					4.5%	, o	· · ·	<u> </u>			·			2.8%	10		9.0%	£			
	Difference	> 2 TDL?	Not a	pplicable		No - ac	ceptable	No	ot appli	cable	No - a	accer	otable	No - ad	ccep	otable	Not	appl	icable	Not	app ic	able	No -	acce	ptable
Area	Number	Date	mg/kg	Q P		ng/kg	Q POL	mg/kg		PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg		PQL	mg/kg	Q	PQL	mg/kg	Q	PQ
Sampling	HEIS	Sample	Co	opper		Îr	ron		Lea	1	Mag	gnes	ium	Man	aan	ese	<u> </u>	Nick	el	P	otassi	um		Silico	n
NW-10	J16DV6	3/18/2008	11.6			3500	13	3.9	· · · · · · · · ·	0.87	4220		7.2	378	_	0.12	11.9		0.58	1400		11.6	466		11.
Duplicate of									·										1		-		••••		
J16DV6	J16DV7	3/18/2008	12.6	0	58 22	2600	12.9	4.4		0.86	4180		7.2	371		0.12	12.1		0.58	1390		11.5	495		11
Analysis:								·····				J		· (											A
	TDL			1	·		5	1 .	5			75		1	5		T	4			400		T	2	
		PQL?	Yes (c	continue	)	Yes (c	ontinue)	Ye	s (con	tinue)	Yes	(cont	tinue)	Yes (c	ont	inue)	Yes	(cor	tinue)	Yes	(cont	inue)	Yes	(cont	tinue)
Duplicate		5xTDL?		alc RPD	}	Yes (ca	alc RPD)	No-St	op (ac	ceptable)	Yes (	calc	RPD)	Yes (c	alc	RPD)	No-Sto	p (ac	ceptable)	No-Sto	p (acc	eptable)	Yes	(caic	RPD)
Analysis		PD	8	3.3%		3.	.9%					1.0%	5	1	.9%	>							1	6.0%	
	Difference	: > 2 TDL?	Not a	pplicable		Not ap	oplicable	No	~ acce	ptable	Not	appli	cable	Not a	oplic	cable	No ·	acce	eptable	No -	accep	otable	No	appli	cable
	•							•																	
Sampling	HEIS	Sample	So	odium		Vana	adium		Zìn	•	ŗ	Nitral	ie .	Su	ulfat	te		2-eth ohtha	yihexyl) late						

24	Sampling	HEIS	Sample	S	odiu	m	Va	nadi	um		Zinc		N.	litrat	e .	· •	Sulfat	e	Bis (2- ph	ethyl thala	
25	Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
26[	NW-10	J16DV5	3/18/2008	123		5.8	54.0		0.4	42.5		1.7	25.3		2.68	5.5		2.7	0.018	J	0.36
· [	Duplicate of																				
27	J16DV6			126		5.8	52.8		0.4	41.9		1.7	19.8		2.64	4.3		2.6	0.028	JB	0.36
28	nalysis:									A			A	l							
29[	TDL				50			2.5			1			2.5			5.			0.33	
30		Both >	> PQL?	Yes (	cont	inue)	Yes (	cont	inue)	Yes	(cont	inue)	Yes	cont	inue)	Yes	(cont	inue)	No-Stop	(acc	eptable)
31	Duplicate	Both >	5xTDL?	No-Stop	o (acc	eptable)	Yes (	calc	RPD)	Yes	(calc	RPD)	Yes (	calc	RPD)	No-Sto	p (acc	ceptable)			
32	Analysis	R	PD					2.2%	)		1.4%			24.4%	6						
33		Difference	e > 2 TDL?	No - a	accep	otable	Not a	applic	cable	Not	applic	able	Not	applic	cable	No -	accep	otable	No - 1	accep	table

Rev. No. 0 Date 4/3/08 Sheet No. 10 of 16

Originato Projei	or H. M. Sulloway or H. M. Sulloway ct 100-F Field Rer ct 120-F-1 CLEAN	stas	L CALC	Job	CALCULATIC Date 04/03/08 b No. 14655	1	Calc. No. 0100F-CA-V0 Checked L. D. Habe		s	Rev. No Date heet No	1/3/08 11 of 16					
Southea	st Excavation			Ecology	Software (MTC	CAStat) Results					• UP		A RECENTION OF THE ALC OF A RECENT OF THE ACCOUNT OF THE			<u></u>
DATA	ID	Arsenic 95% L	ICL Cal	culation	DATA	ID	Barium 95% UCL	Calcula	ation		DATA	ID	Beryllium 95% UCL	Calcu	lation	
1.7	J16333/J16334				47.0	J16333/J16334					0.50	J16333/J16334				
3.3	J16332				28.8	J16332					0.50	J16332	Number of samples		Uncensored values	
2.2 2.5	J16335 J16336	Number of samples	10	Uncensored values	30.4	J16335	Number of samples	10	Uncensored values Mean	45.6	0.41 0.69	J16335 J16336	Uncensored	10	Mean	0.61
3.2	J16336 J16337	Uncensored Censored	10	Mean 2.5		J16336 J16337	Uncensored	10		45.6 45.9	0.59	J16337	Censored	10	Lognormal mean	
2.3	J16338	Detection limit or PQL		Lognormal mean 2.5 Sid. devn. 0.47		J16337	Censored		Lognormal mean Sto, devn.	45.9 16.3	0.56	J16338	Detection limit or PQL		Sid. devn.	
2.3	J16339	Method detection limit		Std. devn. 0.47 Median 2.5		J16338	Detection limit or PQL Method detection limit		Median	41.5	0.47	J16338	Method detection limit		Median	
2.4	J16340	TOTAL	10	Min. 1.7		J16340	TOTAL	10	Median Min.	41.5 29.0	0.70	J16340	TOTAL	10		0,41
2.5	J16341	TOTAL	10	Max. 3.3	8	J16341	IOTAL	10	Max.	72.0	0.77	J16341			Max.	
2.8	J16342			Wax. 5.5	72.0	J16342			Max.	12.0	0.99	J16342				
	010042				12.0	010042					0.00	0.00.12				
		Lognormal distribution?		Normal distribution?			Lognormal distribution?		Normal distribution?				Lognormal distribution?		Normal distribution?	
		r-squared is: (	0.93	r-squared is: 0.93	3		r-squared is:	0.923	r-squared is:	0.901			r-squared is:	0.96	r-squared is:	0.91
		Recommendations:					Recommencations:				1		Recommendations:			
		Use lognormal distribution,					Use lognormal distribution.						Use lognormal distribution.			
3		U					0									
		UCL (Land's method) is	2.9				UCL (Land's method) is	58.2					UCL (Land's method) is	0.73		
×																
DATA		Boron 95% UG	L Calc	ulation	DATA	ID	Chromium 95% l	JCL Cal	culation		DATA	IÐ	Cobalt 95% UCL C	alculat	ion	
1.8	J16333/J16334				6.1	J16333/J16334					4.4	J16333/J16334				
5.6	J16332				6.4	J16332					4.3	J16332			Uncensored values	
0.7	J16335	Number of samples		Uncensored values	5.0	J16335	Number of samples		Uncensored values		3.8	J16335	Number of samples	10		4.8
1,4	J16336	Uncensored	10	Mean 2.1		J16336	Uncensored	10	Mean		6.1	J16336	Uncensored Censored	10	Loonormal mean	
5.6	J16337	Censored		Lognormal mean 2.2		J16337	Censored		Lognormal mean		4.6	J16337 J16338	Detection limit or PQL		Std. devn.	
0.70	J16338	Detection limit or PQL		Std. devn. 1.9	,	J16338	Detection limit or PQL		Std. devn. Median	0.95 6.9	4.3 4.9	J16338 J16339	Method detection limit		Median	
1.8 0.65	J16339 J16340	Method detection limit TOTAL	10	Median 1.58 Min. 0.65	· •	J16339 J16340	Method detection limit TOTAL	10	Min.	6.9 5.0	4.9	J16340	TOTAL	10	Min.	
0.65	J16340 J16341	TOTAL	10	Min. 0.65 Max. 5.6		J16341	TOTAL	10	Max.	3.0 8.1	5.4	J16341	10 ME			. 6.1
0.80	J16341 J16342			wax. 5.6	5.7	J16341			ινιαλ.	0.1	6.1	J16342				
0.00	J10342				0.0	010042					0.1	0.0012				
		Lognormal distribution?		Normal distribution?			Lognormal distribution?		Normal distribution?				Lognormal distribution?		Normal distribution?	?
1		r-squared is:	0.900	r-scuared is: 0.76	6		r-squared is:	0.95	r-squared is:	0.97	1		r-squared is:	0.91	r-squared is:	0:89
5		Recommendations:	2.000		-		Recommendations:	-	,				Recommendations:			
5		Use lognormal distribution.					Use lognormal distribution.						Use lognormal distribution.			
7		UCL (Land's method) is	4.0				UCL (Land's method) is	74					UCL (Land's method) is	53		

Rev. 0

	<u>Washingt</u>	on Closure Han	iford			CA	CULATIC	N SHEET						
	Projec	r H. M. Sulloway t 100-F Field Re t 120-F-1 CLEAN		L CALC	CULATIONS		04/03/08 14655	-	Calc. No. 0100F-CA-V03 Checked L. D. Habe		Ę	lev. No Date leet No	13/08 12 of 16	-
1	Southeas	t Excavation			Ecol	logy Softw	vare (MTC	AStat) Results						
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	DATA 12.0 12.3 12.1 13.3 13.3 11.4 11.1 13.1 10.4 10.0	ID J16333/J16332 J16335 J16336 J16337 J16338 J16338 J16339 J16340 J16341 J16342	Copper 95% U Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: Recommendations: Use lognormal distribution.	CL Ca 10 10 0.95	cutation Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is:		DATA 10 2.7 3 3.7 2.6 2.8 5.5 2.6 9.6 3.3	ID J16333/J16334 J16335 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16341 J16342	Lead 95% UCL Ca Number of samples Uncensored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: Recommendations: mal and normal distributions.	10 10 10 0.79	on Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is:	4.6 4.5 2.9 3.1 2.6 10 0.71	DATA 215 191 261 229 206 247 216 270 314	ID J16333/J16334 J16332 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16342
19 20			UCL (Land's method) is	12.6					UCL (based on Z-statistic) is	6.1				
21 22 23 24 25 26 27 28 29 30 31 32	DATA 8.1 8.4 7.0 11 8.8 9.9 8.4 9.1 7.7 8.9	ID J16333/J16334 J16332 J16335 J16336 J16337 J16338 J16339 J16339 J16340 J16341 J16342	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	8.7 8.7 1.0 8.6 7.0 11	DATA 29.8 28.0 25.5 38.9 33.3 25.7 38.3 31.4 36.4 49.7	ID J16333/J16334 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16342	Vanadium 95% U Number of samples Uncensorec Censorec Detection limit or PQL Method detection limit TOTAL	CL Cal 10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	33.7 33.8 7.42 32.4 25.5 49.7	DATA 28.1 24.8 24.1 35.9 28.1 28.4 39.0 30.9 47.1 39.4	ID J16333/J16334 J16335 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16342
33 34 35 36 37 38 39			Lognormal distribution? r-squared is: Recommendations: Use lognormal distribution. UCL (Land's method) is	0.98 9.3	Normal distribution? r-squared is:	0.98			Lognormal distribution? r-squared is: Recommendations: Use lognormal distribution. UCL (Land's method) is	0.96 38.5	Normal distribution? r-squared is:	0.92		

Manganese 95% UCL Calculation Number of samples Uncensored values Uncensored 10 Mean 234 Censored Lognormal mean 234 Std. devn. 39.1 Detection limit or PQL Mecian 223 Method detection limit Min. 191 TOTAL 10 Max. 314 Normal distribution? Lognormal cistribution? r-squared is: 0.95 r-squared is: 0.93 Recommendations: Use lognormal distribution. UCL (Land's method) is 259 Zinc 95% UCL Calculation Uncensored values Number of samples Mean 32.6 Uncensored 10 Lognormal mean 32.6 Censored Detection limit or PQL Std. devn. 7.47 Median 29.7 Method detection limit Min. 24.1 TOTAL 10 Max. 47.1 Lognormal distribution? Normal distribution? r-squared is: 0.94 r-squared is: 0.92 Recommendations: Use lognormal distribution. UCL (Land's method) is 37.5

5

	Originato Projec	ton Closure Hanfo or H. M. Sulloway the 100-F Field Remon the 120-F-1 CLEANU	alms	CALC	Date Job No.	04/03/08 14655	Calc. No Checked	0100F-CA-V0350 L. D. Habel (, 1)	Rev. No. 0 Date <u>413/08</u> Sheet No. <u>13 of 16</u>
1	Southeas	st Excavation			Ecology Soft	ware (MTCAStat) Results			
2 3 4 5 6 7 8 9 10 11 12 13	0.027 0.025	ID J16333/J16334 J16332 J16335 J16336 J16337 J16338 J16339 J1639 J16340 J16341 J16342	Bis(2-ethylhexyl)phthal Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	ate 95% 10 10	6 UCL Calculation Uncensored values Mean 0.072 Lognormal mean 0.072 Std. devn. 0.076 Median 0.028 Min. 0.020 Max. 0.20				
13 14 15 16 17 18 19 20 21 22	Rejo		Lognormal distribution? r-squared is: Recommendations: I and normal distributions. CL (based on Z-statistic) is	0.75 0.11	Normal distribution? r-squared is: 0.69				

Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site

Originator Project	r H. M. Sulloway t 100-F Field Rer t 120-F-1 CLEAN	thus	L CALC	ULATIONS		CULATIO 04/03/08 14655	- -	Calc. No. 0100F-CA-V0 Checked L. D. Habe			Rev. No. Date heet No	0 13 08 14 of 16	-	•			
DATA 2.9	t Excavation ID J16DV6/J16DV7	Arsenic 95% L	ICL Cal		ogy Softw	DATA 79.2	AStai) Results ID J16DV6/J16DV7	Barium 95% UCL	Calcula	ition		<b>DATA</b> 0.34	<b>ID</b> J16DV6/J16DV7 J16DT7	Beryllium 95% UCL	. Calcu	lation	
2.0 2.6 2.0 2.1 2.3 2.4 2.3 2.5 2.5 2.6	J16DT7 J16DT8 J16DT9 J16DV0 J16DV1 J16DV2 J16DV3 J16DV4 J16DV5	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	2.4 2.4 0.28 2.4 2.0 2.9	65.3 69.0 30.7 27.0 39.7 63.3 52.9 29.2	J16DT7 J16DT8 J16DT9 J16DV0 J16DV1 J16DV2 J16DV3 J16DV4 J16DV5	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	48.7 49.2 19.5 46.3 27.0 79.2	0.26 0.26 0.17 0.15 0.17 0.21 0.24 0.23 0.16	J16D17 J16DT8 J16DV9 J16DV1 J16DV2 J16DV3 J16DV4 J16DV5	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	0.22 0.22 0.059 0.22 0.15
		Lognormal distribution? r-souared is: 0 Recommendations: Use lognormal distribution. UCL (Land's method) is		Normal distribution? r-squared is:	0.96			Lognormal distribution? r-squareo is: Recommendations: Use lognormal distribution. UCL (Land's method) is		Normal distribution? r-squared is:	0.904			Lognormal distribution? r-squared is: Recommendations: Use .ognormal distribution. UCL (Land's method) is		Normal distribution? r-squared is:	0.92
DATA											000 DBC2-3444 200300 735487	DATA	ID	Cobalt 95% UCL C	10 N 10 3 700 10 100	ion	
DATA 1.9 1.6 2.0 0.65 0.65 0.65 1.6 1.5 1.4 0.70	ID J16DV6/J16DV7 J16DT7 J16DT8 J16DT9 J16DV0 J16DV0 J16DV1 J16DV2 J16DV3 J16DV3 J16DV4 J16DV5	Boron 95% UC 7 Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10 10	Uncensored values Mean Lognormal mean Std. devn. Median	1.3 1.3 0.55 1.5 0.65 2.0	DATA 11.1 11.1 11.8 12.4 13.0 9.30 11.1 8.80 9.40 10.1	1D J16DV6/J16DV7 J16DT7 J16DT8 J16DT9 J16DV0 J16DV1 J16DV2 J16DV3 J16DV3 J16DV4 J16DV5	Chromium 95% L Number of samples Uncensored Censored Detection limit or PQL Method detection limit *OTAL	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	10.8	8.0 7.3 7.1 5.0 4.8 4.9 5.7 8.5 7.2 4.9	J16DV6/J16DV7 J16DT7 J16DT8 J16DT9 J16DV0 J16DV1 J16DV2 J16DV3 J16DV3 J16DV4 J16DV4 J16DV5	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10 - 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max	n 6.3 n 6.4 n 6.4 n 6.4 n 4.8
Reje	Ŭ	Lognormal distribution? r-squared is: Recommendations: nal and normal distributions. JCL (based on Z-statistic) is	0.83	Normal distribution? r-squared is:	0.87			Lognormal distribution? r-squared is: Recommendations: Use lognormal distribution. UCL (Land's methoc) is	v	Normal distribution? r-squared is:	0.97	F	Reject BOTH lognor	Lognormal distribution? r-squared is: Recommendations: rmal and normal distributions. UCL (based on Z-statistic) is	0.88 7.1	Normal distribution' r-squared is:	? 0.:

.

		r H. M. Sulloway						IN SHEET	Calc. No. 0100F-CA-V03			Day bla	0		
	Projec	t 100-F Field Ren	nediation			Job No.	04/03/08 14655		Calc. No. 0100F-CA-V03 Checked L. D. Habe			Rev. No Date	413108		
	Subjec	t 120-F-1 CLEAN	UP VERIFICATION 95% UC	L CALC	ULATIONS						S	heet No.	15 of 16		
1	Northwes	at Excevation			Eco	logy Softv	vare (MTC	AStat) Results							
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	DATA 12.1 12.2 13.3 11.4 10.4 10.5 13.3 10.3 10.9 10.7	ID J16333/J16334 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16341 J16342	Copper 95% U Number of samples Uncensored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: ( Recommendations: Use lognormal distribution.	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	11.5 1.15 11.2 10.3	DATA 4.2 2.8 3.0 1.6 1.7 2.1 2.2 1.6 2.8 1.8	ID J16333/J16334 J16335 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16342	Lead 95% UCL. Ca Number of samples Uncensored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: Recommendations: Use lognormal distribution.	10 10 10 0.93	DN Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is:	2.4 2.4 0.82 2.2 1.6 4.2 0.87	DATA 375 305 329 239 238 229 269 324 307 241	ID J16333/J16334 J16332 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16342	
18 19 20			UCL (Land's method) is	12.2					UCL (Land's method) is	2.9					
21	DATA	ID	Nickel 95% UC	CL Calc	ulation		DATA	ID	Vanadium 95% U	CL Cal	culation		DATA	ID	ANDIAN
22 23 24 25 26 27 28 29 30 31 31	12.0 11.6 11.8 11.0 13.0 11.1 11.3 11.3 11.0 10.8	J16333/J16334 J16332 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16341 J16342	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	11.5 0.65 11.3 10.8	53.4 53.7 48.7 35.6 34.3 34.6 40.6 67.7 55.2 35.7	J16333/J16334 J15HP2 J16DT8 J16DV0 J16DV0 J16DV1 J16DV2 J16DV3 J16DV4 J16DV5	Number of samples Uncensored Consored Detection limit or PQL Method detection limit TOTAL	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	46.0 46.1 11.5 44.7 34.3 67.7	42.2 37.7 38.8 28.7 27.7 28.1 31.1 40.9 38.1 29.4	J16333/J16334 J15HP2 J16DT8 J16DT9 J16DV0 J16DV1 J16DV2 J16DV3 J16DV4 J16DV5	
33 34 35 36	Reje	ect BOTH lognorm	Lognormal distribution? r-squared is: Recommendations: nal and normal distributions.	0.88	Normal distribution? r-squared is:	0.86			Lognormal distribution? r-squared is: Recommendations: Use lognormal distribution.	0.90	Normal distribution? r-squared is:	0.89	R	eject BOTH lognorn	na
37 38 39	,	Lare strates from the state and the state states and the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the s	JCL (based on Z-statistic) is	11.8	A for the Outwork Sandon Sandon Sandon Sandon Sandon Sandon Sandon Sandon Sandon Sandon Sandon Sandon Sandon S				UCL (Land's method) is	53.9		21-100100-100-100-00-200		Į	uc

