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Abstract 

A detailed chemical kinetic modeling approach is used to examine the 

phenomenon of suppression of sooting in diesel engines by addition of 

oxygenated hydrocarbon species to the fuel.  This suppression, which has been 

observed experimentally for a few years, is explained kinetically as a reduction in 

concentrations of soot precursors present in the hot products of a fuel-rich diesel 

ignition zone when oxygenates are included.  Oxygenates decrease the overall 

equivalence ratio of the igniting mixture, producing higher ignition temperatures 

and more radical species to consume more soot precursor species, leading to 

lower soot production.  The kinetic model is also used to show how different 

oxygenates, ester structures in particular, can have different soot-suppression 

efficiencies due to differences in molecular structure of the oxygenated species. 
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Introduction 

 Soot emissions from diesel engines continue to be a serious environmental 

concern.  While significant reductions have been achieved in recent years, 

legislated limits are being steadily tightened1, and further improvements will 

require a much more fundamental understanding of soot production and 

evolution to meet these regulations.  Many experimental, theoretical and 

computer modeling studies have been devoted to these problems in order to 

refine our understanding of the reaction pathways producing and consuming 

soot in engines and flames.   Attention has been given to the fact that different 

hydrocarbon fuels can produce significantly different quantities of soot2 and that 

modifications of soot-producing fuels can lead to considerable reductions in soot 

production.  In particular, the use of oxygenated fuels and fuel additives has 

demonstrated the potential to reduce soot emissions from diesel engines. 

 In a recent experimental study, Miyamoto et al.3 found that soot emissions 

from diesel engines were reduced when oxygenated hydrocarbons were blended 

with the regular diesel fuel.  The amount of soot reduction depended on the total 

amount of oxygen added to the diesel fuel, and each of the oxygenated species 

added to the fuel (di-n-butyl ether, ethylhexyl acetate, ethylene glycol mono-n-

butyl ether, and diethylene glycol dimethyl ether) had approximately the same 

effectiveness in reducing soot emissions when measured in terms of the amount 

of oxygen added to the fuel.  With each additive, soot emissions declined steadily 

as the additive concentration increased, and by the time the oxygen content of  
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Figure 1. Variations in experimentally measured soot emissions from a diesel 

engine3 with oxygenated species additions. 

 

the fuel reached 25 - 30% by mass, virtually all soot emissions had disappeared, 

as summarized in Figure 1.  While these results were very encouraging signs that 

soot emissions could be reduced by modifying the diesel fuel composition, the 

phenomenological results could not be explained in fundamental terms.  

Subsequent experimental engine studies4-11 have extended these results to other 

oxygenated species.  In addition, Litzinger et al.12-14 have recently combined 

experimental and kinetic modeling analysis of the soot-reducing effects of 

oxygenated species (i.e., ethanol and dimethyl ether) on sooting laminar 

premixed and diffusion ethane-air and ethylene-air flames, and while these 

flames and fuel are quite distinct from diesel combustion, they provide valuable 

chemical insights into soot reduction chemistry. 
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 The present work uses detailed chemical kinetic modeling to address 

sooting reduction in diesel engines by oxygenated additives and explain the 

behavior in fundamental terms.  Basic understanding from this kinetic modeling 

may suggest other mechanisms for modifying sooting processes.  The same 

analysis can make it possible to evaluate the soot reducing potential of other 

oxygenated species, including commercially important biodiesel fuels.  

 

Modeling Approach 

 Our kinetic modeling study is constructed upon a conceptual model for 

diesel combustion developed by Dec and his colleagues, who used an extensive 

set of laser-based diagnostic techniques15-21 to describe the major chemical and 

physical steps that occur during diesel combustion.  Briefly, according to this 

picture, shown in Figure 2, shortly before the end of the compression stroke of 

the piston, diesel fuel is injected into hot, highly compressed air and residual 

combustion products in the combustion chamber in a number of liquid jets.  Each  

 

Figure 2.      Phenomenological description of the major features of diesel 

combustion from experimental studies of Dec15. 
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fuel jet vaporizes rapidly and entrains and mixes with hot air.  The hot air 

steadily raises the temperature of the vaporized fuel while simultaneously 

increasing the ratio of air to fuel.  This mixture eventually ignites in the gas phase 

while still under quite fuel-rich conditions, with a local equivalence ratio φ of 

about 3 (i.e., three times as much fuel as could be fully oxidized by the air mixed 

locally with the fuel).  The location of this fuel-rich premixed ignition is 

identified as the dashed curve in Figure 2. 

 The products of this ignition cannot be oxidized completely, due to the 

absence of any more oxygen.  Therefore these incompletely oxidized species such 

as CO, H2 and small, intermediate hydrocarbon species including acetylene, 

ethene, propene and others then react to produce soot17-19 which is later 

consumed in a diffusion flame environment19 farther downstream of the ignition 

region.  The same unsaturated hydrocarbon species have been identified as 

major contributors to soot production in both diesel engines and laboratory 

flames21-32. 

 Our kinetic modeling approach is to compute the rich, premixed diesel 

ignition, using detailed chemical kinetic reaction mechanisms for the diesel fuel