Manganese 95% UCL Calculation Uncensored values Number of samples Uncensored 10 Mean 286 Lognormal mean 286 Censored Detection limit or PQL Std. devn. 49.4 Median 287 Method detection limit TOTAL 10 Min. 229 Max. 375 Lognorma: distribution? Normal distribution? 0.92 r-squarec is: 0.92 r-squared is: Recommendations: Use lognormal distribution. UCL (Land's method) is 318 Zinc 95% UCL Calculation Number of samples Uncensored values Mean 34.3 Uncensored 10 Censored Lognormal mean 34.3 Std. devn. 5.77 Detection limit or PQL Method detection Emit Median 34.4 Min. 27.7 TOTAL 10 Max. 42.2 Lognormal distribution? Normal distribution? r-squared is: 0.88 r-squared is: 0.88 Recommendations: mal and normal distributions. UCL (based on Z-statistic) is 37.3

Driginator H. M. Sulloway Project 100-F Field Remediation Subject 120-F-1 CLEANUP VERIFICATION 95% UCL CALCULATIONS						04/03/08 14655		Calc. No. 0100F-CA-V0350 Checked L. D. Habel / 1		-	Rev. No Date Sheet No16	
orthwe	st Excavation			Ecol	logy Soft	ware (MTC	AStat) Results				to an a single of a contact set of a set	
DATA 4.9 3.9 3.9 1.1 4.0 5.4 3.3 1.3 1.3 1.3 5.3	ID J16333/J16334 J16332 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16342	Sulfate 95% UCL Calculation Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	n 10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	4.8 3.4	DATA 0.023 0.025 0.10 0.084 0.072 0.031 0.023 0.17 0.064 0.029	ID J16333/J16334 J16332 J16335 J16336 J16337 J16338 J16339 J16340 J16341 J16342	Bis(2-ethylhexyl)phthalate 95 Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	% UCL 10 10	Calculation Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	0.060 0.047 0.048 0.023	
Re	ject BOTH lognom	Lognormal distribution? r-squared is: Recommendations: nal and normal distributions.	0.88	Normal distribution? r-squared is:	0.74	An on the second second second second second second		Lognormal distribution? r-squared is: Recommendations: Use lognormal distribution. UCL (Land's method) is	0.91	Normal distribution? r-squared is:	0.82	

Attachment 1, 120-F-	Verification	Sampling Results.
----------------------	--------------	-------------------

												on Sam	<u> </u>		·····								
Sample	HEIS	Sample	Al	uminu		A	Antimony Arsenic		B	Barium Beryllium					E	Boro	n	Cadmium					
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
SE-1	J16332	12/17/2007	4310	C	11.4	0.85	U	0.85	3.3		1.4	28.8	C	0.28	0.50		0.14	5.6	1	1.4	0.14	U	0.14
SE-2	J16333	12/17/2007	4960	C	10.5	0.79	U	0.79	1.8		1.3	49.9	C	0.26	0.56		0.13	1.7		1.3	0.13	U	0.13
Duplicate of																			1				
J16333	J16334	12/17/2007	4550	С	11.9	0.9	U	0.9	1.5		1.5	44.1	C	0.30	0.43		0.15	1.8		1.5	0.15	U	0.15
SE-3	J16335	12/17/2007	4290	C	11.6	0.87	U	0.87	2.2		1.4	30.4	С	0.29	0.41		0.14	1.4	U	1,4	0.14	U	0.14
SE-4	J16336	12/17/2007	6690	С	11.5	0.86	U	0.86	2.5		1.4	54.7	C	0.29	0.69		0.14	1.4		1.4	0.14	U	0.14
SE-5	J16337	12/17/2007	5070		11.4	0.85	U	0.85	3.2		1.4	36.0		0.28	0.58		0.14	5.6		1.4	0.14	U	0.14
SE-6	J16338	12/17/2007	5100		11.0	0.82	U	0.82	2.3		1.4	36.3		0.27	0.47		0.14	1.4	U	1.4	0.14	U	0.14
SE-7	J16339	12/17/2007	5430		12.0	0.9	U	0.9	2.4		1.5	52.3		0.30	0.70		0.15	1.8		1.5	0.15	U	0.15
SE-8	J16340	12/17/2007	4910		10.6	0.8	U	0.8	2.4		1.3	29.3		0.27	0.54		0.13	1.3	U	1.3	0.13	U	0.13
SE-9	J16341	12/17/2007	5130		12.4	0.93	U	0.93	2.5		1.5	70.2		0.31	0.77		0.15	2.4	1	1.5	0,15	U	0.15
SE-10	J16342	12/17/2007	6320		12.7	0.95	U	0.95	2.8		1.6	72.0		0.32	0.99		0.16	1.6	U	1.6	0.16	U	0.16
NW-1	J16DT7	3/18/2008	6530		10.9	0.82	U	0.82	2.0		1.4	65.3		0.27	0.26		0.14	1.6	1	1.4	0.14	U	0.14
NW-2	J16DT8	3/18/2008	7360		11.1	0.83	U	0.83	2.6		1.4	69.0		0.28	0.26		0.14	2.0		1.4	0.14	U	0.14
NW-3	J16DT9	3/18/2008	5120		10.4	0.78	U	0.78	2.0		1.3	30.7		0.26	0.17		0.13	1.3	U	1.3	0.13	U	0.13
NW-4	JI6DV0	3/18/2008	5050		10.4	0.78	U	0.78	2.1		1.3	30.7		0.26	0.15		0.13	1.3	U	1.3	0.13	U	0.13
NW-5	JI6DV1	3/18/2008	4860		10.2	0,91		0.76	2.3		1.3	27.0		0.26	0.17		0.13	1.3	U	1.3	0.13	U	0.13
NW-6	J16DV2	3/18/2008	5990		10.1	0.76	U	0.76	2.4		1.3	39.7		0.25	0.21		0.13	1.6	1	1.3	0.13	U	0.13
NW-7	J16DV3	3/18/2008	4660		10.6	0.79	U	0.79	2.3		1.3	63.3		0.26	0.24		0.13	1.5	1	1.3	0.13	U	0.13
NW-8	J16DV4	3/18/2008	5400		11.0	0.83	U	0.83	2.5		1.4	52.9		0.28	0.23		0.14	1.4		1.4	0.14	U	0.14
NW-9	J16DV5	3/18/2008	5030		11.4	0.85	U	0.85	2.6		1.4	29.2		0.28	0.16		0.14	1.4	U	1.4	0.14	U	0.14
Duplicate of																			1				
J16DV6	J16DV7	3/18/2008	7270		11.5	0.86	U	0.86	3.0		1.4	81.0		0.29	0.34		0.14	1.9		1.4	0.14	U	0.14
NW-10	J16DV6	3/18/2008	7520		11.6	0.87	U	0.87	2.7		1.4	77.4		0.29	0.34		0.14	1.9		1.4	0.14	U	0.14
Equip blank	J16354	12/17/2007	80.7		3.7	0.28	U	0.28	0.46	U	0.46	1.7		0.09	0.05	U	0.05	0.46	U	0.46	0.05	U	0.05
Equip blank	J19DT6	3/18/2008	49.7		3	0.24	U	0.24	0.4	U	0.4	1		0.08	0.04	U	0.04	0.4	U	0.4	0.04	U	0.04

Attachment	I	, Sheet No.	1 of 18
Originator	H. M. Sulloway	Date Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Sample Location	HEIS Number	Sample Date
SE-1	J16332	12/17/2007
SE-2	J16333	12/17/2007
Duplicate of		
J16333	J16334	12/17/2007
SE-3	J16335	12/17/2007
SE-4	J16336	12/17/2007
SE-5	J16337	12/17/2007
SE-6	J16338	12/17/2007
SE-7	J16339	12/17/2007
SE-8	J16340	12/17/2007
SE-9	J16341	12/17/2007
SE-10	J16342	12/17/2007
NW-I	J16DT7	3/18/2008
NW-2	J16DT8	3/18/2008
NW-3	J16DT9	3/18/2008
NW-4	JI6DV0	3/18/2008
NW-5	JI6DV1	3/18/2008
NW-6	J16DV2	3/18/2008
NW-7	J16DV3	3/18/2008
NW-8	J16DV4	3/18/2008
NW-9	J16DV5	3/18/2008
Duplicate of		
JI6DV6	J16DV7	3/18/2008
NW-10	J16DV6	3/18/2008
Equip blank	J16354	12/17/2007
Equip blank	J19DT6	3/18/2008

Attachment 1. 120-F-1 Verification Sampling Results.

PQL

0.57

0.53

0.60

0.58

0.57

0.57

0.55

0.6

0.53

0.62

0,64

0.54

0.56

0.52

0.52

0.51

0.51

0.53

0.55

0.57

0.58

0.58

0.16

Copper

C 0.57

PQL

0.57

0.57

0.55

0.6

0.53

0.62

0.64

0.54

0,56

0.52

0.52

0.51

0.51

0.53

0.55

0.57

0.58

0.58

0.19

0.16

mg/kg Q

12.3 C 0.53

11.6 С 0.6

12.1 С 0.58

13.3

13.3

11.4

11.1

13.1

10.4

10.0

12.2

13.3

11.4

10.4

10.5

13.3

10.3

10.9

10.7

12.6

11.6

0.25

0.16 U

12.3 C

Iron

С 11.9

С

PQL

12.8

12.9

12.8

12.4

13.5

12

13.9

14.3

12.2

12.5

11.7

11.7

11.5

11.4

11.9

12.4

12.8

12.9

13.0

4.2

3.6

mg/kg Q

10700 C

13800

10700 С 13.4

10300 С 13

16400

12900

11000

15000

12300

16300

19900

21400

21100

14800

14100

14100

16900

24600

21300

14900

22600

23500

156

124

Cobalt

mg/kg Q

4.3

4.7

4.0

3.8

6.1

4.6

4.3

4.9

4.2

5.4

6.1

7.3

7.1

5.0

4.8

4.9

5.7

8.5

7.2

4.9

7.8

8.2

0.19 U 0.19

0.16 U

Calcium

Q PQL

С

С

С

С

С

С

С

С

С

С

С

11.4

10,5

11.9

11.6

11.5

11.4

11

12

10.6

12.4

12.7

10.9

11.1

10.4

10.4

10.2

10.1

10.6

11.0

11.4

11.5

11.6

3.7

3.2

mg/kg

2630

4920

5050

2590

5550

3440

7250

3880

3100

4050

3650

3750

3910

4150

4860

4030

3850

5060

4020

4460

3930

3820

23.9

20.6

С

Chromium

PQL

0.57

0.53

0,6

0.58

0.57

0.57

0.55

0.6

0.53

0.62

0.64

0.54

0.56

0.52

0.52

0.51

0.51

0.53

0.55

0.57

0.58

0.58

0.19

0.16

mg/kg Q

6.4

6

6.1

5

7.2

7.3

7.6

7.3

8.1

5.7

6.6

11.1

11.8

12.4

13.0

9.3

11.1

8.8

9.4

10.1

10.6

11.6

0.19

0.16

U

U

Attachment	1	Sheet No.	2 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

U 0.24

Lead

PQL

0.85

0.79

0.90

0.87

0.86

0.85

0.82

0.90

0.80

0.93

0.95

0.82

0.83

0.78

0.78

0.76

0.76

0.79

0.83

0.85

0.86

0.87

0.28

mg/kg Q

2.7

11.1

9.0

2.8

3.7

2.6

2.8

5.5

2.6

9.6

3.3

2.8

3.0

1.6

1.7

2.1

2.2

1.6

2.8

1.8

4.4

3.9

0.34

0.24

Magnesium

0

POL

7.1

6.6

7.5

7.2

7.2

7.1

6.9

7.5

6.6

7.7

7.9

6.8

6.9

6.5

6.5

6.4

6.3

6.6

6.9

7.1

7.2

7.2

2.3

2

mg/kg

3220

3610

3240

2990

3800

4020

3610

3710

3580

3430

4100

4370

4360

3820

4020

3600

4000

4330

4140

3700

4180

4220

10.3

10.1

SE-1         J16332         12/17/2007         191         0.11         0.01         0.85         U         0.85         8.4         0.57         631         11.4         1.7         U         1.7         2090           Buplicate of J16333         J16333         12/17/2007         232         0.11         0.009         U         0.009         0.90         U         0.53         757         10.5         1.6         U         1.6         1940           Buplicate of J16333         J16334         12/17/2007         198         0.12         0.009         U         0.90         7.7         0.6         675         11.9         1.8         U         1.8         2100           SE-4         J16335         12/17/2007         191         0.12         0.009         U         0.87         U         0.57         1040         11.5         1.7         U         1.7         120           SE-5         J16337         12/17/2007         226         0.11         0.01         0.009         8.5         0.85         8.8         0.57         678         11.4         1.7         U         1.7         1230         1.6         16.5         1.6334         12/17/2007         247							A	пас	hment 1.	120-F-	I ve	rificati	on Samj	Jun	g Result	s.								
SE-1         J16332         12/17/2007         191         0.11         0.01         U         0.00         0.85         U         0.85         U <t< th=""><th>Sample</th><th>HEIS</th><th>Sample</th><th>Ma</th><th>angan</th><th>ese</th><th>N</th><th>1ercu</th><th>ry</th><th>Mol</th><th>ybde</th><th>num</th><th>1</th><th>Nicke</th><th>el</th><th>Pot</th><th>assiu</th><th>m</th><th>Sel</th><th>leniu</th><th>m</th><th>S</th><th>ilicon</th><th></th></t<>	Sample	HEIS	Sample	Ma	angan	ese	N	1ercu	ry	Mol	ybde	num	1	Nicke	el	Pot	assiu	m	Sel	leniu	m	S	ilicon	
SE-2         J1633         12/17/2007         232         0.11         0.009         U         0.79         U         0.79         8.4         0.53         757         10.5         1.6         U         1.7         U         1.7         1720           SE-4         J16335         12/17/2007         229         0.11         0.09         U         0.86         U         0.85         8.8         0.57         704         11.0         1.6         U         1.7         2320         S         S         S         1.63         12/17/2007         247         0.12         0.02         0.01         0.80         0.80         9.1         0.53         784         10.6         1.6 <td< th=""><th>Location</th><th>Number</th><th>Date</th><th>mg/kg</th><th>Q</th><th>PQL</th><th>mg/kg</th><th>Q</th><th>PQL</th><th>mg/kg</th><th>Q</th><th>PQL</th><th>mg/kg</th><th>Q</th><th>PQL</th><th>mg/kg</th><th>Q</th><th>PQL</th><th>mg/kg</th><th>Q</th><th>PQL</th><th>mg/kg</th><th>Q</th><th>PQL</th></td<>	Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
Duplicate of J16333         J16334         J2/17/2007         198         0.12         0.009         U         0.090         U         0.90         7.7         0.6         675         11.9         1.8         U         1.8         2100           SE-3         J16335         12/17/2007         191         0.12         0.009         U         0.90         7.7         0.6         675         11.9         1.8         U         1.7         1720           SE-4         J16336         12/17/2007         261         0.11         0.65         0.008         0.86         U         0.86         10.5         0.57         1040         11.5         1.7         U         1.7         1650           SE-5         J16337         12/17/2007         229         0.11         0.009         U         0.85         0.85         8.8         0.57         678         11.4         1.7         U         1.7         12.0         1.8         21/17/2007         247         0.12         0.02         0.01         0.90         0.82         9.9         0.55         774         11.0         1.6         1.8         2420         1.8         2420         1.8         2420         1.8         12.1 </td <td>SE-1</td> <td>J16332</td> <td>12/17/2007</td> <td>191</td> <td></td> <td>0.11</td> <td>0.01</td> <td>U</td> <td>0.01</td> <td>0.85</td> <td>U</td> <td>0.85</td> <td>8.4</td> <td></td> <td>0.57</td> <td>631</td> <td></td> <td>11.4</td> <td>1.7</td> <td>U</td> <td>1.7</td> <td>2090</td> <td></td> <td>11.4</td>	SE-1	J16332	12/17/2007	191		0.11	0.01	U	0.01	0.85	U	0.85	8.4		0.57	631		11.4	1.7	U	1.7	2090		11.4
J16333       J16334       12/17/2007       198       0.12       0.009       U       0.009       V       0.009       0.7.7       0.6       675       11.9       1.8       U       1.8       2100         SE-3       J16335       12/17/2007       191       0.12       0.009       U       0.090       0.87       V       0.58       539       11.6       1.7       U       1.7       1720         SE-4       J16335       12/17/2007       229       0.11       0.009       0.85       0.86       U       0.85       8.8       0.57       678       11.4       1.7       U       1.7       1650         SE-5       J16333       12/17/2007       206       0.11       0.01       0.82       U       8.8       0.57       678       11.4       1.7       U       1.7       1650       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       <	SE-2	J16333	12/17/2007	232		0.11	0.009	U	0.009	0.79	U	0.79	8.4		0.53	757		10.5	1.6	U	1.6	1940		10.5
SE-3         J16335         12/17/2007         191         0.12         0.009         U         0.009         0.87         U         0.87         7.0         0.58         539         11.6         1.7         U         1.7         1720           SE-4         J16336         12/17/2007         261         0.11         0.65         0.008         0.86         U         0.86         10.5         0.57         1040         11.5         1.7         U         1.7         1650           SE-5         J16337         12/17/2007         206         0.11         0.009         0.85         0.85         0.85         8.8         0.57         678         11.4         1.7         U         1.7         1650           SE-6         J16338         12/17/2007         247         0.12         0.02         0.01         0.90         U         0.82         9.9         0.53         784         10.6         1.6         U         1.6         1860           SE-8         J16341         12/17/2007         216         0.11         0.01         0.95         8.9         0.64         1210         12.7         1.9         U         1.9         2900         200         216	Duplicate of																							
SE-4         J16336         12/17/2007         261         0.11         0.65         0.008         0.86         U         0.86         10.5         0.57         1040         11.5         1.7         U         1.7         1650           SE-5         J16337         12/17/2007         229         0.11         0.009         U         0.009         0.85         0.82         9.9         0.55         7678         11.4         1.7         U         1.7         12320           SE-6         J16338         12/17/2007         247         0.12         0.02         0.01         0.90         U         0.990         8.4         0.6         954         12.0         1.8         U         1.8         2420         1.8         V         1.8         2420         1.6         1650         2.0         1.8         U         1.8         2420         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         2.0         1.8         2.0         1.8         2.0         1.8         2.0         1.8         2.0         1.8         2.0         1.8         2.0         1.0         1.0         1.	J16333	J16334	12/17/2007	198		0.12	0.009	U	0.009	0.90	U	0.90	7.7		0.6	675		11.9	1.8	U	1.8	2100		11.9
SE-5         J16337         12/17/2007         229         0.11         0.009         0.85         0.85         0.85         0.86         0.17         0.07         0.18         1.18         1.17         U         1.7         2320           SE-6         J16338         12/17/2007         206         0.11         0.01         0.82         U         0.82         9.9         0.55         704         11.0         1.6         U         1.6         1650           SE-7         J16339         12/17/2007         247         0.12         0.02         0.01         0.90         8.4         0.6         954         12.0         1.8         U         1.8         2420           SE-8         J16340         12/17/2007         216         0.11         0.01         U         0.01         0.80         9.1         0.53         784         10.6         1.6         U         1.6         1.6         U         1.6         1860         1.5         1.6         0.64         12.0         1.2         0.9         2.00         1.5         1.6         0.54         12.0         1.2         1.9         U         1.9         3.200         1.6         U         1.6         3.87	SE-3	J16335	12/17/2007	191		0.12	0.009	U	0.009	0.87	U	0.87	7.0		0.58	539		11.6	1.7	U	1.7	1720		11.6
SE-6         J16338         12/17/2007         206         0.11         0.01         0.82         U         0.82         9.9         0.55         704         11.0         1.6         U         1.6         1650           SE-7         J16339         12/17/2007         247         0.12         0.02         0.01         0.90         U         0.90         8.4         0.6         954         12.0         1.8         U         1.8         2420           SE-8         J16340         12/17/2007         216         0.11         0.01         0.80         U         0.80         9.1         0.53         784         10.6         .1.6         U         1.6         1860           SE-9         J16341         12/17/2007         216         0.11         0.01         0.95         U         0.93         7.7         0.62         1160         12.4         1.9         U         1.9         2000           SE-10         J16342         12/17/2007         314         0.13         0.01         0.008         8.2         U         0.54         1170         10.9         1.6         U         1.6         387           NW-1         J16DT8         3/18/2008         <	SE-4	J16336	12/17/2007	261		0.11	0.65		0.008	0.86	U	0.86	10.5		0.57	1040		11.5	1.7	U	1.7	1650		11.5
SE-7       J16339       12/17/2007       247       0.12       0.02       0.01       0.90       U       0.90       8.4       0.6       954       112.0       1.8       U       1.8       2420         SE-8       J16340       12/17/2007       216       0.11       0.01       U       0.01       0.80       U       0.80       9.1       0.53       784       10.6       1.6       U       1.6       1860         SE-9       J16341       12/17/2007       270       0.12       0.06       0.009       0.93       U       0.93       7.7       0.62       1160       12.4       1.9       U       1.9       2900         SE-10       J16342       12/17/2007       314       0.13       0.01       U       0.01       0.95       U       0.95       8.9       0.64       1210       12.7       1.9       U       1.9       2900         SE-10       J16DT7       3/18/2008       305       0.11       0.001       U       0.01       0.82       U       0.82       U       0.82       U       0.81       1.0       0.52       654       10.4       1.6       U       1.6       344         NW-3 </td <td>SE-5</td> <td>J16337</td> <td>12/17/2007</td> <td>229</td> <td></td> <td>0.11</td> <td>0.009</td> <td>U</td> <td>0.009</td> <td>0.85</td> <td></td> <td>0.85</td> <td>8.8</td> <td></td> <td>0.57</td> <td>678</td> <td></td> <td>11.4</td> <td>1.7</td> <td>U</td> <td>1.7</td> <td>2320</td> <td></td> <td>11.4</td>	SE-5	J16337	12/17/2007	229		0.11	0.009	U	0.009	0.85		0.85	8.8		0.57	678		11.4	1.7	U	1.7	2320		11.4
SE-8         J16340         12/17/2007         216         0.11         0.01         U         0.80         U         0.80         9.1         0.53         784         10.6         1.6         U         1.6         1860           SE-9         J16341         12/17/2007         270         0.12         0.06         0.009         0.93         U         0.93         7.7         0.62         1160         12.4         1.9         U         1.9         2900           SE-10         J16342         12/17/2007         314         0.13         0.01         U         0.95         U         0.95         8.9         0.64         1210         12.7         1.9         U         1.9         3200           NW-1         J16DT8         3/18/2008         329         0.11         0.008         0.82         U         0.82         11.6         0.54         1170         10.9         1.6         U         1.6         387           NW-2         J16DT8         3/18/2008         239         0.10         0.01         U         0.78         U         0.78         11.0         0.52         647         10.4         1.6         U         1.6         342	SE-6	J16338	12/17/2007	206		0.11	0.01		0.01	0.82	U	0.82	9.9		0.55	704		11.0	1.6	U	1.6	1650		11.0
SE-9         J16341         12/17/2007         270         0.12         0.06         0.009         0.93         U         0.93         7.7         0.62         1160         12.4         1.9         U         1.9         2900           SE-10         J16342         12/17/2007         314         0.13         0.01         U         0.01         0.95         U         0.95         8.9         0.64         1210         12.7         1.9         U         1.9         3200           NW-1         J16DT7         3/18/2008         305         0.11         0.008         U         0.82         U         0.82         11.6         0.54         1170         10.9         1.6         U         1.6         387           NW-2         J16DT8         3/18/2008         329         0.11         0.01         U         0.83         U         0.82         11.6         0.56         1230         11.1         1.8         1.7         423           NW-3         J16DT9         3/18/2008         238         0.10         0.01         U         0.78         U         0.78         11.0         0.51         584         10.4         1.6         U         1.6         342	SE-7	J16339	12/17/2007	247		0.12	0.02		0.01	0.90	U	0.90	8.4		0.6	954		12.0	1.8	U	1.8	2420		12.0
SE-10         J16342         12/17/2007         314         0.13         0.01         U         0.05         U         0.95         8.9         0.64         1210         12.7         1.9         U         1.9         3200           NW-1         J16DT7         3/18/2008         305         0.11         0.008         U         0.082         U         0.82         11.6         0.54         1170         10.9         1.6         U         1.6         387           NW-2         J16DT8         3/18/2008         329         0.11         0.01         U         0.83         U         0.83         11.8         0.56         1230         11.1         1.8         1.7         423           NW-3         J16DT9         3/18/2008         239         0.10         0.01         U         0.78         U         0.78         11.0         0.52         654         10.4         1.6         U         1.6         342           NW-4         J16DV1         3/18/2008         229         0.10         0.009         U         0.76         U         0.76         11.1         0.51         730         10.1         1.5         U         1.5         341	SE-8	J16340	12/17/2007	216		0.11	0.01	U	0.01	0.80	U	0.80	9.1		0.53	784		10.6	- 1.6	U	1.6	1860		10.5
NW-1         J16DT7         3/18/2008         305         0.11         0.008         U         0.008         0.82         U         0.82         11.6         0.01         10.9         1.6         U         1.6         387           NW-2         J16DT8         3/18/2008         329         0.11         0.01         U         0.01         0.83         U         0.83         11.6         0.56         1230         11.1         1.8         1.7         423           NW-3         J16DT9         3/18/2008         239         0.10         0.01         U         0.01         0.78         U         0.78         11.0         0.52         654         10.4         1.6         U         1.6         364           NW-4         J16DV0         3/18/2008         238         0.10         0.01         U         0.78         U         0.78         13.0         0.52         654         10.4         1.6         U         1.6         342           NW-5         J16DV1         3/18/2008         229         0.10         0.009         U         0.76         U         0.76         11.3         0.51         584         10.2         1.5         U         1.5	SE-9	J16341	12/17/2007	270		0.12	0.06		0.009	0.93	U	0.93	7.7		0.62	1160		12.4	1.9	U	1.9	2900		12.4
NW-2         J16DT8         3/18/2008         329         0.11         0.01         U         0.01         0.83         U         0.83         11.8         0.56         11.2         11.1         1.8         1.7         423           NW-3         J16DT9         3/18/2008         239         0.10         0.01         U         0.01         0.78         U         0.78         11.0         0.52         654         10.4         1.6         U         1.6         364           NW-4         J16DV0         3/18/2008         238         0.10         0.01         U         0.78         U         0.78         13.0         0.52         654         10.4         1.6         U         1.6         342           NW-5         J16DV1         3/18/2008         229         0.10         0.009         U         0.76         U         0.76         11.1         0.51         584         10.2         1.5         341           NW-6         J16DV3         3/18/2008         324         0.11         0.007         0.79         U         0.76         11.3         0.53         733         10.6         1.6         U         1.5         341           NW-7	SE-10	J16342	12/17/2007	314		0,13	0.01	U	0.01	0.95	U	0.95	8.9		0.64	1210		12.7	1.9	U	1.9	3200		12.7
NW-3         J16DT9         3/18/2008         239         0.10         0.01         U         0.01         0.78         U         0.78         11.0         0.52         654         10.4         1.6         U         1.6         364           NW-4         J16DV0         3/18/2008         238         0.10         0.01         U         0.01         0.78         U         0.78         11.0         0.52         654         10.4         1.6         U         1.6         364           NW-4         J16DV0         3/18/2008         238         0.10         0.01         U         0.01         0.78         U         0.78         11.0         0.52         654         10.4         1.6         U         1.6         342           NW-5         J16DV1         3/18/2008         229         0.10         0.009         U         0.076         U         0.76         11.1         0.51         584         10.2         1.5         U         1.5         341         1.5           NW-6         J16DV3         3/18/2008         324         0.11         0.007         U         0.79         1.3         0.53         733         10.6         1.6         U	NW-1	JI6DT7	3/18/2008	305		0.11	0.008	U	0.008	0.82	U	0.82	11.6		0.54	1170		10.9	1.6	U	1.6	387		10.9
NW-4         J16DV0         3/18/2008         238         0.10         0.01         U         0.01         0.78         U         0.78         13.0         0.52         617         10.4         1.6         U         1.6         342           NW-5         J16DV1         3/18/2008         229         0.10         0.009         U         0.009         0.76         U         0.76         11.1         0.51         584         10.2         1.5         U         1.5         341           NW-6         J16DV2         3/18/2008         269         0.10         0.009         U         0.009         0.76         U         0.76         11.3         0.51         584         10.2         1.5         U         1.5         341           NW-7         J16DV3         3/18/2008         324         0.11         0.007         U         0.79         U         0.79         11.3         0.53         733         10.6         1.6         U         1.6         434           NW-8         J16DV4         3/18/2008         307         0.11         0.009         0.83         U         0.85         10.8         0.57         653         11.4         1.7         U	NW-2	J16DT8	3/18/2008	329		0.11	0.01	U	0.01	0.83	U	0.83	11.8		0.56	1230		11.1	1.8		1.7	423		11.1
NW-5         J16DV1         3/18/2008         229         0.10         0.009         U         0.009         0.76         U         0.76         11.1         0.51         584         10.2         1.5         U         1.5         341           NW-6         J16DV2         3/18/2008         269         0.10         0.009         U         0.009         0.76         U         0.76         11.1         0.51         584         10.2         1.5         U         1.5         341           NW-6         J16DV2         3/18/2008         324         0.11         0.007         U         0.76         U         0.76         11.3         0.51         730         10.1         1.5         412           NW-7         J16DV3         3/18/2008         324         0.11         0.007         U         0.79         U         0.79         11.3         0.53         733         10.6         1.6         U         1.6         434           NW-8         J16DV4         3/18/2008         307         0.11         0.009         0.83         U         0.83         11         0.55         826         11.0         1.7         543           NW-9         J16DV5	NW-3	JI6DT9	3/18/2008	239		0.10	0.01	U	0.01	0.78	U	0.78	11.0		0.52	654		10,4	1.6	U	1.6	364		10.4
NW-6         J16DV2         3/18/2008         269         0.10         0.009         U         0.009         0.76         U         0.76         11.3         0.51         730         10.1         1.5         U         1.5         412           NW-7         J16DV3         3/18/2008         324         0.11         0.007         U         0.79         U         0.79         11.3         0.53         733         10.6         1.6         U         1.6         434           NW-8         J16DV4         3/18/2008         307         0.11         0.009         U         0.009         0.83         U         0.83         11         0.55         826         11.0         1.7         U         1.7         543           NW-9         J16DV5         3/18/2008         241         0.11         0.008         0.85         U         0.85         10.8         0.57         653         11.4         1.7         U         1.7         543           Duplicate of J16DV6         J16DV7         3/18/2008         371         0.12         0.01         0.86         U         0.86         12.1         0.58         1390         11.5         1.7         U         1.7         <	NW-4	J16DV0	3/18/2008	238		0.10	0.01	U	0.01	0.78	U	0.78	13.0		0.52	617		10.4	1.6	U	1.6	342		10,4
NW-7         J16DV3         3/18/2008         324         0.11         0.007         U         0.79         U         0.79         11.3         0.53         733         10.6         1.6         U         1.6         434           NW-8         J16DV4         3/18/2008         307         0.11         0.009         U         0.009         0.83         U         0.83         11         0.55         826         11.0         1.7         U         1.7         543           NW-9         J16DV5         3/18/2008         241         0.11         0.008         U         0.85         U         0.85         10.8         0.57         653         11.4         1.7         U         1.7         543           Duplicate of J16DV6         J16DV7         3/18/2008         371         0.12         0.01         U         0.86         U         0.85         10.8         0.57         653         11.4         1.7         U         1.7         381           Duplicate of MW-10         J16DV6         J16DV6         J18/2008         371         0.12         0.01         U         0.86         U         0.87         11.9         0.58         1400         11.6         1.7 <td>NW-5</td> <td>JI6DV1</td> <td>3/18/2008</td> <td>229</td> <td></td> <td>0.10</td> <td>0.009</td> <td>U</td> <td>0.009</td> <td>0.76</td> <td>U</td> <td>0.76</td> <td>11.1</td> <td></td> <td>0.51</td> <td>584</td> <td></td> <td>10.2</td> <td>1.5</td> <td>U</td> <td>1.5</td> <td>341</td> <td></td> <td>10.2</td>	NW-5	JI6DV1	3/18/2008	229		0.10	0.009	U	0.009	0.76	U	0.76	11.1		0.51	584		10.2	1.5	U	1.5	341		10.2
NW-8         J16DV4         3/18/2008         307         0.11         0.009         U         0.009         0.83         U         0.83         11         0.55         826         11.0         1.7         U         1.7         543           NW-9         J16DV5         3/18/2008         241         0.11         0.008         U         0.83         U         0.83         11         0.55         826         11.0         1.7         U         1.7         543           NW-9         J16DV5         3/18/2008         241         0.11         0.008         U         0.85         U         0.85         10.8         0.57         653         11.4         1.7         U         1.7         381           Duplicate of J16DV6         J16DV7         3/18/2008         371         0.12         0.01         U         0.86         U         0.86         12.1         0.58         1390         11.5         1.7         U         1.7         495           NW-10         J16DV6         3/18/2008         378         0.12         0.01         U         0.87         U         0.87         11.9         0.58         1400         11.6         1.7         U         1.7<	NW-6	J16DV2	3/18/2008	269		0.10	0.009	U	0.009	0.76	U	0.76	11.3		0.51	730		10.1	1.5	U	1.5	412		10.1
NW-9         J16DV5         3/18/2008         241         0.11         0.008         U         0.085         U         0.85         10.8         0.57         653         11.4         1.7         U         1.7         381           Duplicate of J16DV6         J16DV7         3/18/2008         371         0.12         0.01         U         0.086         U         0.86         12.1         0.58         1390         11.5         1.7         U         1.7         495           NW-10         J16DV6         3/18/2008         378         0.12         0.01         U         0.87         U         0.87         11.9         0.58         1400         11.6         1.7         U         1.7         466	NW-7	JI6DV3	3/18/2008	324		0.11	0.007	U	0.007	0.79	U	0.79	11.3		0.53	733		10.6	1.6	U	1.6	434		10.6
Duplicate of J16DV6         J18/2008         371         0.12         0.01         U         0.01         0.86         U         0.86         12.1         0.58         1390         11.5         1.7         U         1.7         495           NW-10         J16DV6         3/18/2008         378         0.12         0.01         U         0.87         U         0.87         11.9         0.58         1400         11.6         1.7         U         1.7         466	NW-8	JI6DV4	3/18/2008	307		0.11	0.009	U	0.009	0.83	U	0.83	11		0.55	826		11.0	1.7	U	1.7	543		11.0
J16DV6         J18DV7         3/18/2008         371         0.12         0.01         U         0.01         0.86         U         0.86         12.1         0.58         1390         11.5         1.7         U         1.7         495           NW-10         J16DV6         3/18/2008         378         0.12         0.01         U         0.87         U         0.87         11.9         0.58         1400         11.6         1.7         U         1.7         466	NW-9	J16DV5	3/18/2008	241		0.11	0.008	U	0.008	0.85	U	0.85	10,8		0.57	653		11.4	1.7	U	1.7	381		11.4
NW-10 J16DV6 3/18/2008 378 0.12 0.01 U 0.01 0.87 U 0.87 11.9 0.58 1400 11.6 1.7 U 1.7 466	Duplicate of																							
								U								1390		11.5	1.7	U	1.7			11.5
								U	and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the second data and the se		U		11.9						1.7	U		466		11.6
	Equip blank	J16354	12/17/2007	4.2		0.04	0.009	U	0.009	0.28	U	0.28	0.19	U	0.19	37.3		3.7	0.56	U	0.56	102		3.7
Equip blank         J19DT6         3/18/2008         3.2         0.03         0.009         U         0.009         0.24         U         0.24         0.16         U         0.16         15.2         3.2         0.48         U         0.48         42.1	Equip blank	J19DT6	3/18/2008	3.2		0.03	0.009	U	0.009	0.24	U	0.24	0.16	U	0.16	15.2		3.2	0.48	U	0.48	42.1		3.2

Attachment 1. 120-F-1 Verification Sampling Results.

Attachment	1	Sheet No.	3 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

.

						A	ttac	hment 1	. 120-F-	1 Ve	rificati	on Samı	oling	, Result	s.								
Sample Location	HEIS Number	Sample Date		Silver		5	Sodiu	m	Va	nadi	um		Zinc		Total hydr	•		Ві	omi	de	CI	iloria	le
			mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
SE-1	J16332	12/17/2007	0.28	U	0.28	117	С	5.7	28		0.4	24.8	C	1.7	137	U	137	2.4	U	2.4	2.4	U	2.4
SE-2	J16333	12/17/2007	0.26	U	0.26	200	C	5.3	33.1		0.37	30.2	C	1.6	138	U	138	2.4	U	2.4	3.1		2.4
Duplicate of	1																						
J16333	J16334	12/17/2007	0.3	U	0.3	200	C	6	26.5		0.42	26	C	1.8	138	U	138	2.3	U	2.3	3.4		2.3
SE-3	.116335	12/17/2007	0.29	U	0.29	127	C	5.8	25.5		0.4	24.1	C	1.7	137	U	137	2.5	U	2.5	2.5	U	2.5
SE-4	J16336	12/17/2007	0.29	U	0.29	183	C	5.7	38.9		0.4	35.9	C	1.7	143	U	143	2.7	U	2.7	9.7		2.7
SE-5	J16337	12/17/2007	0.28	U	0.28	430	C	5.7	33.3		0.4	28.1	C	1.7	139	U	139	2.5	U	2.5	34		2.5
SE-6	J16338	12/17/2007	0.27	U	0.27	152	C	5.5	25.7		0.38	28.4	C	1.6	140	U	140	2.5	U	2.5	2.5	U	2.5
SE-7	J16339	12/17/2007	0.3	U	0.3	172	С	6	38.3		0.42	39	C	1.8	140	U	140	2.6	U	2.6	2.6	U	2.6
SE-8	J16340	12/17/2007	0.27	U	0.27	193	C	5.3	31.4		0.37	30.9	C	1.6	139	U	139	2.7	U	2.7	2.7	U	2.7
SE-9	J16341	12/17/2007	0.31	U	0.31	154	C	6.2	36.4		0.43	47.1	C	1.9	145	U	145	2.3	U	2.3	2.3	U	2.3
SE-10	J16342	12/17/2007	0.32	U	0.32	180	C	6.4	49.7		0.44	39.4	C	1.9	146	U	146	2.6	U	2.6	2.6	U	2.6
NW-1	J16DT7	3/18/2008	0.27	U	0.27	139		5.4	53.7		0.38	37.7		1.6	141	U	141	2.4	U	2.4	3,5		2.4
NW-2	J16DT8	3/18/2008	0.28	U	0.28	132		5.6	48.7		0.39	38.8		1.7	140	U	140	2.4	U	2.4	2.4	U	2.4
NW-3	J16DT9	3/18/2008	0.26	U	0.26	112		5.2	35.6		0.36	28.7		1.6	133	U	133	2.2	U	2.2	2.2	U	2.2
NW-4	J16DV0	3/18/2008	0.26	U	0.26	131		5.2	34.3		0.36	27.7		1.6	134	U	134	2.2	U	2.2	2.2	U	2.2
NW-5	J16DV1	3/18/2008	0.26	U	0.26	174		5.1	34.6		0.36	28.1		1.5	138	U	138	2.5	U	2.5	2.5	U	2.5
NW-6	J16DV2	3/18/2008	0.25	U	0.25	120		5.1	40.6		0.35	31.1		1.5	134	U	134	2.4	U	2.4	2.4	U	2.4
NW-7	J16DV3	3/18/2008	0.26	U	0.26	147		5.3	67.7		0.37	40.9		1.6	134	U	134	2.5	U	2.5	2.5	U	2.5
NW-8	J16DV4	3/18/2008	0.28	U	0.28	140		5.5	55.2		0.39	38.1		1.7	144	U	144	2.6	U	2.6	7.6		2.6
NW-9	J16DV5	3/18/2008	0.28	U	0.28	112		5.7	35.7		0.40	29.4		1.7	141	U	141	2.6	U	2.6	2.6	U	2.6
Duplicate of																							
JI6DV6	.116DV7	3/18/2008	0.29	U	0.29	126		5.8	52.8		0.40	41.9		1.7	141	U	141	2.6	U	2.6	2.6	U	2.6
NW-10	JI6DV6	3/18/2008	0.29	U	0.29	123		5.8	54.0		0.40	42.5		1.7	143	U	143	2.7	U	2.7	2.7	U	2.7
Equip blank	J16354	12/17/2007	0.09	U	0.09	9.2	C	1.9	0.21		0.13	0.63	С	0.56									
Equip blank	J19DT6	3/18/2008	0.08	U	0.08	10.6		1.6	0.11	U	0.11	0.48	U	0.48				2.4	U	2.4	2.4	U	2.4

Attachment 1.	120-F-1	Verification	Sampling	Results.
---------------	---------	--------------	----------	----------

Attachment	1	Sheet No.	4 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Attachment 1. 120-F-1 Verification Sampling Resul	Attachment 1	. 120-F-1	Verification	Sampling	Results
---------------------------------------------------	--------------	-----------	--------------	----------	---------

	Attachment 1. 120-F-1 Verification Sampling Results.																						
Sample	HEIS	Sample	C	Cyanid	le	F	luori	de	N	litrat	e	ľ	Nitrit	e	Pho	ospha	te	S	ulfat	e	S	ulfide	•
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
SE-1	J16332	12/17/2007	0.48	U	0.48	2.4	U	2.4	2.37	U	2.4	2.37	U	2.4	2.4	U	2.4	2.4	U	2.4	15.4	U	15.4
SE-2	J16333	12/17/2007	0.48	U	0.48	2.4	U	2.4	2.44	U	2.4	2.44	U	2.4	2.4	U	2.4	493	D	24	21.7	U	21.7
Duplicate of																							
J16333	J16334	12/17/2007	0.47	U	0.47	2.3	U	2.3	2.34	U	2.3	2.34	U	2.3	2.3	U	2.3	183	D	23	15.4	U	15.4
SE-3	J16335	12/17/2007	0.48	U	0.48	2.5	U	2.5	2.46	U	2.5	2.46	U	2.5	2.5	U	2.5	2.5	U	2.5	21.2	U	21.2
SE-4	J16336	12/17/2007	0.5	U	0.5	3.9		2.7	2.73	U	2.7	2.73	U	2.7	2.7	U	2.7	8410	D	270	23.7	U	23.7
SE-5	J16337	12/17/2007	0.51	U	0.51	3.4		2.5	2.49	U	2.5	2,49	U	2.5	2.5	U	2.5	153	D	2.5	21.5	U	21.5
SE-6	J16338	12/17/2007	0.5	U	0.5	2.5	U	2.5	2.54	U	2.5	2.54	U	2.5	2.5	U	2.5	2410	D	125	21.5	U	21.5
SE-7	J16339	12/17/2007	0.5	U	0.5	2.6	U	2.6	2.62	U	2.6	2.62	U	2.6	2.6	U	2.6	32.8		2.6	21.5	U	21.5
SE-8	J16340	12/17/2007	0.49	U	0.49	2.7	U	2.7	2.72	U	2.7	2.72	U	2.7	2.7	U	2.7	11.4		2.7	21.1	U	21.1
SE-9	J16341	12/17/2007	0.48	U	0.48	2.3	U	2.3	18.6		2.3	2.27	U	2.3	6.8		2.3	51.3		2.3	22.3	U	22.3
SE-10	J16342	12/17/2007	0.48	U	0.48	2.6	U	2.6	2.56	U	2.6	2.56	U	2.6	46.5		2.6	3.2		2.6	22.7	U	22.7
NW-1	J16DT7	3/18/2008				2.4	U	2.4	3.53		2.4	2.4	U	2.4	2.4	U	2.4	3.9		2.4			
NW-2	J16DT8	3/18/2008				2.4	U	2.4	12.2		2.36	2.36	U	2.36	2.4	U	2.4	3.9		2.4			
NW-3	J16DT9	3/18/2008				2.2	U	2.2	2.2	U	2.2	2.2	U	2.2	2.2	U	2.2	2.2	U	2.2			
NW-4	J16DV0	3/18/2008				2.2	U	2.2	2.24	U	2.24	2.24	U	2.24	2.2	U	2.2	4.0		2.2			
NW-5	J16DV1	3/18/2008				2.5	U	2.5	2.47	U	2.47	2.47	U	2.47	2.5	U	2.5	5.4		2.5			
NW-6	J16DV2	3/18/2008				2.4	U	2.4	2.36	U	2.36	2.36	U	2.36	2.4	U	2.4	3.3		2.4			
NW-7	J16DV3	3/18/2008				2.5	U	2.5	2.86		2.48	2.48	U	2.48	2.5	U	2.5	2.5	U	2.5		T	
NW-8	J16DV4	3/18/2008				2.6	U	2.6	2.71		2.57	2.57	U	2.57	2.6	U	2.6	13.4		2.6			
NW-9	J16DV5	3/18/2008				2.6	U	2.6	3.54		2.55	2.55	U	2.55	2.6	U	2.6	5.3		2.6			
Duplicate of																							
J16DV6	J16DV7	3/18/2008				2.6	U	2.6	19.8		2.64	2.64	υ	2.64	2.6	U	2.6	4.3		2.6			
NW-10	J16DV6	3/18/2008				2.7	U	2.7	25.3		2.68	2.68	U	2.68	2.7	U	2.7	5,5		2.7			
Equip blank	J16354	12/17/2007																					
Equip blank	J19DT6	3/18/2008				2.4	U	2.4	2.39	U	2.39	2.39	U	2.39	2.4	U	2.4	2.4	U	2.4			

Attachment	1 j.	Sheet No.	5 of 18
Originator	H. M. Sulloway 🦷	B Date	04/03/08
Checked	L. D. Habel	T Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Attachment 1. 120-F-1 Verification Sampling
---------------------------------------------

Sample	HEIS	Sample	Hexaval	ent Cl	nt Chromium				
Location	Number	Date	mg/kg	Q	PQL				
SE-1	J16B36	2/19/2008	0.21	U	0.21				
SE-2	J16B37	2/19/2008	0.21	U	0.21				
SE-3	J16B38	2/19/2008	0.21	U	0.21				
SE-4	J16B39	2/19/2008	1.2		0.21				
SE-5	J16B40	2/19/2008	0.21	U	0.21				
SE-6	J16B41	2/19/2008	1.8		0.21				
SE-7	J16B42	2/19/2008	0.20	U	0.20				
SE-8	J16B43	2/19/2008	0,21	U	0.21				
SE-9	J16B44	2/19/2008	0.21	U	0.21				
SE-10	J16B45	2/19/2008	0.22	U	0.22				
Duplicate of									
J16B45	J16B46	2/19/2008	0.21	U	0.21				
NW-1	J16DT7	3/18/2008	0.21		0.2				
NW-2	J16DT8	3/18/2008	0.21	U	0.21				
NW-3	J16DT9	3/18/2008	0.30		0.2				
NW-4	J16DV0	3/18/2008	0.2	U	0.2				
NW-5	J16DV1	3/18/2008	0.21	U	0.21				
NW-6	J16DV2	3/18/2008	0.2	U	0.2				
NW-7	J16DV3	3/18/2008	0.2	U	0.2				
NW-8	J16DV4	3/18/2008	0.22	U	0.22				
NW-9	J16DV5	3/18/2008	0.24		0.21				
Duplicate of									
J16DV6	J16DV7	3/18/2008	0.22	U	0.22				
NW-10	J16DV6	3/18/2008	0.22	U	0.22				

Attachment	1 1.	Sheet No.	6 of 18
Originator	H. M. Sulloway	Date Date	04/03/08
Checked	L. D. Habel	4 Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

1	1			i vermeation Samp				suits		T				
Constituent	Sample	J16332 Sample Location SE-1 Sample Date 12/17/07				J16333 Sample Location SE-2 Sample Date 12/17/07			34 16333 12/17/07	Sample		5 tion SE-3 12/17/07		
	μg/kg	0	POL	μg/kg	Q	POL		0	POI					
	μg/kg			hlorinate			µg/kg	Q	PQL	µg/kg	Q	PQL		
Aroclor-1016	14	ΙŪΙ	14	14	U	14	14	U	14	14	U	14		
Aroclor-1221	14	U	14	14	U	14	14	U	14	14		14		
Aroclor-1232	14	U	14	14	U	14	14	U	14	14		14		
Aroclor-1232	14	U	14	14	U	14	14	U	14	14	U	14		
Aroclor-1242 Aroclor-1248	14	U	14	14	U	14	14	U	14	14	U	14		
Aroclor-1254	14	U	14	14	U	14	14	U	14	14	U	14		
Aroclor-1254 Aroclor-1260	14	U	14	14	U	14	14	U	14	14	U	14		
A100101-1200	14			Pestici		14	14		14	14	101			
Aldrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	UT	1.4		
Alpha-BHC	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4		1.4		
	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Alpha-Chlordane Beta-BHC	1.4	U	1.4	1.4	U	1.4	1.4	UU	1.4	1.4		1.4		
Delta-BHC	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Dichlorodiphenyldichloroethane	1.4	U	1.4	1.4	U	1.4	1.4		1.4	1.4		1.4		
Dichlorodiphenyldichloroethylene	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Dichlorodiphenyltrichloroethane	1.4	U	1.4	1.4	U	1.4	2.1	J	1.4	1.4	U	1.4		
Dieldrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4		1.4		
Endosulfan I	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Endosulfan II	1.4	U	1.4	1.4	U	1.4	1.4		1.4	1.4	U	1.4		
Endosulfan sulfate	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Endrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4		1.4		
Endrin aldehyde	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4		1.4		
	1.4	U	1.4	1.4	υ	1.4	1.4	U	1.4	1.4	U	1.4		
Endrin ketone	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Gamma-BHC (Lindane)	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
gamma-Chlordane	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Heptachlor Heptachlor epoxide	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Methoxychlor	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4		
Toxaphene	14			latile Org			14		14	14	101			
1,2,4-Trichlorobenzene	340	TUT	340	350	U	350	350	TUT	350	340	U	340		
1,2-Dichlorobenzene	340	U	340	350	U	350	350	υ	350	340	1 U	340		
1,3-Dichlorobenzene	340	U	340	350	U	350	350	U	350	340	U	340		
1,4-Dichlorobenzene	340	Ŭ	340	350	U	350	350	U	350	340	Ū	340		
2,4,5-Trichlorophenol	860	U	860	860	U	860	860	Ū	860	860	U	860		
2,4,6-Trichlorophenol	340	U	340	350	U	350	350	U	350	340	Ŭ	340		
2,4-Dichlorophenol	340	U	340	350	U	350	350	U	350	340	U	340		
2,4-Dimethylphenol	340	U	340	350	U	350	350	U	350	340	U	340		
2,4-Dinitrophenol	860	U	860	860	U	860	860	U	860	860	Ū	860		
2,4-Dinitrotoluene	340	U	340	350	U	350	350	U	350	340	tut	340		
2,6-Dinitrotoluene	340	U	340	350	U	350	350	Ū	350	340	tut	340		
2-Chloronaphthalene	340	U	340	350	U	350	350	Ū	350	340	Ū	340		
2-Chlorophenol	340	U	340	350	U	350	350	Ū	350	340	Ū	340		
2-Methylnaphthalene	340	U	340	350	U	350	350	Ū	350	340	Ū	340		
2-Methylphenol (cresol, o-)	340	U	340	350	U	350	350	Ū	350	340	Ŭ	340		
2-Nitroaniline	860	U	860	860	U	860	860	U	860	860	Ū	860		
2-Nitrophenol	340	U	340	350	U	350	350	U U	350	340	Ū	340		
2-14100/10101	1 540		<u>U+U</u>		10	550	L	191		1	1 2			

Attachment 1.	120-F-1	Verification	Sampling Results	s.
---------------	---------	--------------	------------------	----

Attachment	1 .1	, Sheet No.	7 of 18
Originator	H. M. Sulloway	Date Date	04/03/08
Checked	L. D. Habel 2	Date Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Attachment 1. 120-F-1 Verification Sampling Results.														
Constituent	Constituent J16332 Constituent Sample Location SE-1 Sample Date 12/17/07					33 tion SE-2 12/17/07	Dup		34 16333 12/17/07	Sample		35 tion SE-3 12/17/07		
				μg/kg	0									
	μg/kg Q PQL						µg/kg	Q	PQL	µg/kg Q PQL				
		Se	mivolatile (	Organic A	naly	tes (contin	ued)			terrete the second second				
3,3'-Dichlorobenzidine	340	U	340	350	U	350	350	U	350	340	U	340		
4-Methylphenol (p-cresol)	340	U	340	350	U	350	350	U	350	340	U	340		
3-Nitroaniline	860	U	860	860	U	860	860	U	860	860	U	860		
4,6-Dinitro-2-methylphenol	860	U	860	860	U	860	860	U	860	860	U	860		
4-Bromophenyl-phenylether	340	υ	340	350	U	350	350	U	350	340	U	340		
4-Chloro-3-methylphenol	340	U	340	350	U	350	350	U	350	340	U	340		
4-Chloroaniline	340	U	340	350	U	350	350	U	350	340	U	340		
4-Chlorophenyl-phenylether	340	U	340	350	U	350	350	U	350	340	U	340		
4-Nitroaniline	860	U	860	860	U	860	860	U	860	860	U	860		
4-Nitrophenol	860	U	860	860	U	860	860	U	860	860	U	860		
Acenaphthene	340	U	340	350	U	350	350	U	350	340	U	340		
Acenaphthylene	340	U	340	350	U	350	350	U	350	340	U	340		
Anthracene	340	U	340	350	U	350	350	U	350	340	U	340		
Benzo(a)anthracene	340	U	340	350	U	350	350	U	350	340	υ	340		
Benzo(a)pyrene	340	U	340	350	U	350	350	U	350	340	U	340		
Benzo(b)fluoranthene	340	U	340	350	U	350	350	U	350	340	U	340		
Benzo(g,h,i)perylene	340	U	340	350	U	350	350	U	350	340	U	340		
Benzo(k)fluoranthene	340	U	340	350	U	350	350	U	350	340	U	340		
Bis(2-chloro-1-methylethyl)ether	340	U	340	350	U	350	350	U	350	340	U	340		
Bis(2-chloroethoxy)methane	340	U	340	350	U	350	350	U	350	340	U	340		
Bis(2-chloroethyl) ether	340	υ	340	350	U	350	350	U	350	340	U	340		
Bis(2-ethylhexyl) phthalate	33	JB	340	20	JB	350	21	JB	350	340	U	340		
Butylbenzylphthalate	340	U	340	350	U	350	350	U	350	340	U	340		
Carbazole	340	U	340	350	U	350	350	U	350	340	U	340		
Chrysene	340	U	340	350	U	350	350	U	350	340	U	340		
Dibenz(a,h)anthracene	25	J	340	350	U	350	350	U	350	340	U	340		
Dibenzofuran	340	U	340	350	·U	350	350	U	350	340	U	340		
Diethylphthalate	340	U	340	350	U	350	350	U	350	340	U	340		
Dimethylphthalate	340	U	340	350	U	350	350	U	350	340	U	340		
Di-n-butylphthalate	340	U	340	350	U	350	350	U	350	340	U	340		
Di-n-octylphthalate	340	U	340	350	U	350	350	U	350	340	U	340		
Fluoranthene	340	U	340	350	U	350	350	U	350	340	U	340		
Fluorene	340	U	340	350	U	350	350	U	350	340	U	340		
Hexachlorobenzene	340	U	340	350	U	350	350	U	350	340	U	340		
Hexachlorobutadiene	340	U	340	350	U	350	350	U	350	340	U	340		
Hexachlorocyclopentadiene	340	U	340	350	U	350	350	U	350	340	U	340		
Hexachloroethane	340	U	340	350	U	350	350	U	350	340	U	340		
Indeno(1,2,3-cd)pyrene	340	U	340	350	U	350	350	υ	350	340	U	340		
Isophorone	340	U	340	350	U	350	350	U	350	340	U	340		
Naphthalene	340	U	340	350	U	350	350	υ	350	340	U	340		
Nitrobenzene	340	U	340	350	U	350	350	U	350	340	U	340		
N-Nitroso-di-n-dipropylamine	340	U	340	350	U	350	350	U	350	340	U	340		
N-Nitrosodiphenylamine	340	U	340	350	U	350	350	U	350	340	U	340		
Pentachlorophenol	860	U	860	860	U	860	860	U	860	860	U	860		
Phenanthrene	340	U	340	350	U	350	350	U	350	340	U	340		
Phenol	340	U	340	350	U	350	350	U	350	340	U	340		
Pyrene	340	U	340	350	U	350	350	U	350	340	U	340		

Attachment 1.	120-F-1	Verification	Sampling Results.

Attachment	1	Sheet No.	8 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

,

Constituent	Sample	36 ation SE-4 e 12/17/07	J16337 Sample Location SE-5 Sample Date 12/17/07			Sample		38 tion SE-6 12/17/07	Sample	J16339 Sample Location SE-7 Sample Date 12/17/07			
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	
Aroclor-1016	14	U	14	10rinated	U	14	14	U	14	14	lul	14	
Aroclor-1221	14	U	14	14	U	14	14	U	14	14	U	14	
Aroclor-1232	14	U	14	14	U	14	14	U	14	14	U	14	
Aroclor-1242	14	U	14	14	U	14	14	U	14	14	U	14	
Aroclor-1248	14	U	14	14	U	14	14	U	14	14	U	14	
Aroclor-1254	14	U	14	14	Ū	14	14	U	14	14	U	14	
Aroclor-1260	14	U	14	14	Ū	14	14	U	14	14	U	14	
	1 1			Pesticid			1			. ··	101		
Aldrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Alpha-BHC	1.4	U	1.4	1.4	Ū	1.4	1.4	Ū	1.4	1.4	Ū	1.4	
Alpha-Chlordane	10		1.4	1.4	U	1.4	8.6	D	1.4	1.4	Ū	1.4	
Beta-BHC	1.4	U	1.4	1.4	Ū	1.4	1.4	U	1.4	1.4	U	1.4	
Delta-BHC	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Dichlorodiphenyldichloroethane	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Dichlorodiphenyldichloroethylene	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Dichlorodiphenyltrichloroethane	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Dieldrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Endosulfan I	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Endosulfan II	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Endosulfan sulfate	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Endrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Endrin aldehyde	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Endrin ketone	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Gamma-BHC (Lindane)	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
gamma-Chlordane	13		1.4	1.4	U	1.4	8.2	D	1.4	1.4	U	1.4	
Heptachlor	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Heptachlor epoxide	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	
Methoxychlor	1.4	U	1.4	1.4	υ	1.4	1.4	U	1.4	1.4	U	1.4	
Toxaphene	14	U	14	14	U	14	14	U	14	14	U	14	
	1 0(0	1		atile Orga			1 250	T	250	250	Tul	350	
1,2,4-Trichlorobenzene	360	U U	360 360	350 350	UU	350 350	350 350	U U	<u> </u>	350 350	U	350	
1,2-Dichlorobenzene	360	U	360	350	U	350	350	U	350	350	U	350	
1,3-Dichlorobenzene	360	U	360	350	U	350	350	U	350	350	U	350	
2,4,5-Trichlorophenol	890	U	890	870	U	870	880	U	880	870	U	870	
2,4,6-Trichlorophenol	360	U	360	350	U	350	350	U	350	350	U	350	
2,4-Dichlorophenol	360	U	360	350	U	350	350	Ŭ	350	350	Ū	350	
2,4-Dimethylphenol	360	U	360	350	U	350	350	U	350	350	Ŭ	350	
2,4-Dinitrophenol	890	U	890	870	U	870	880	Ŭ	880	870	Ū	870	
2,4-Dinitrotoluene	360	U	360	350	U	350	350	U	350	350	Ū	350	
2,6-Dinitrotoluene	360	U	360	350	Ū	350	350	Ū	350	350	U	350	
2-Chloronaphthalene	360	U	360	350	U	350	350	Ū	350	350	U	350	
2-Chlorophenol	360	U	360	350	U	350	350	U	350	350	U	350	
2-Methylnaphthalene	360	U	360	350	U	350	350	Ū	350	350	U	350	
2-Methylphenol (cresol, o-)	360	U	360	350	Ū	350	350	Ū	350	350	U	350	
2-Nitroaniline	890	Ū	890	870	U	870	880	U	880	870	U	870	
2-Nitrophenol	360	U	360	350	U	350	350	U	350	350	U	350	

Attachment 1.	120-F-1	Verification	Sampling	Results.

Attachment	1	Sheet No.	9 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Constituent         J16336 Sample Location SE-5 Sample Date 12/17/07         J16337 Sample Location SE-5 Sample Date 12/17/07         Sample Location SE-5 Sample Date 12/17/07           J-Dichlorobenzidine         10         20         POL         µg/kg         0         POL         PGL         PGL <th colspan="14">Attachment 1. 120-F-1 Verification Sampling Results.</th>	Attachment 1. 120-F-1 Verification Sampling Results.													
Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Da			36		J163	37	J16338			J16339				
Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Date 12/17/07         Sample Da		Sample	Loca	tion SE-4	Sample	Loca	tion SE-5	Sample	Loca	tion SE-6	Sample	Loca	tion SE-7	
Semivalite Organic Analytes (continued)         Semivalite         Semivality           3.3'-Dichlorobenzidine         360         U         350	Constituent	Sample	Date	e 12/17/07	Sample	Date	e 12/17/07							
Semivalite Organic Analytes (continued)         Semivalite         Semivality           3.3'-Dichlorobenzidine         360         U         350								•			•			
Semivalite Organic Analytes (continued)         Semivalite         Semivality           3.3'-Dichlorobenzidine         360         U         350		ug/kg	0	POL	ug/kg	0	POL	ug/kg	0	POL	ug/kg	0	POL	
32-Dichlorobenzidme         360         U         360         U         350         U		1 <u>10</u>		nivolatile C		nalvt			1					
4-Methyphenol (p-cresol)         360         U         360         U         350         U         880         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         S00         U         S30													350	
3-Nitroa-Interlylphenol         890         U         890         870         U         880         870         U         870         U         880         870         U         870           4.6-Dintro-2-methylphenol         360         U         360         350         U         350         350         U			U											
4,6-Dinitro-2-methylphenol       890       U       870       U       870       U       880       870       U       350		890	U	890	870	U			U			U		
4-Bromophenyl-phenylether         360         U         350         350         U         350         40           4-Chloronilline         360         U         360         350         U         <		890	U						Ū					
4-Chloro-3-methylphenol         360         U         350         350         U         350         40           4-Nitrophenyl-phenylether         360         U         890         870         U         870         U         880         870         U         870         U         880         U         880         870         U         350         U <td></td> <td>360</td> <td>U</td> <td>360</td> <td>350</td> <td>U</td> <td>350</td> <td>350</td> <td>U</td> <td>350</td> <td>350</td> <td>U</td> <td>350</td>		360	U	360	350	U	350	350	U	350	350	U	350	
4-Chloroanline         360         U         360         350         U         350         J         350         J         350         U         870			U			U			U			U		
4-Chicrophenyl-phenylether         360         U         350         U         870         U         850         150         150         150         150         150         150         150         150         150         150		360	U	360	350	U	350	350	U	350	350	U	350	
4-Nitroaniline         890         U         890         870         U         870         880         U         880         870         U         870           4-Nitrophenol         890         U         890         870         U         870         880         U         880         W         870         U         870           Acenaphthylene         360         U         360         350         U         350         J         350         J         350         U         350         U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>									1					
4-Nitrophenol         890         U         890         870         U         870         880         U         880         870         U         870           Acenaphthylene         360         U         360         350         U         350         S50         U         350         U </td <td></td> <td>890</td> <td>Ū</td> <td>890</td> <td>870</td> <td>Ū</td> <td></td> <td></td> <td>Ū</td> <td>880</td> <td></td> <td>Ū</td> <td></td>		890	Ū	890	870	Ū			Ū	880		Ū		
Acenaphthene         360         U         360         350         U         350         350         U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>									1					
Accnaphthylene         360         U         360         350         U         350         350         U         350         350         U         350           Anthracene         360         U         360         350         U         350         U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>++</td><td></td><td></td><td></td><td></td></td<>									++					
Anthracene         360         U         360         350         U         350         U         350         Back         350         U         350				and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se										
Benzo(a)anthracene         360         U         360         350         U         350         35									1			I	and and an an and the state of the second second second second second second second second second second second	
Benzo(a)pyrene         360         U         360         350         U         350         350         U         350         350         U         350			~									- 1		
Benzo(b)fluoranthene         360         U         350         U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ū</td> <td></td> <td></td> <td>U</td> <td></td>									Ū			U		
Berzo(g,h,j)perylene         360         U         350         U <td></td> <td></td> <td>-</td> <td></td>			-											
Berzo(k)fluoranthere         360         U         360         350         350         350         350         350         350         350         350         350         350         350         350         350         350         350         U         350         U         350         350         U         350         350         U         350         350<												_	~~~~	
Bis(2-chloro-1-methylethyl)ether         360         U         350         J         350         U         350         J         350         U         350         Discurrents         U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												_	the second second second second second second second second second second second second second second second se	
Bis(2-chloroethyl) ether         360         U         360         350         U         350         350         U         350           Bis(2-ethylhexyl) phthalate         22         JB         360         350         U         350         28         J         350         20         J         350           Butylbenzylphthalate         360         U         360         350         U         350         350         U         350         350         U         350           Carbazole         360         U         360         350         U         350         350         U         350         350         U         350           Chrysene         360         U         360         350         U         350         J         350         U														
Bis(2-ethylhexyl) phthalate         22         JB         360         350         U         350         28         J         350         20         J         350           Butylbenzylphthalate         360         U         360         350         U         350         J         350         U         350         J         350         U         350         J         J         350         J         J         350         U         350         J         J         350         U         350         U         350         U         350         U         350         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J									Ū					
Butylbenzylphthalate         360         U         360         350         U         350         350         U												_		
Carbazole         360         U         360         350         U         350         350         U         350<							and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		Ū			Ū		
Chrysene         360         U         360         350         U         350         350         U         350 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>									1					
Dibenz(a, h)anthracene         360         U         360         350         U         350         350         U														
Dibenzofuran         360         U         360         350         U         350         350         U         3			-			- 1								
Diethylphthalate         360         U         360         350         U         350         350         U         <						-								
Dimethylphthalate         360         U         360         350         U         350         350         U									Ū			U	350	
Di-n-butylphthalate         360         U         360         350         U         350         350         U								1		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se				
Di-n-octylphthalate         360         U         360         350         U         350         350         U									Ū			U		
Fluoranthene         360         U         360         350         U         350         350         U         3												U	350	
Fluorene         360         U         360         350         U         350         350         U         350 </td <td></td> <td></td> <td>U</td> <td>360</td> <td>350</td> <td>U</td> <td>350</td> <td></td> <td>U</td> <td>350</td> <td>350</td> <td>U</td> <td>350</td>			U	360	350	U	350		U	350	350	U	350	
Hexachlorobenzene         360         U         360         350         U         350         350         U									U	350	350	U	350	
Hexachlorobutadiene         360         U         360         350         U         350         350         U														
Hexachlorocyclopentadiene         360         U         360         350         U         350         350         U									U	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		U		
Hexachloroethane         360         U         360         350         U         350         350         U         350         350         U         -350           Indeno(1,2,3-cd)pyrene         360         U         360         350         U         350         350         U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			U		350	U			U	350	350	U	-350	
Isophorone         360         U         360         350         U         350         350         U         350         350         U         350												U	350	
Naphthalene         360         U         360         350         U         350         350         U         350         350         U         350			U			U			U	350	350	U	350	
Nitrobenzene         360         U         360         350         U         350         350         U         350         350         U         350			U						U	350	350	U	350	
N-Nitroso-di-n-dipropylamine         360         U         360         350         U         350         350         U         350						_			U			U	350	
N-Nitrosodiphenylamine         360         U         360         350         U         350         350         U         350         350         U         350         350         U         350 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s</td> <td>U</td> <td>350</td> <td>350</td> <td>U</td> <td>350</td>						_		A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	U	350	350	U	350	
Pentachlorophenol         890         U         890         870         U         870         880         U         880         870         U         870									U	350	350	U	350	
									U		870	U	870	
	Phenanthrene	360		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	350		350	350	U		350	U	350	
Phenol 360 U 360 350 U 350 350 U 350 350 U 350 350 U 350									U		350	U	350	
Pyrene 360 U 360 350 U 350 350 U 350 350 U 350									U		350	U	350	

Attachment 1. 120-F-1 Verification Sampling Results.

Attachment	1	Sheet No.	10 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Constituent			340 ation SE-8 e 12/17/07	Sample	J163 Loca		Sample	J1634 Locat	2 ion SE-10 12/17/07	Sample		7 ion NW-1 : 3/18/07
	μg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
Aroclor-1016	14	Τυ	Polyc 14	hlorinate	d Bib	15	15	U	15	14	TUT	14
Aroclor-1221	14		14	15	U	15	15		15	14		14
Aroclor-1232	14		14	15	U	15	15		15	14	U	14
Aroclor-1242	14	U	14	15	U	15	15		15	14	U	14
Aroclor-1248	14		14	15	U	15	15		15	14		14
Aroclor-1254	14		14	23	0	15	15		15	14	U	14
	14		14	9.8	J	15			15	14	U	14
Aroclor-1260	14	10	14	Pestici		15	15		15	14		14
Aldrin	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	TUT	1.4
Alpha-BHC	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Alpha-Chlordane	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Beta-BHC	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4		1.4
Delta-BHC	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Dichlorodiphenyldichloroethane	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Dichlorodiphenyldichloroethylene	1.4	UD	1.4	1.8	JD	1.5	1.5	UD	1.5	1.4	U	1.4
Dichlorodiphenyltrichloroethane	1.4	UD	1.4	1.7	JD	1.5	1.5	UD	1.5	1.4	U	1.4
Dieldrin	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Endosulfan I	1.4	UD	1.4	1.5	JD	1.5	1.5	UD	1.5	1.4	U	1.4
Endosulfan II	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Endosulfan sulfate	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Endrin	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Endrin aldehyde	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Endrin ketone	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Gamma-BHC (Lindane)	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
gamma-Chlordane	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Heptachlor	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Heptachlor epoxide	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Methoxychlor	1.4	UD	1.4	1.5	UD	1.5	1.5	UD	1.5	1.4	U	1.4
Toxaphene	14		1.4	1.5	UD	1.5	1.5	UD	1.5	14	tut	14
	1 14	100		latile Org			1				101	14
1,2,4-Trichlorobenzene	350	Τυ	350	360	TU	360	370	U	370	340	TUT	340
1,2-Dichlorobenzene	350	Ū	350	360	Ū	360	370	Ū	370	340	U	340
1,3-Dichlorobenzene	350	Ū	350	360	Ū	360	370	U	370	340	Ū	340
1,4-Dichlorobenzene	350	Ū	350	360	Ŭ	360	370	Ū	370	340	Ū	340
2,4,5-Trichlorophenol	870	U	870	910	Ū	910	920	Ū	920	850	U	850
2,4,6-Trichlorophenol	350	U	350	360	U	360	370	Ū	370	340	U	340
2,4-Dichlorophenol	350	U	350	360	U	360	370	U	370	340	U	340
2,4-Dimethylphenol	350	U	350	360	U	360	370	U	370	340	U	340
2,4-Dinitrophenol	870	U	870	910	U	910	920	U	920	850	U	850
2,4-Dinitrotoluene	350	Ū	350	360	Ū	360	370	U	370	350	U	350
2,6-Dinitrotoluene	350	U	350	360	U	360	370	U	370	340	U	340
2-Chloronaphthalene	350	Ū	350	360	U	360	370	U	370	340	U	340
2-Chlorophenol	350	U	350	360	U	360	370	U	370	340	U	340
2-Methylnaphthalene	350	U	350	360	U	360	370	U	370	340	U	340
2-Methylphenol (cresol, o-)	350	Ū	350	360	Ū	360	370	U	370	340	U	340
2-Nitroaniline	870	Ū	870	910	Ū	910	920	U	920	850	U	850
2-Nitrophenol	350	Ū	350	360	Ū	360	370	Ū	370	340	U	340

Attachment 1. 120-F-1 Verification Sampling Results.

Attachment	1	Sheet No.	11 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Cale, No.	0100F-CA-V0350	Rev. No.	0

Attachment 1. 120-F-1 Verification Sampling Results.													
Constituent	J16340 Sample Location SE-8			Sample		tion SE-9	Sample		ion SE-10	J16DT7 Sample Location NW-1			
	Sample	Dat	e 12/17/07	Sample	Date	2/17/07	Sample	Date	12/17/07	Sample	e Dat	e 3/18/07	
						202							
	µg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	µg/kg	Q	PQL	
2.21 Di-11.	250		emivolatile (		1	· · · · · · · · · · · · · · · · · · ·			270	240	1 7 1	240	
3,3'-Dichlorobenzidine	350	U U	350 350	360	UU	360	370	U	370	340	U	340	
4-Methylphenol (p-cresol)	350	U		360		360	370	U	370	340	U	340	
3-Nitroaniline	870	_	870	910	U	910	920	U	920	850	U	850	
4,6-Dinitro-2-methylphenol	870	U	870	910	U	910	920	U	920	850	U	850	
4-Bromophenyl-phenylether	350	U	350	360	U	360	370	U	370	340	U	340	
4-Chloro-3-methylphenol	350	U	350	360	U	360	370	U	370	340	U	340	
4-Chloroaniline	350	U	350	360	U	360	370	U	370	340	U	340	
4-Chlorophenyl-phenylether	350	U	350	360	U	360	370	U	370	340	U	340	
4-Nitroaniline	870	U	870	910	U	910	920	U	920	850	U	850	
4-Nitrophenol	870	U	870	910	U	910	920	U	920	850	U	850	
Acenaphthene	350	U	350	360	U	360	370	U	370	340	U	340	
Acenaphthylene	350	U	350	360	U	360	370	U	370	340	U	340	
Anthracene	350	U	350	360	U	360	370	U	370	340	U	340	
Benzo(a)anthracene	350	U	350	360	U	360	370	U	370	340	U	340	
Benzo(a)pyrene	350	U	350	360	U	360	370	U	370	340	U	340	
Benzo(b)fluoranthene	350	U	350	360	U	360	370	U	370	340	U	340	
Benzo(g,h,i)perylene	350	U	350	360	U	360	370	U	370	340	U	340	
Benzo(k)fluoranthene	350	U	350	360	U	360	370	U	370	340	U	340	
Bis(2-chloro-1-methylethyl)ether	350	U	350	360	U	360	370	U	370	340	U	340	
Bis(2-chloroethoxy)methane	350	U	350	360	U	360	370	U	370	340	U	340	
Bis(2-chloroethyl) ether	350	Ŭ	350	360	U	360	370	U	370	340	U	340	
Bis(2-ethylhexyl) phthalate	200	J	350	27	J	360	25	J	370	25	JB	350	
Butylbenzylphthalate	350	U	350	360	U	360	370	U	370	340	U	340	
Carbazole	350	U	350	360	U	360	370	U	370	340	U	340	
Chrysene	350	U	350	360	U	360	370	U	370	340	U	340	
Dibenz(a,h)anthracene	350	U	350	360	U	360	370	U	370	340	U	340	
Dibenzofuran	350	U	350	360	U	360	370	U	370	340	U	340	
Diethylphthalate	350	U	350	360	U	360	370	U	370	340	U	340	
Dimethylphthalate	350	U	350	360	U	360	370	U	370	340	U	340	
Di-n-butylphthalate	350	U	350	360	U	360	370	U	370	340	U	340	
Di-n-octylphthalate	350	U	350	360	U	360	370	υ	370	340	U	340	
Fluoranthene	350	U	350	360	U	360	370	U	370	340	U	340	
Fluorene	350	U	350	360	U	360	370	U	370	340	U	340	
Hexachlorobenzene	350	U	350	360	U	360	370	U	370	340	U	340	
Hexachlorobutadiene	350	U	350	360	U	360	370	U	370	340	U	340	
Hexachlorocyclopentadiene	350	U	350	360	U	360	370	U	370	340	U	340	
Hexachloroethane	350	U	350	360	U	360	370	υ	370	340	U	340	
Indeno(1,2,3-cd)pyrene	350	U	350	360	U	360	370	U	370	340	U	340	
Isophorone	350	υ	350	360	U	360	370	U	370	340	U	340	
Naphthalene	350	U	350	360	U	360	370	U	370	340	U	340	
Nitrobenzene	350	U	350	360	U	360	370	U	370	340	U	340	
N-Nitroso-di-n-dipropylamine	350	U	350	360	U	360	370	U	370	340	U	340	
N-Nitrosodiphenylamine	350	U	350	360	U	360	370	U	370	340	U	340	
Pentachlorophenol	870	U	870	910	U	910	920	U	920	850	U	850	
Phenanthrene	350	U	350	360	U	360	370	U	370	340	U	340	
Phenol	350	U	350	360	U	360	370	U	370	340	υ	340	
Pyrene	350	U	350	360	U	360	370	U	370	340	U	340	

Attachment 1. 120-F-1 Verification Sampling Results.

Attachment	1	Sheet No.	12 of 18
Originator	H. M. Sulloway	Date –	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

						<b>^</b>							
	1	16DT		1	116DT			16D		1	16DV	1	
Constituent	· ·		on NW-2			on NW-3			tion NW-4	1 -		on NW-5	
	Sample	e Date	3/18/07	Sample	e Date	3/18/07	Sample	Dat	e 3/18/07	Sample Date 3/18/07			
	µg/kg	Q	PQL	µg/kg	Q	PQL	μg/kg	0	PQL	µg/kg	Q	POL	
			Polycl	lorinated	Biph	enyls	4t-t-tt-i	4					
Aroclor-1016	14	U	14	14	U	14	13	U	13	14	U	14	
Aroclor-1221	14	U	14	14	U	14	13	U	13	14	U	14	
Aroclor-1232	14	U	14	14	U	14	13	U	13	14	U	14	
Aroclor-1242	14	U	14	14	U	14	13	U	13	14	U	14	
Aroclor-1248	14	U	14	14	U	14	13	U	13	14	U	14	
Aroclor-1254	14	U	14	14	U	14	13	U	13	14	U	14	
Aroclor-1260	14	U	14	14	U	14	13	Ū	13	14	U	14	
		· · · · · · · · · · · · · · · · · · ·	L.,	Pesticid	es						لستسل		
Aldrin	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	U	1.4	
Alpha-BHC	1.4	U	1.4	1.4	U	1.4	1.3	Ū	1.3	1.4	Ū	1.4	
Alpha-Chlordane	1.6	J	1.4	1.4	Ū	1.4	1.3	Ū	1.3	1.4	Ū	1.4	
Beta-BHC	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	U	1.4	
Delta-BHC	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	Ū	1.4	
Dichlorodiphenyldichloroethane	1.4	U	1.4	1.4	Ū	1.4	1.3	Ŭ	1.3	1.4	Ū	1.4	
Dichlorodiphenyldichloroethylene	1.4	Ŭ	1.4	1.4	Ū	1.4	1.3	U	1.3	1.4	U	1.4	
Dichlorodiphenyltrichloroethane	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	U	1.4	
Dieldrin	1.4	U	1.4	1.4	U	1.4	1.3	Ū	1.3	1.4	Ū	1.4	
Endosulfan I	1.4	U	1.4	1.4	U	1.4	1.3	Ū	1.3	1.4	U	1.4	
Endosulfan II	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	U	1.4	
Endosulfan sulfate	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	Ŭ	1.4	
Endrin	1.4	U	1.4	1.4	ΤŬ	1.4	1.3	Ū	1.3	1.4	U	1.4	
Endrin aldehyde	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	U	1.4	
Endrin ketone	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	Ū	1.4	
Gamma-BHC (Lindane)	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	Ū	1.4	
gamma-Chlordane	1.8	J	1.4	1.4	τυ	1.4	1.3	U	1.3	1.4	U	1.4	
Heptachlor	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	U	1.4	
Heptachlor epoxide	1.4	U	1.4	1.4	U	1.4	1.3	U	1.3	1.4	U	1.4	
Methoxychlor	1.4	U	1.4	1.4	tu	1.4	1.3	U	1.3	1.4	U	1.4	
Toxaphene	14	U	14	1.4	U	14	1.5	U	1.5	1.4	U	1.4	
				atile Orga	1		1 15		15	1			
1,2,4-Trichlorobenzene	350	U	350	340	U	340	340	U	340	350	TUT	350	
1,2-Dichlorobenzene	350	U	350	340	1 U	340	340	U	340	350	t <del>u</del> l	350	
1,3-Dichlorobenzene	350	U	350	340	tu	340	340	U	340	350	1 U	350	
1,4-Dichlorobenzene	350	U	350	340	U	340	340	U	340	350	U	350	
2,4,5-Trichlorophenol	880	U	880	850	U	850	840	U	840	880	1 U	880	
2,4,6-Trichlorophenol	350	U	350	340	U	340	340	U	340	350	U	350	
2,4-Dichlorophenol	350	U	350	340	U	340	340	U	340	350	U	350	
2,4-Dimethylphenol	350	U	350	340	U	340	340	U	340	350	υ	350	
2,4-Dinitrophenol	880	U	880	850	U	850	840	U	840	880	Ū	880	
2,4-Dinitrotoluene	350	U	350	340	U	340	340	U	340	350	U	350	
2,6-Dinitrotoluene	350	U	350	340	U	340	340	U	340	350	U	350	
2-Chloronaphthalene	350	U	350	340	U	340	340	U	340	350	U	350	
2-Chlorophenol	350	U	350	340	U	340	340	U	340	350	U	350	
2-Methylnaphthalene	350	U	350	340		340	340	υ	340	350	U	350	
2-Methylphenol (cresol, 0-)	350	U	350	340		340	340	U	340	350	U	350	
2-Nitroaniline	880	U	880	850	U	850	840	U	840	880	U	880	
	350		350	340		340	340	U	340	350		350	
2-Nitrophenol	1 330	L U	330	540		540	L	10	540	1 330		0.0	

Attachment 1.	120-F-1	Verification	Sampling Results.

Attachment	1	Sheet No.	13 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

F	Attachm	circ i	. 120-1	-i verm	catio	n Sampi	ing itest	ms.					
	J	16DT	8	J	116DT	9	J16DV0			J16DV1			
	Sample I	locati	on NW-2	Sample I	Locati	on NW-3	Sample I	Loca	tion NW-4	Sample I	Locati	on NW-5	
Constituent			3/18/07	•		3/18/07			e 3/18/07	-		3/18/07	
							P				20111		
	μg/kg	0	POL	µg/kg	0	POL	µg/kg	0	POL	µg/kg	0	POL	
			ivolatile O					<u>×</u>				-125	
3,3'-Dichlorobenzidine	350	U	350	340	Τυ	. 340	340	U	340	350	TUT	350	
4-Methylphenol (p-cresol)	350	Ŭ	350	340	Ū	340	340	Ŭ	340	350	U	350	
3-Nitroaniline	880	Ŭ	880	850	Ŭ	850	840	Ŭ	840	880	U	880	
4,6-Dinitro-2-methylphenol	880	U	880	850	U	850	840	Ŭ	840	880	U	880	
4-Bromophenyl-phenylether	350	Ū	350	340	U	340	340	U	340	350	U	350	
4-Chloro-3-methylphenol	350	U	350	340	U	340	340	U	340	350	U	350	
4-Chloroaniline	350	U	350	340	U	340	340	U	340	350	U	350	
4-Chlorophenyl-phenylether	350	U	350	340	U	340	340	U	340	350	U	350	
4-Nitroaniline	880	U	880	850	U	850	840	U	840	880	U	880	
4-Nitrophenol	880	U	880	850	U	850	840	U	840	880	U	880	
Acenaphthene	350	U	350	340	U	340	340	U	340	350	U	350	
Acenaphthylene	350	υ	350	340	U	340	340	U	340	350	U	350	
Anthracene	350	U	350	340	U	340	340	U	340	350	U	350	
Benzo(a)anthracene	350	U	350	340	U	340	340	U	340	350	U	350	
Benzo(a)pyrene	350	U	350	340	U	340	340	U	340	350	U	350	
Benzo(b)fluoranthene	350	U	350	340	U	340	340	U	340	350	U	350	
Benzo(g,h,i)perylene	350	U	350	340		340	340	U	340	350	U	350	
Benzo(k)fluoranthene	350	U	350	340	U	340	340	U	340	350	U	350	
Bis(2-chloro-1-methylethyl)ether	350	U	350	340	U	340	340	U	340	350	U	350	
Bis(2-chloroethoxy)methane	350	U	350	340	U	340	340	U	340	350	U	350	
Bis(2-chloroethyl) ether	350	U	350	340	U	340	340	U	340	350	U	350	
Bis(2-ethylhexyl) phthalate	100	JB	350	84	JB	340	72	JB	340	31	JB	350	
Butylbenzylphthalate	350	U	350	340	U	340	340	U	340	350	U	350	
Carbazole	350	U	350	340	U	340	340	U	340	350	U	350	
Chrysene	350	U	350	340	·U	340	340	U	340	350	U	350	
Dibenz(a,h)anthracene	350		350	340	U	340	340	U	340	350	U	350	
Dibenzofuran	350	U	350	340	U	340	340	υ	340	350	U	350	
Diethylphthalate	350	U	350	340	U	340	340	U	340	350	U	350	
Dimethylphthalate	350	$\frac{0}{0}$	350	340	U	340	340	U	340	350	U	350	
Di-n-butylphthalate	19		350	27	J	340	25	J	340	350	U	350	
Di-n-octylphthalate	350	U U	350	340	1 U	340	340	U	340	350	U	350	
Fluoranthene	350	$\frac{0}{0}$	350	340	U	340	340	U	340	350	U	350	
Fluorene	350	U	350	340	U	340	340	U	340	350	Ū	350	
Hexachlorobenzene	350	U	350	340	U	340	340	Ŭ	340	350	Ū	350	
Hexachlorobutadiene	350	$\frac{0}{0}$	350	340	U	340	340	U	340	350	U	350	
Hexachlorocyclopentadiene	350		350	340		340	340	U	340	350	Ū	350	
Hexachloroethane	350		350	340	U	340	340	U	340	350	U	350	
Indeno(1,2,3-cd)pyrene	350		350	340		340	340	U	340	350	U	350	
Isophorone	350		350	340		340	340	U	340	350	U	350	
Naphthalene	350		350	340		340	340	U	340	350	U	350	
Nitrobenzene	350		350	340		340	340	U	340	350	U	350	
N-Nitroso-di-n-dipropylamine	350	U	350	340	U	340	340	U	340	350	U	350	
N-Nitrosodiphenylamine	350	U	350	340		340	340	U	340	350	U	350	
	880	U	880	850		850	840	U	840	880	U	880	
Pentachlorophenol Phenanthrene	350		350	340		340	340	U	340	350	U	350	
	350		350	340		340	340	U	340	350	U	350	
Phenol	350		350	340		340	340		340	350	U	350	
Pyrene	1 330		025	540	1.0	0+0	L	10	540	1 550	10	550	

Attachment 1. 120-F-1 Verification Sampling Results.

Attachment	1	Sheet No.	14 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Cale. No.	0100F-CA-V0350	Rev. No.	0

Constituent	J Sample I	J16DV2 Sample Location NW-6 Sample Date 3/18/07		Sample	J16E Loci	V3 ition NW-7 te 3/18/07	J16DV4 Sample Location NW-8 Sample Date 3/18/07		ion NW-8	J16DV5 3 Sample Location NW-9 Sample Date 3/18/07		
	μg/kg	Q	PQL	μg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
1. 1016		1 1		lorinated			1 11	1	1.4		1 7 7 1	
Aroclor-1016	14	U	14	14	U	14	14	U	14	14	U	14
Aroclor-1221	14	U	14	14	U	14	14	U	14	14	U	14
Aroclor-1232	14	U U	14	14 14	U U	14	14	U	14	14	U	<u>14</u> 14
Aroclor-1242	14	U	14	14	U	14	14	UU	14 14	14	U U	14
Aroclor-1248	14	U	14	14		14	14	U	14	14	U	14
Aroclor-1254		U	14	14		14	14	U	14	14		14
Aroclor-1260	14	0	14	14 Pesticid	1	14	14	10	14	14	101	14
Aldrin	1.4	U	1.4	1.4	TU	1.4	1.4	ΤU	1.4	1.4	lul	1.4
Alpha-BHC	1.4	U	1.4	1.4	U	1.4	1.4		1.4	1.4	U	1.4
Alpha-Chlordane	1.4	U	1.4	1.4	U	1.4	2.1		1.4	1.4	U	1.4
Beta-BHC	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4
Delta-BHC	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4
Dichlorodiphenyldichloroethane	1.4	U	1.4	1.4	TU	1.4	1.4	U	1.4	1.4	U	1.4
Dichlorodiphenyldichloroethylene	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	Ū	1.4
Dichlorodiphenyltrichloroethane	1.4	Ū	1.4	1.4	U	1.4	1.4	U	1.4	1.4	Ū	1.4
Dieldrin	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	Ū	1.4
Endosulfan I	1.4	U	1.4	1.4	U	1.4	1.4	Ū	1.4	1.4	Ū	1.4
Endosulfan II	1.4	Ū	1.4	1.4	Ū	1.4	1.4	Ū	1.4	1.4	Ū	1.4
Endosulfan sulfate	1.4	Ŭ	1.4	1.4	U	1.4	1.4	Ŭ	1.4	1.4	Ū	1.4
Endrin	1.4	Ū	1.4	1.4	Ū	1.4	1.4	Ū	1.4	1.4	U	1.4
Endrin aldehyde	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4
Endrin ketone	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4
Gamma-BHC (Lindane)	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4
gamma-Chlordane	1.4	U	1.4	1.4	U	1.4	2.2	J	1.4	1.4	U	1.4
Heptachlor	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4
Heptachlor epoxide	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4
Methoxychlor	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4	1.4	U	1.4
Toxaphene	14	U	14	14	U	14	14	U	14	14	U	14
			Semivola	tile Orga	nic A	nalytes						
1,2,4-Trichlorobenzene	340	U	340	340	U	340	360	U	360	340	U	340
1,2-Dichlorobenzene	340	U	340	340	U	340	360	U	360	340	U	340
1,3-Dichlorobenzene	340	U	340	340	U	340	360	U	360	340	U	340
1,4-Dichlorobenzene	340	U	340	340	U	340	360	U	360	340	U	340
2,4,5-Trichlorophenol	860	U	860	840	U	840	900	U	900	860	U	860
2,4,6-Trichlorophenol	340	U	340	340	U	340	360	U	360	340	U	340
2,4-Dichlorophenol	340	U	340	340	U	340	360	U	360	340	U	340
2,4-Dimethylphenol	340	U	340	340	U	340	360	U	360	340	U U	340
2,4-Dinitrophenol	860	U	860	840	U	840	900	U	900	860	U	860
2,4-Dinitrotoluene	340	U	340	340 340	UU	340	360	U	360 360	340	U	340
2,6-Dinitrotoluene	340	UU	340 340	340		340	360		360	340	U	340
2-Chloronaphthalene			340	340		340	360		360	340	U	340
2-Chlorophenol	340	U U	340	340	U	340	360		360	340	U	340
2-Methylnaphthalene		U	340	340	$\frac{10}{10}$	340	360		360	340	U	340
2-Methylphenol (cresol, o-)	340	U	860	840		840	900		900	860	U	860
2-Nitroaniline	340	U	340	340	U	340	360		360	340	U	340
2-Nitrophenol		10	540	540	10	540	1 300	1.0	L	1 340	191	

Attachment 1. 120-F-1 Verification S	Sampling Results.
--------------------------------------	-------------------

Attachment	1	Sheet No.	15 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Constituent	J16DV2 Sample Location NW-6 Sample Date 3/18/07			Sample	J16D Loca	VV3 ation NW-7 te 3/18/07	J16DV4 Sample Location NW-8 San Sample Date 3/18/07 Sa				J16DV5 Sample Location NW-9 Sample Date 3/18/07		
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	
					· · · · · · · · · · · · · · · · · · ·	es (continue			r	<b>.</b>	,		
3,3'-Dichlorobenzidine	340	U	340	340	U	340	360	U	360	340	U	340	
4-Methylphenol (p-cresol)	340	U	340	340	U	340	360	U	360	340	U	340	
3-Nitroaniline	860	U	860	840	U	840	900	U	900	860	U	860	
4,6-Dinitro-2-methylphenol	860	U	860	840	U	840	900	U	900	860	U	860	
4-Bromophenyl-phenylether	340	U	340	340	U	340	360	U	360	340	U	340	
4-Chloro-3-methylphenol	340	U	340	340	U	340	360	U	360	340	U	340	
4-Chloroaniline	340	U	340	340	U	340	360	U	360	340	U	340	
4-Chlorophenyl-phenylether	340	U	340	340	U	340	360	U	360	340	U	340	
4-Nitroaniline	860	U	860	840	U	840	900	U	900	860	U	860	
4-Nitrophenol	860	U	860	840	U	840	900	U	900	860	U	860	
Acenaphthene	340	U	340	340	U	340	360	U	360	340	U	340	
Acenaphthylene	340	U	340	340	U	340	360	U	360	340	U	340	
Anthracene	340	U	340	340	U	340	360	U	360	340	U	340	
Benzo(a)anthracene	340	U	340	340	U	340	360	U	360	340	U	340	
Benzo(a)pyrene	340	U	340	340	U	340	360	U	360	340	U	340	
Benzo(b)fluoranthene	340	U	340	340	U	340	360	U	360	340	U	340	
Benzo(g,h,i)perylene	340	U	340	340	U	340	360	U	360	340	U	340	
Benzo(k)fluoranthene	340	U	340	340	U	340	360	U	360	340	U	340	
Bis(2-chloro-1-methylethyl)ether	340	U	340	340	U	340	360	U	360	340	U	340	
Bis(2-chloroethoxy)methane	340	U	340	340	U	340	360	U	360	340	U	340	
Bis(2-chloroethyl) ether	340	U	340	340	U	340	360	U	360	340	U	340	
Bis(2-ethylhexyl) phthalate	23	JB	340	340	U	340	64	JB	360	29	JB	340	
Butylbenzylphthalate	340	U	340	340	U	340	360	U	360	340	U	340	
Carbazole	340	U	340	340	U	340	360	U	360	340	U	340	
Chrysene	340	U	340	340	U	340	360	U	360	340	U	340	
Dibenz(a,h)anthracene	340	U	340	340	U	340	360	U	360	340	U	340	
Dibenzofuran	340	U	340	340	U	340	360	U	360	340	U	340	
Diethylphthalate	340	U	340	340	U	340	360	U	360	340	U	340	
Dimethylphthalate	340	U	340	340	U	340	360	U	360	340	U	340	
Di-n-butylphthalate	340	U	340	340	U	340	360	U	360	340	U	340	
Di-n-octylphthalate	340	U	340	340	U	340	360	U	360	340	U	340	
Fluoranthene	340	U	340	340	U	340	360	U	360	340	U	340	
Fluorene	340	U	340	340	U	340	360	U	360	340	U	340	
Hexachlorobenzene	340	υ	340	340	U	340	360	U	360	340	υ	340	
Hexachlorobutadiene	340	U	340	340	U	340	360	U	360	340	U	340	
Hexachlorocyclopentadiene	340	U	340	340	U	340	360	U	360	340	U	340	
Hexachloroethane	340	U	340	340	υ	340	360	U	360	340	U	340	
Indeno(1,2,3-cd)pyrene	340	U	340	340	U	340	360	U	360	340	U	340	
Isophorone	340	U	340	340	U	340	360	U	360	340	U	340	
Naphthalene	340	U	340	340	U	340	360	U	360	340	U	340	
Nitrobenzene	340	U	340	340	U	340	360	U	360	340	U	340	
N-Nitroso-di-n-dipropylamine	340	U	340	340	U	340	360	υ	360	340	U	340	
N-Nitrosodiphenylamine	340	U	340	340	U	340	360	U	360	340	U	340	
Pentachlorophenol	860	U	860	840	U	840	900	U	900	860	υ	860	
Phenanthrene	340	U	340	340	U	340	360	U	360	340	U	340	
Phenol	340	U	340	340	U	340	360	U	360	340	U	340	
Pyrene	340	U	340	340	U	340	360	U	360	340	U	340	

Attachment 1, 12	0-F-1 Verification	Sampling Results.
------------------	--------------------	-------------------

Attachment	1	Sheet No.	16 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Attachment 1. 120-F-1 vernica										
Constituent	Duplica				J16DV6 Sample Location NW-10			J16DT6 Equip Blank		
	Sample	Date	3/18/07	Sample Date 3/18/07			Sample Date 3/18/07			
	μg/kg	Q	PQL	µg/kg	Q	PQL	μg/kg	Q	PQL	
			inated Bi							
Aroclor-1016	14	U	14	14	U	14				
Aroclor-1221	14	U	14	14	U	14				
Aroclor-1232	14	U	14	14	U	14				
Aroclor-1242	14	U	14	14	U	14				
Aroclor-1248	14	U	14	14	U	14				
Aroclor-1254	14	U	14	14	U	14				
Aroclor-1260	14	U	14	14	U	14				
		I	Pesticides							
Aldrin	1.4	U	1.4	1.4	U	1.4				
Alpha-BHC	1.4	U	1.4	1.4	U	1.4				
Alpha-Chlordane	1.4	U	1.4	1.4	U	1.4				
Beta-BHC	1.4	U	1.4	1.4	U	1.4				
Delta-BHC	1.4	U	1.4	1.4	U	1.4				
Dichlorodiphenyldichloroethane	1.4	U	1.4	1.4	U	1.4				
Dichlorodiphenyldichloroethylene	1.4	U	1.4	1.4	U	1.4				
Dichlorodiphenyltrichloroethane	1.4	U	1.4	1.4	U	1.4				
Dieldrin	1.4	U	1.4	1.4	U	1.4				
Endosulfan I	1.4	U	1.4	1.4	U	1.4				
Endosulfan II	1.4	U	1.4	1.4	Ū	1.4				
Endosulfan sulfate	1.4	τŪ	1.4	1.4	U	1.4				
Endrin	1.4	U	1.4	1.4	U	1.4				
Endrin aldehyde	1.4	U	1.4	1.4	U	1.4				
Endrin ketone	1.4	U	1.4	1.4	U	1.4				
Gamma-BHC (Lindane)	1.4	Ū	1.4	1.4	υ	1.4				
gamma-Chlordane	1.4	Ū	1.4	1.4	U	1.4				
Heptachlor	1.4	Ū	1.4	1.4	Ū	1.4				
Heptachlor epoxide	1.4	Ū	1.4	1.4	Ū	1.4				
Methoxychlor	1.4	Ū	1.4	1.4	U	1.4				
Toxaphene	14	Ū	14	14	U	14				
Tonaphone		-	e Organic		1			L		
1,2,4-Trichlorobenzene	360	Īυ	360	360	U	360	330	U	330	
1,2-Dichlorobenzene	360	Ū	360	360	U	360	330	Ŭ	330	
1.3-Dichlorobenzene	360	U	360	360	U	360	330	Ū	330	
1,4-Dichlorobenzene	360	τ <del>υ</del>	360	360	tu	360	330	Ŭ	330	
2,4,5-Trichlorophenol	900	U	900	900	1 U	900	830	U	830	
2,4,6-Trichlorophenol	360	Ū	360	360	tu	360	330	Ū	330	
2,4-Dichlorophenol	360	Ŭ	360	360	U	360	330	Ū	330	
2,4-Dimethylphenol	360	U	360	360	Ū	360	330	Ū	330	
2,4-Dinitrophenol	900	U	900	900	Ū	900	830	U	830	
2,4-Dinitrotoluene	360	Ū	360	360	Ū	360	330	U	330	
2,6-Dinitrotoluene	360	Ū	360	360	U	360	330	Ŭ	330	
2-Chloronaphthalene	360	tu	360	360	U	360	330	Ŭ	330	
2-Chlorophenol	360	U	360	360	U	360	330	Ū	330	
2-Methylnaphthalene	360	U	360	360	tu	360	330	Ū	330	
2-Methylphenol (cresol, o-)	360	τυ	360	360	1 U	360	330	Ŭ	330	
2-Nitroaniline	900	U	900	900	U	900	830	Ū	830	
2-Nitrophenol	360	U	360	360	$\frac{1}{U}$	360	330	U	330	
		<u> </u>		1	L			<u> </u>	220	

Attachment 1. 120-F-1 Verification Sampling Results.

Attachment	1	Sheet No.	17 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

Attachment 1. 120-F-1 Verification Sampling Results.											
Constituent	Sample Date 3/18/07			J16DV6 Sample Location NW-10 Sample Date 3/18/07			J16DT6 Equip Blank Sample Date 3/18/07				
	μg/kg	Q	PQL	µg/kg	Q	PQL	μg/kg	Q	PQL		
	Semivolatile Organic Analytes (continued)										
3,3'-Dichlorobenzidine	360	U	360	360	U	360	330	U	330		
4-Methylphenol (p-cresol)	360	U	360	360	U	360	330	U	330		
3-Nitroaniline	900	U	900	900	U	900	830	U	830		
4,6-Dinitro-2-methylphenol	900	U	900	900	U	900	830	U	830		
4-Bromophenyl-phenylether	360	U	360	360	U	360	330	U	330		
4-Chloro-3-methylphenol	360	U	360	360	U	360	330	U	330		
4-Chloroaniline	360	U	360	360	U	360	330	U	330		
4-Chlorophenyl-phenylether	360	U	360	360	U	360	330	U	330		
4-Nitroaniline	900	U	900	900	U	900	830	U	830		
4-Nitrophenol	900	U	900	900	U	900	830	U	830		
Acenaphthene	360	U	360	360	U	360	330	U	330		
Acenaphthylene	360	U	360	360	U	360	330	U	330		
Anthracene	360	U	360	360	U	360	330	U	330		
Benzo(a)anthracene	360	U	360	360	U	360	330	U	330		
Benzo(a)pyrene	360 -	U	360	360	U	360	330	U	330		
Benzo(b)fluoranthene	360	U	360	360	U	360	330	U	330		
Benzo(g,h,i)perylene	360	U	360	360	U	360	330	U	330		
Benzo(k)fluoranthene	360	U	360	360	U	360	330	U	330		
Bis(2-chloro-1-methylethyl)ether	360	U	360	360	U	360	330	U	330		
Bis(2-chloroethoxy)methane	360	U	360	360	U	360	330	U	330		
Bis(2-chloroethyl) ether	360	U	360	360	U	360	330	U	330		
Bis(2-ethylhexyl) phthalate	28	JB	360	18	J	360	59	J	330		
Butylbenzylphthalate	360	U	360	360	U	360	330	U	330		
Carbazole	360	U	360	360	U	360	330	U	330		
Chrysene	360	U	360	360	U	360	330	U	330		
Dibenz(a,h)anthracene	360	U	360	360	U	360	330	U	330		
Dibenzofuran	360	U	360	360	U	360	330	U	330		
Diethylphthalate	360	U	360	360	U	360	330	U	330		
Dimethylphthalate	360	U	360	360	U	360	330	U	330		
Di-n-butylphthalate	360	U	360	360	U	360	330	U	330		
Di-n-octylphthalate	360	U	360	360	U	360	330	U	330		
Fluoranthene	360	U	360	360	U	360	330	U	330		
Fluorene	360	U	360	360	U	360	330	U	330		
Hexachlorobenzene	360	U	360	360	U	360	330	U	330		
Hexachlorobutadiene	360	U	360	360	U	360	330	U	330		
Hexachlorocyclopentadiene	360	U	360	360	U	360	330	U	330		
Hexachloroethane	360	U	360	360	U	360	330	U	330		
Indeno(1,2,3-cd)pyrene	360	U	360	360	U	360	330	U	330		
Isophorone	360	U	360	360	U	360	330	U	330		
Naphthalene	360	U	360	360	U	360	330	U	330		
Nitrobenzene	360	U	360	360	U	360	330	U	330		
N-Nitroso-di-n-dipropylamine	360	U	360	360	υ	360	330	U	330		
N-Nitrosodiphenylamine	360	U	360	360	υ	360	330	U	330		
Pentachlorophenol	900	U	900	900	U	900	830	U	830		
Phenanthrene	360	Ū	360	360	υ	360	330	U	330		
Phenol	360	Ū	360	360	Ū	360	330	Ū	330		
Pyrene	360	Ŭ	360	360	U	360	330	Ū	330		
гутепе	1		500			500			550		

Attachment 1. 120-F-1 Verification Sampling Results.	-F-1 Verification Sampling Results.
------------------------------------------------------	-------------------------------------

Attachment	1	Sheet No.	18 of 18
Originator	H. M. Sulloway	Date	04/03/08
Checked	L. D. Habel	Date	04/03/08
Calc. No.	0100F-CA-V0350	Rev. No.	0

						Acrobat 8.0			
	CA	LCULATI	ON COVE	R SHEET					
Project Ti	itle: 100-F Area Field Rem	ediation			Job	No. 14655			
Area: <u>100</u>	Area: 100-F								
Discipline	: Environmental		*Cal	culation No: 0100	DF-CA-V0355	•			
Subject:	120-F-1 Waste Site Clean	up Verification Ha	azard Quotient ar	nd Carcinogenic F	Risk Calculation				
Computer	r Program: Excel		Progra	am No: <u>Excel 200</u>	3				
The atta	ched calculations have been should be used in c					calculations			
Committe	d Calculation	Preliminar	у	Superseded	Voie	ded			
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date			
0	Cover = 1 Summary = 3	H. M. Sulloway	L. D. Habel		J. D. Fancher	signed 4/2/08			
1	Cover = 1 Summary = 3	H., M. Sulloway	L. D. Habel	NA	J. D. Fańcher	5/5/56			
		Noulou	f in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second						
		$\bigcirc$							
					5				
		SUMM	ARY OF RE	VISION					
1	Entire calculation revised 'statistical' replaced with t sheet 3, line 5, column he line 13, added fluoride to from 0.0017 to 0.0021.	he term maximun ading term "Maxi	n as value was n mum" changed t	ot obtained from a o "Statistical or M	a statistical calcu laximum Result",	lation, 2. 3. sheet 3,			

WCH-DE-018 (05/08/2007)

*Obtain Calc. No. from Document Control and Form from Intranet

	n Closure Hanford, Inc.	CALCULA	TION SHEE	ΞT			
Originator:	H. M. Sulloway	Date:	05/06/08	Calc. No.:	0100F-CA-V0355 ,	Rev.:	1
Project:	100-F Area Field Remediation	Job No:	14655	Checked:	L. D. Habel 454	Date:	05/06/08
Subject:	120-F-1 Cleanup Verification Haza	Sheet No	Lof 3				

#### PURPOSE:

> 7 8

> 9

12 13

14 15

16 17

18 19

20

21 22

23 24

25

26

27 28

29 30

31 32

33 34

35 36

37

38

39

Provide documentation to support the calculation of the hazard quotient (HQ) and carcinogenic (excess cancer) risk for the 120-F-1 glass dump waste site. In accordance with the remedial action goals

5 (RAGs) in the remedial design report/remedial action work plan (RDR/RAWP) (DOE-RL 2005), the 6 following criteria must be met:

1) An HQ of <1.0 for all individual noncarcinogens

2) A cumulative HQ of <1.0 for noncarcinogens

10 3) An excess cancer risk of  $<1 \times 10^{-6}$  for individual carcinogens

4) A cumulative excess cancer risk of  $<1 \times 10^{-5}$  for carcinogens.

# GIVEN/REFERENCES:

- Capron, J. M., 2008, Revised 120-F-1 Verification Sampling, CCN 138678, email to R. Lobos (EPA) and C. Smith (DOE), dated February 14, 2008, Washington Closure Hanford, Inc., Richland, Washington.
- DOE-RL, 2005, Remedial Design Report/Remedial Action Work Plan for the 100 Areas, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- 3) WAC 173-340, "Model Toxics Control Act Cleanup," Washington Administrative Code, 1996.
- 4) WCH, 2007, *Work Instruction for Verification Sampling of the 120-F-1 Glass Dump Waste Site,* Work Instruction No. 0100F-WI-G0069, Washington Closure Hanford, Inc., Richland, Washington.
- 5) WCH, 2008, *120-F-1 Cleanup Verification 95% UCL Calculation*, Calc. No. 0100F-CA-V0345, Washington Closure Hanford, Inc., Richland, Washington.

#### SOLUTION:

- Generate an HQ for each noncarcinogenic constituent detected above background or required detection limit/practical quantitation limit and compare it to the individual HQ of <1.0 (DOE-RL 2005).
- 2) Sum the HQs and compare this value to the cumulative HQ of <1.0.
- 40
  41 3) Generate an excess cancer risk value for each carcinogenic constituent detected above background or
  42 required detection limit/practical quantitation limit and compare it to the excess cancer risk of
  43 
  43 
  41 
  43 
  43 
  43 
  44 
  44 
  45 
  45 
  46 
  47 
  47 
  48 
  49 
  49 
  49 
  40 
  40 
  40 
  41 
  42 
  43 
  44 
  44 
  44 
  45 
  45 
  46 
  47 
  48 
  49 
  49 
  49 
  40 
  40 
  40 
  41 
  41 
  42 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 
  44 </l

46 47

⁴⁴ 

^{45 4)} Sum the excess cancer risk value(s) and compare it to the cumulative cancer risk of  $<1 \times 10^{-5}$ .

	Washington	n Closure Hanford, Inc.	CALCULA	TION SHEE	T			
Γ	Originator:	H. M. Sulloway	Date:	05/06/08	Calc. No.:	0100F-CA-V0355	Rev.:	1
Γ	Project:	100-F Area Field Remediation	Job No:	14655	Checked:	L. D. Habel At-	Date:	05/06/08
	Subject:	120-F-1 Cleanup Verification Hazard Quotient and Carcinogenic Risk Calculation						2 of 3

#### 1 METHODOLOGY:

2

3 The 120-F-1 waste site was divided into two sampling areas (northwest and southwest excavations) for verification sampling (WCH 2007). The original area of the northwest excavation was expanded after 4 the original sampling showed additional soil removal would be required. The sample design for the 5 6 northwest area was updated and approved by the regulators (Capron 2008). The maximum values from 7 the combined results of the two sampling areas were used in developing the HQ and risk calculations. 8 Of the nonradionuclide contaminants of potential concern (COPCs), mercury and selenium required the 9 HQ and risk calculations because they were quantified above background. Boron, molybdenum, and hexavalent chromium values require HQ and risk calculations because these analytes were detected and 10 a Washington State or Hanford Site background value is not available. Aroclor-1254, Aroclor-1260, 11 and multiple organic COPCs (as listed in Table 1) are included because they were detected by laboratory 12 13 analysis and cannot be attributed to natural occurrence. All other site nonradionuclide COCs were not detected or were quantified below background levels. 14 15

- 16 An example of the HQ and risk calculations is presented below:
- 17 18

19 20

21

- For example, the statistical value for boron is 4.6 mg/kg, divided by the noncarcinogenic RAG value of 16,000 mg/kg (boron is identified as a noncarcinogen in WAC 173-340-740[3]), is 2.9 x 10⁻⁴. Comparing this value to the requirement of <1.0, this criteria is met.</li>
- After the HQ calculation is completed for the appropriate analytes, the cumulative HQ can be obtained by summing the individual values. The sum of the HQ values (shown in Table 1) is 4.2 x 10⁻². Comparing this value to the requirement of <1.0, this criteria is met.</li>
- 25
- 3) To calculate the excess cancer risk, the maximum value is divided by the carcinogenic RAG value,
  then multiplied by 1 x 10⁻⁶. For example, the maximum value for hexavalent chromium is
  1.8 mg/kg, divided by 2.1 mg/kg, and multiplied as indicated, is 8.6 x 10⁻⁷. Comparing this value
  and all other individual values to the requirement of <1 x 10⁻⁶, this criteria is met.
- 4) After these calculations are completed for the carcinogenic analytes, the cumulative excess cancer risk can be obtained by summing the individual values. The sum of the excess cancer risk values is  $1.1 \times 10^{-6}$ . Comparing this value to the requirement of  $<1 \times 10^{-5}$ , this criterion is met.
- 34 35

#### 36 **RESULTS:**

37

1) List individual noncarcinogens and corresponding HQs >1.0: None

- 39 2) List the cumulative noncarcinogenic HQ >1.0: None
- 40 3) List individual carcinogens and corresponding excess cancer risk >1 x  $10^{-6}$ : None
- 4) List the cumulative excess cancer risk for carcinogens >1 x  $10^{-5}$ : None.
- 42

43 Table 1 shows the results of the calculations.

	n Closure Hanford, Inc.	CALCULA	TION SHEE	ΞT			
Originator:	H. M. Sulloway	Date:	05/06/08	Calc. No.:	0100F-CA-V0355	Rev.:	1
Project:	100-F Area Field Remediation	Job No:	14655	Checked:	L. D. Habel 4	Date:	05/06/08
Subject:	Subject: 120-F-1 Cleanup Verification Hazard Quotient and Carcinogenic Risk Calculation						3 of 3

#### Table 1. Hazard Quotient and Excess Cancer Risk Results for the 120-F-1 Waste Site.

Contaminants of Concern ^a	Statistical or Maximum Result ^a (mg/kg)	Noncarcinogen RAG ^b (mg/kg)	Hazard Quotient	Carcinogen RAG ^b (mg/kg)	Carcinoge Risk
Metals					
Boron	4.6	16,000	2.9E-04		
Chromium, hexavalent ^c	1.8	240	7.5E-03	2.1	8.6E-07
Mercury	0.65	24	2.7E-02		
Molybdenum	0.85	400	2.1E-03		
Selenium	1.8	400	4.5E-03		
Anions					
Fluoride	3.9	4,800	8.1E-04		
Semivolatiles					
Bis(2-ethylhexyl) phthalate	0.12	1,600	7.5E-05	71.4	1.7E-09
Dibenzo(a,h)anthracene	0.025			0.33 ^d	7.6E-08
Di-n-butylphthalate	0.027	8,000	3.4E-06		
Pesticides					
Chlordane (alpha, gamma)	0.023	40	5.8E-04	0.769	3.0E-08
DDE, 4,4'-	0.0018			2.94	6.1E-10
DDT, 4,4'-	0.0021	40	5.3E-05	2.94	7.1E-10
Endosulfan (I, II, sulfate)	0.0018	480	3.8E-06		
Polychlorinated Biphenyls					
Aroclor-1254	0.023			0.5	4.6E-08
Aroclor-1260	0.010			0.5	2.0E-08
Totals				ten a sector sector and and a	
Cumulative Hazard Quotient:	4, 		4.3E-02		
Cumulative Excess Cancer Risk:					1.1E-06

²⁷ 

1

Notes: 28

^a = From WCH (2008).

29 ^b = Value obtained from the RDR/RAWP (DOE-RL 2005) or Washington Administrative Code (WAC) 173-340-740(3), Method B, 1996,

30 unless otherwise noted.

31 ^c = Value for the carcinogen RAG calculated based on the inhalation exposure pathway WAC 173-340-750(3), 1996.

4

^d Individual carcinogenic risk calculated using the required detection limit. Contribution to cumulative carcinogenic risk calculated based on 32 the remedial action goal instead of the required detection limit, per WAC 173-340-740(3), Method B, 1996.

33 -- = not applicable

34 RAG = remedial action goal

35

36

#### 37 **CONCLUSION:**

38

This calculation demonstrates that the 120-F-1 waste site meets the requirements for the hazard 39

quotients and carcinogenic (excess cancer) risk as identified in the RDR/RAWP (DOE-RL 2005). 40

# APPENDIX D

# SUMMARY OF UPDATED SAMPLE DESIGN FOR 120-F-1 NORTHWEST EXCAVATION

#### Summary

This appendix summarizes the updated sampling design used and associated statistical assumptions for verification sampling of the northwest excavation of 120-F-1 site, as well as general guidelines to be used for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where, within the sampling area, to collect those samples. Requirements for collecting and analyzing the samples are provided in (WCH 2007).

#### **Primary Sampling Objective**

The primary purpose of sampling at this site is to compare a site mean value with a fixed threshold. The decision rule for demonstrating compliance with the cleanup criteria requires comparison of the true population mean, as estimated by the 95% upper confidence limit on the sample mean, with the cleanup level (DOE-RL 2005). The working hypothesis (or "null" hypothesis) is that the mean value at the site is equal to or exceeds the action threshold (the site is "dirty"). The alternative hypothesis is that the mean value is less than the threshold. Visual Sample Plan¹ (VSP) calculates the number of samples required to reject the null hypothesis in favor of the alternative one, given a selected sampling approach and inputs to the associated equation.

#### **Selected Sampling Approach**

A nonparametric, systematic sampling approach with a random start was used to determine the number of samples and to specify sampling locations. A nonparametric formula was selected because the site conceptual model and analogous information (i.e., data from similar sites) indicate that typical parametric assumptions may not be true.

Both parametric and nonparametric equations rely on assumptions about the population. Typically, however, nonparametric equations require fewer assumptions and allow for more uncertainty about the statistical distribution of values at the site. Alternatively, if the parametric assumptions are valid, the required number of samples is usually less than if a nonparametric equation was used.

The Washington State Department of Ecology publication *Guidance on Sampling and Data Analysis Methods* (Ecology 1995) recommends that systematic sampling with sample locations distributed over the entire study area be used. Therefore, a systematic grid sampling design with a random start was selected for use in VSP. Locating the sample points over a systematic grid with a random start ensures spatial coverage of the site. Statistical analyses of systematically collected data are valid if a random start to the grid is used. One disadvantage of systematically

¹ Visual Sample Plan is a site map-based user-interface program that may be downloaded at http://dqo.pnl.gov.

collected samples is that spatial variability or patterns may not be discovered if the grid spacing is large relative to the spatial patterns.

#### Number of Total Samples: Calculation Equation and Inputs

The equation used to calculate the number of samples is based on a Sign test (see Gilbert et al. 2001 for discussion). For this site, the null hypothesis is rejected in favor of the alternative, if the mean is sufficiently smaller than the threshold. The number of samples to collect is calculated such that, if the inputs to the equation are true, the calculated number of samples will cause the null hypothesis to be rejected.

The formula used to calculate the number of samples is as follows:

$$n = 1.20 \left[ \frac{\left( Z_{1-\alpha} + Z_{1-\beta} \right)^2}{4(SignP - 0.5)^2} \right]$$

where:

$$Sign \ P = \Phi\left(\frac{\Delta}{s_{Total}}\right)$$

- $\Phi(z)$  = the cumulative standard normal distribution on (- $\infty$ , z) (see Gilbert et al. 2001 for details)
- n = the number of samples
- S = the estimated standard deviation of the measured values including analytical error
- $\Delta$  = the width of the gray region
- $\alpha$  = the acceptable probability of incorrectly concluding the site mean is less than the threshold
- $\beta$  = the acceptable probability of incorrectly concluding the site mean exceeds the threshold
- $Z_{1-\alpha}$  = the value of the standard normal distribution such that the proportion of the distribution less than  $Z_{1-\alpha}$  is 1- $\alpha$

 $Z_{1-\beta}$  = the value of the standard normal distribution such that the proportion of the distribution less than  $Z_{1-\beta}$  is 1- $\beta$ .

#### NOTE: The Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)

(EPA et al. 2000) suggests that the number of samples should be increased by at least 20% to account for missing or unusable data and uncertainty in the calculated value of n. VSP allows a user-supplied percent overage as discussed in MARSSIM (EPA et al. 2000, p. 5-33).

The values of these inputs that result in the calculated number of sampling locations are summarized in Table C-1.

Parameter	Value	Basis
S	0.25	Assumed standard deviation.
Δ	0.45	User defined conservative value.
α	5%	False rejection rate specified in the DQO summary report (BHI 2003).
β	20%	False acceptance rate specified in the DQO summary report (BHI 2003).
Ζ _{1-α}	1.64485	This value is automatically calculated by VSP based on the user-defined value of $\alpha$ .
Z _{1-β}	0.841621	This value is automatically calculated by VSP based on the user-defined value of $\beta$ .
MARSSIM overage	20%	User-defined sample increase factor.

Table D-1. VSP User Inputs.

DQO = data quality objective

MARSSIM = Multi-Agency Radiation Survey and Site Investigation Manual

VSP = Visual Sample Plan

In order to use VSP to calculate the appropriate number of samples, n, to collect for estimating the mean, it is necessary to have some estimate of the sample standard deviation. In general, estimates made from samples tend to more closely approximate the true population mean as the number of samples increases. Appropriate statistical parameters (i.e., standard deviation within the population) for the post-remediation residual contaminant concentration levels at the 120-F-1 waste site are unknown. For the purpose of the development of the statistical sampling design, a generic action limit of 1.0 can be assumed (where 0.5 would be 50% of the action limit). The standard deviation for each residual contaminant population was then conservatively assumed to be less than 25% of the corresponding decision threshold for the population. Using this standard deviation value along with a conservative "gray region" (45% or 0.45) in VSP, the estimated number of verification samples to collect is calculated. These assumptions will be verified in the data quality assessment using verification sampling data from the resulting data set.

Table D-2 summarizes the sampling design that was developed. Table D-3 lists sampling location coordinates. Figure D-1 shows sampling locations in the field.

Primary objective of design	Compare a site mean to a fixed threshold
Type of sampling design	Nonparametric
Sample placement (location) in the field	Systematic with a random start location
Working (null) hypothesis	The mean value at the site exceeds the threshold
Formula for calculating number of sampling locations	Sign test – MARSSIM version
Calculated total number of samples	10 per sampling area
Specified sampling area ^a	322.3 m ² (3468.8 ft ² )
Size of grid/area of grid cell ^b	6.1 m (20.0 ft)/32.2 m ² (346.9 ft ² )
Grid pattern	Triangular

Table D-2. Summary of Sampling Design.

^a The sampling area is the total surface area of the selected shaded sample areas on the map of the site.

^b Size of grid/area of grid cell gives the linear distance between grid points and the grid cell area used to systematically place samples.

MARSSIM = Multi-Agency Radiation Survey and Site Investigation Manual

Table D-3. Verification Sample Location Coordinates.								
X Coord	Y Coord	Label	Туре					
581035.4	147211.5	1	Systematic					
581041.3	147210.0	2	Systematic					
581033.8	147217.4	3	Systematic					
581039.7	147215.9	4	Systematic					
581045.6	147211.3	5	Systematic					
581051.5	147212.7	6	Systematic					
581038.1	147221.8	7	Systematic					
581044.0	147220.2	8	Systematic					
581049.9	147218.6	9	Systematic					
581055.8	147217.1	10	Systematic					

•

Table D-3. Verification Sample Location Coordinates.

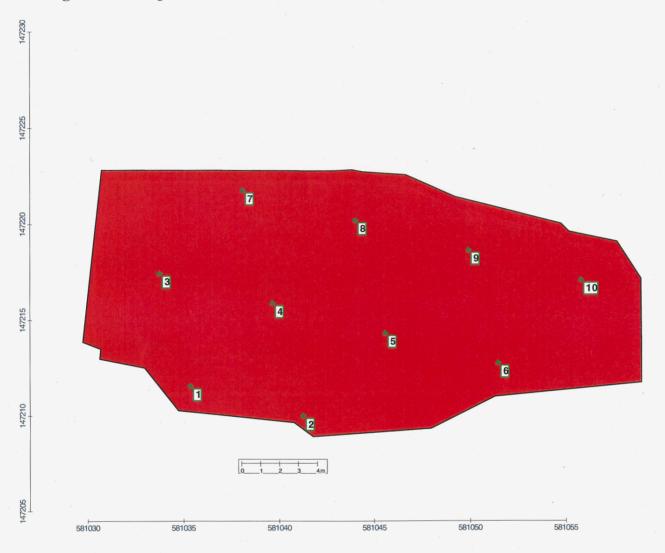
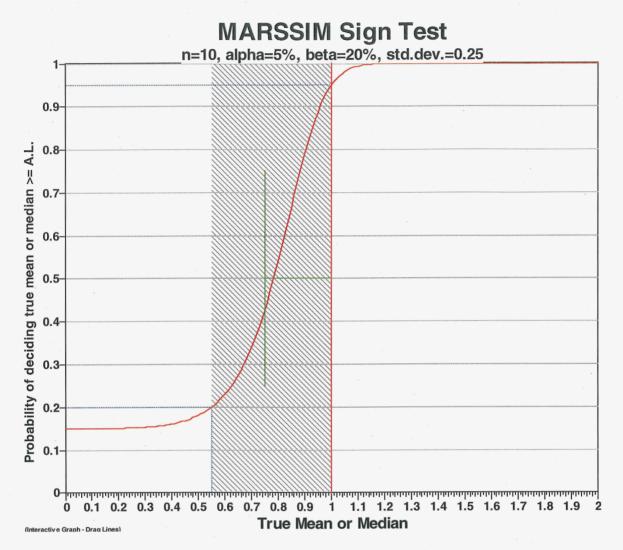






Figure D-2 is a performance goal diagram, described in the U.S. Environmental Protection Agency's QA/G-4 guidance (EPA 2000b). This figure shows the probability of concluding that the sample area is dirty on the vertical axis versus a range of possible unit true median (mean) values (where 0.5 would be 50% of the action limit for a specific contaminant of concern) for the site on the horizontal axis. These graphs contain all of the inputs to the number of samples equation and pictorially represent the calculations.

The solid vertical line to the right of the gray region is shown at the threshold (unit action limit) on the horizontal axis. The width of the gray shaded area is equal to  $\Delta$ ; the upper horizontal dashed line is positioned at 1- $\alpha$  on the vertical axis; and the lower horizontal dashed line is positioned at  $\beta$  on the vertical axis. The short vertical line in the gray region to the left of the action level is positioned at one standard deviation below the threshold. The shape of the curve corresponds to the estimates of variability. The calculated number of samples results in the curve that passes through the lower bound of  $\Delta$  at  $\beta$  and the upper bound of  $\Delta$  at 1- $\alpha$ .





#### **Statistical Assumptions**

The assumptions associated with the formulae for computing the number of samples are as follows:

- 1. The computed Sign test statistic is normally distributed.
- 2. The variance estimate,  $S^2$ , is reasonable and representative of the population being sampled.
- 3. The population values are not spatially or temporally correlated.
- 4. The sampling locations will be selected probabilistically.

The first three assumptions will be assessed in a post-data collection analysis. The last assumption is valid because the gridded sample locations were selected based on a random start.

### **Sensitivity Analysis**

The sensitivity of the calculation of number of samples was explored by varying *S*, lower bound of the gray region (LBGR),  $\beta$  and  $\alpha$  and examining the resulting changes in the number of samples. Table D-4 shows the results of this analysis.

	Number of Samples							
AL=1		α =	=5	<b>α =10</b>		α =15		
		<i>S</i> =0.5	<i>S</i> =0.25	<i>S</i> =0.5	<i>S</i> =0.25	<i>S</i> =0.5	<i>S</i> =0.25	
LBGR=90	β=15	345	90	257	68	206	54	
	β=20	297	77	216	57	170	45	
	β=25	258	68	184	48	141	38	
LBGR=80	β=15	90	27	68	21	54	16	
	β=20	77	23	57	17	45	14	
	β=25	68	21	48	15	38	11	
LBGR=70	β=15	44	16	33	12	27	10	
	β=20	38	14	28	10	22	8	
	β=25	33	12	23	9	18	6	

LBGR = lower bound of the gray region

# **Recommended Data Analysis Activities**

Post-data collection activities generally follow those outlined in the U.S. Environmental Protection Agency's *Guidance for Data Quality Assessment* (EPA 2000a). The data analysts will become familiar with the context of the problem and goals for data collection and assessment. The data will be verified and validated before being subjected to statistical or other analyses. Graphical and analytical tools will be used to verify, to the extent possible, the assumptions of any statistical analyses that are performed as well as to achieve a general understanding of the data. The data will be assessed to determine if they are adequate in both quality and quantity to support the primary objective of sampling.

Because the primary objective for sampling for this site is to compare the site mean values with threshold values, the data will be assessed in this context. Assuming the data are adequate, statistical tests will be done, as necessary, to perform a comparison between the data and the threshold(s) of interest. Results of the exploratory and quantitative assessments of the data will be reported, along with conclusions that may be supported by them.

#### References

- BHI, 2003, Data Quality Objectives Summary Report for 100/300 Area Remaining Sites Analytical Sampling Effort, BHI-01249, Rev. 3, Bechtel Hanford, Inc., Richland, Washington.
- DOE-RL, 2005, *Remedial Design Report/Remedial Action Work Plan for the 100 Area,* DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Ecology, 1995, *Guidance on Sampling and Data Analysis Methods*, Publication No. 94-49, Washington State Department of Ecology, Olympia, Washington.
- EPA, 2000a, *Guidance for Data Quality Assessment: Practical Methods for Data Analysis*, EPA/600/R-96/084, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 2000b, *Guidance for the Data Quality Objectives Process*, EPA QA/G-4, EPA/600/R-96/055, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, DOD, DOE, and NRC, 2000, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), NUREG-1575, Rev. 1, EPA 402-R-97-016, Rev. 1, DOE/EH-0624, Rev. 1, U.S. Environmental Protection Agency, U.S. Department of Defense, U.S. Department of Energy, and U.S. Nuclear Regulatory Commission, Washington, D.C.
- Gilbert R. O., J. R. Davidson, J. E. Wilson, and B. A. Pulsipher, 2001, *Visual Sample Plan (VSP) Models and Code Verification*, PNNL-13450, Pacific Northwest National Laboratory, Richland, Washington.
- WCH, 2007, Work Instruction for Verification Sampling of the 120-F-1 Glass Dump Waste Site, 0100F-WI-G0069, Rev. 0, Washington Closure Hanford, Richland, Washington.

# **APPENDIX E**

# VERIFICATION SAMPLING DATA QUALITY ASSESSMENT

#### **Verification Sampling Data Quality Assessment**

A data quality assessment (DQA) was performed to compare the verification sampling approach and resulting analytical data with the sampling and data requirements specified in the sitespecific sample design (DOE-RL 2005a, WHC 2007, WCH 2008a). This DQA was performed in accordance with site specific data quality objectives found in the SAP (DOE-RL 2005b).

A review of the sample design (WCH 2007, WCH 2008a), the field logbook (WCH 2008b), and applicable analytical data packages has been performed as part of this DQA. All samples were collected per the sample design. In addition, ion chromatography (IC) anions, sulfides, cyanide, and pH analyses were performed on the verification samples collected at the 120-F-1 waste site. These constituents are not contaminants of concern (COCs) for the 120-F-1 waste site. This DQA limited the data review for the 120-F-1 verification sampling to the data required per the sample design.

To ensure quality data, the SAP data assurance requirements and the data validation procedures for chemical analysis (BHI 2000) are used as appropriate. This review involves evaluation of the data to determine if they are of the right type, quality, and quantity to support the intended use (i.e., closeout decisions). The DQA completes the data life cycle (i.e., planning, implementation, and assessment) that was initiated by the data quality objectives process (EPA 2000).

The closeout sampling approach for the 120-F-1 Glass Dump waste site included a sample design with multiple subunit areas. Verification sample data collected at the 120-F-1 waste site were provided by the laboratories in four sample delivery groups (SDGs). For the 120-F-1 southeastern dump site, verification sample data was provided in SDG K1066, SDG K1067, and SDG K1134. SDG K1066 was submitted for third-party validation. For the 120-F-1 northwestern dump site, verification sample data was provided in SDG K1155. No major deficiencies were found in the in the DQA review of the analytical data set. Minor deficiencies found in the analytical data set are discussed below.

#### SDG K1066

This SDG comprises six verification samples (J16337-J16342) collected from the southeastern dump site. These samples were analyzed for inductively coupled plasma (ICP) metals, mercury, semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), and total petroleum hydrocarbon (TPH). Anions, sulfides, cyanide, and pH analyses were also performed for these samples; however, these constituents are outside the scope of the sample design and are not included in this DQA review. In addition, one equipment blank (J16354) was collected and analyzed for ICP metals and mercury. SDG K1066 was submitted for formal third-party validation. No major deficiencies were found in SDG K1066. No major deficiencies were found in SDG K1066. Minor deficiencies are as follows:

In the SVOC analysis, the common laboratory contaminants bis(2-ethylhexyl)phthalate are detected in the method blank (MB). Third party validation raised the reported values for bis(2-ethylhexyl)phthalate for all samples to the required quantitation limit of  $660 \mu g/kg$  and

qualified them as undetected and flagged "U". The data are useable for decision-making purposes.

In the SVOC analysis, the matrix spike (MS) and matrix spike duplicate (MSD) recoveries are below the acceptance criteria for 2,2'-oxybis(1-chloropropane), at 49% and 45%, respectively. The laboratory control sample (LCS) recovery was outside QC limits for 2,4-dinitrophenol (28%), 4,6-dinitro-2-methylphenol (47%), and pentachlorophenol (48%). All results for analytes with low MS or LCS recoveries were qualified as estimates and flagged "J" by third party validation. Estimated data are useable for decision making purposes.

The relative percent difference (RPD) for 2,4-dinitrophenol (56%) is greater than 30%. The results for 2,4-dinitrophenol in all samples were qualified as estimates and flagged "J" by third party validation. Estimated data are useable for decision making purposes.

The MS and MSD samples (J16337 MS and MSD) for the pesticide and PCB analyses in SDG K1066 were prepared in separate preparation batches. As a result, all pesticide and PCB results for samples J16338-J16342 were qualified by third-party validation as estimated with "J" flags. Estimated, or "J"-flagged, data are acceptable for decision making purposes.

All of the toxaphene data in SDG K1066 was qualified by third-party validation as estimated with "J" flags, due to lack of a MS, MSD, or LCS analysis for the analyte. Estimated, or "J" flagged, data are acceptable for decision making purposes.

In the ICP metals analysis, the calcium, sodium, and zinc results for sample J16354 (the equipment blank) are of similar magnitude as the method blank results. These results are qualified by third party validation as undetected estimates with "UJ" flags, due to method blank contamination. The data are useable for decision-making purposes.

Also in the ICP metals analysis, the MS recoveries for three ICP metals (aluminum, iron, and silicon) are out of acceptance criteria. For these analytes, the spiking concentration is insignificant compared to the native concentration in the sample from which the MS was prepared. Therefore, the deficiency in the MS result is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. To confirm quantitation, post digestion spikes (PDSs) and serial dilutions were prepared for all three analytes with acceptable results. The data are useable for decision making purposes.

Also in the ICP metals analysis, the laboratory duplicate RPD for boron is above the acceptance criteria at 98.7%. Elevated RPDs in environmental soil samples are generally attributed to heterogeneities in the sample matrix and not to deficiencies in the laboratory procedures. The data are useable for decision making purposes.

# SDG K1067

This SDG comprises five verification samples (J16337-J16342) collected from the southeastern dump site. A field duplicate pair (J16333/J16334) is included in this SDG. These samples were analyzed for ICP metals, mercury, SVOCs, pesticides, PCBs, and TPH. Anions, sulfides,

cyanide, and pH analyses were also performed for these samples; however, these constituents are outside the scope of the sample design and are not included in this DQA review. No major deficiencies were found in SDG K1067. Minor deficiencies are as follows:

In the ICP metals analysis, the MS recoveries for three ICP metals (aluminum, iron, and silicon) are out of acceptance criteria. For these analytes, the spiking concentration is insignificant compared to the native concentration in the sample from which the MS was prepared. Therefore, the deficiency in the MS result is a reflection of the analytical variability of the native concentration, and serial dilutions were prepared for all three analytes with acceptable results. The data are useable for decision making purposes.

Also in the ICP metals analysis, the laboratory duplicate RPD for boron is above the acceptance criteria at 90.9%. Elevated RPDs in environmental soil samples are generally attributed to heterogeneities in the sample matrix and not to deficiencies in the laboratory procedures. The data are useable for decision making purposes.

All of the toxaphene data in SDG K1067 is considered estimated due to lack of a MS, MSD, or LCS analysis for the analyte. Estimated data are acceptable for decision making purposes.

In the SVOC analysis, 3 of 128 MS recoveries are outside the acceptance criteria. The MSD recoveries are below the acceptance criteria for 2,2'-oxybis(1-chloropropane) and 4,6-dinitro-2-methylphenol, at 45% and 37% respectively. The MS recovery was below QC limits for pentachlorophenol (29%). All results for analytes with low MS recoveries are considered estimated. Estimated data are useable for decision making purposes.

# SDG K1134

This SDG comprises eleven verification samples (J16B36-J16B46) collected from the southeastern dump site. A field duplicate pair (J16B45/J16B46) is included in this SDG. These samples were all analyzed for hexavalent chromium. No major deficiencies were found in SDG K1134. Minor deficiencies are as follows:

The laboratory duplicate RPD for hexavalent chromium is above the acceptance criteria at 35.4%. Elevated RPDs in environmental soil samples are generally attributed to heterogeneities in the sample matrix and not to deficiencies in the laboratory procedures. The data are useable for decision making purposes.

#### SDG K1155

This SDG comprises eleven verification samples (J16DT7-J16DT9 and J16DV0-J16DV7) collected from the northwestern dump site. A field duplicate pair (J16DV7/J16DV6) is included in this SDG. These samples were analyzed for ICP metals, mercury, hexavalent chromium, SVOCs, pesticides, PCBs, and TPH. Anions, sulfides, cyanide, and pH analyses were also performed for these samples; however, these constituents are outside the scope of the sample

design and are not included in this DQA review. In addition, one equipment blank (J16DT6) was collected and analyzed for ICP metals and mercury. Major and minor deficiencies are as follows:

All of the toxaphene data in SDG K1155 is considered estimated due to lack of a MS, MSD, or LCS analysis for the analyte. Estimated data are acceptable for decision making purposes.

Six of 128 MS recoveries in the SVOC analysis are below the acceptance criteria. The MS and MSD recoveries for 4-chloro-3-methylphenol are 55% and 58%, respectively. The MS recoveries for nitrobenzene and isophorone are 47% and 56%, respectively. The MS for 1,2,4-trichlorobenzene is 51% and the MS for 2-methylnaphthalene is 57%. Six LCS recoveries were outside QC limits. The LCS recoveries for isophorone, 1,2,4-trichlorobenzene, and 4-chloro-3-methylphenol, are 59%, 57%, and 56%, respectively. The LCS recoveries for 2-methylnaphthalene, 2,4-dinitrophenol, and 4,6-dinitro-2-methylphenol, are 58%, 16%, and 28%, respectively. The results for these analytes may be considered estimated. Estimated data are useable for decision making purposes.

In the ICP metals analysis, the MS recoveries for four ICP metals (aluminum, iron, antimony, and silicon) are out of acceptance criteria. For most of these analytes, the spiking concentration is insignificant compared to the native concentration in the sample from which the MS was prepared. Therefore, the deficiency in the MS result is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. To confirm quantitation, PDSs and serial dilutions were prepared for the analytes with acceptable results. Antimony did not have mismatched spike and native concentrations in the original MS. The original MS recovery for antimony was 54.7%. The antimony results in SDG K1155 may be considered estimated. Estimated data are useable for decision making purposes.

# FIELD QUALITY ASSURANCE/QUALITY CONTROL

RPD evaluations of main sample(s) versus the laboratory duplicate(s) are routinely performed and reported by the laboratory. Any deficiencies in those calculations are reported by SDG in the previous sections.

Field quality assurance/ quality control (QA/QC) measures are used to assess potential sources of error and cross contamination of samples that could bias results. Field QA/QC samples, listed in the field logbook (WCH 2008b), are summarized in Table 1. The main and QA/QC sample results are presented in Appendix C.

Sample Area	Main Sample	Duplicate Sample
Southeastern dump site	J16333	J16334
Southeastern dump site	J16B45	J16B46
Northwestern dump site	J16DV7	J16DV6

# Table 1. Field Quality Assurance/Quality ControlSamples.

Field duplicate samples are collected to provide a relative measure of the degree of local heterogeneity in the sampling medium, unlike laboratory duplicates that are used to evaluate precision in the analytical process. The field duplicates are evaluated by computing the RPD of the duplicate samples for each COC. The 95% upper confidence limit (UCL) calculation brief in Appendix C provides details on duplicate pair evaluation and RPD calculation. Only analytes with values above five times the detection limits for both the main and duplicate samples are compared. None of the RPDs calculated exceeded the acceptance criteria of 30%.

RPDs for the remaining analytes are not calculated because an evaluation of the data shows the analytes are not detected in both the main and duplicate sample at more than 5 times the target detection limit. RPDs of analytes detected at low concentrations (less than five times the detection limit) are not considered to be indicative of the analytical system performance. The data are useable for decision making purposes.

A secondary check of the data variability is used when one or both of the samples being evaluated (main and duplicate) is less than 5 times the target detection limit (TDL), including undetected analytes. In these cases, a control limit of  $\pm 2$  times the TDL is used (Appendix C) to indicate that a visual check of the data is required by the reviewer. For the southern tank footprint focused duplicate sample, the difference was less than 2 times the TDL (for all analytes with one or both of the samples less than 5 times the TDL), and did not required the visual check. However, a visual inspection of all of the data is also performed. No additional major or minor deficiencies are noted. The data are useable for decision-making purposes.

#### Summary

Limited, random, or sample matrix-specific influenced batch quality control (QC) issues such as those discussed above, are a potential for any analysis. The number and types seen in these data sets are within expectations for the matrix types and analyses performed. The DQA review of the 120-F-1 verification sampling data found that the analytical results are accurate within the standard errors associated with the analytical methods, sampling, and sample handling. The DQA review for 120-F-1 waste site concludes that the reviewed data are of the right type, quality, and quantity to support the intended use. Detection limits, precision, accuracy, and sampling data group completeness were assessed to determine if any analytical results should be rejected as a result of QA and QC deficiencies. The analytical data were found acceptable for decision-making purposes. The verification sample analytical data are stored in the Environmental Restoration (ENRE) project-specific database prior to being submitted for

inclusion in the Hanford Environmental Information System (HEIS) database. The verification sample analytical data are also summarized in Appendix C.

#### REFERENCES

- BHI, 2000, *Data Validation Procedure for Chemical Analysis*, BHI-01435, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- DOE-RL, 2005a, *100 Area Remedial Action Sampling and Analysis Plan*, DOE/RL-96-22, Rev. 4, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005b, *Remedial Design Report/Remedial Action Work Plan for the 100 Area*, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- EPA, 2000, *Guidance for Data Quality Assessment*, EPA QA/G-9, QA00 Update, U.S. Environmental Protection Agency, Office of Environmental Information, Washington, D.C.
- WCH, 2007, Work Instruction for Verification Sampling of the 120-F-1 Glass Dump Waste Site, Work Instruction No. 0100F-WI-G0069, Rev 0, Washington Closure Hanford, Richland, Washington.
- WCH, 2008a, *Revised 120-F-1 Verification Sampling*, CCN 139173 dated February 14, 2008, to R. Lobos and D.C. Smith from J.M. Capron, Washington Closure Hanford, Richland, Washington.
- WCH, 2008b, *100 F Remedial Sampling*, Logbook EFL-1173-4 pp 37-39, 81-82, and 88-89, Washington Closure Hanford, Richland, Washington.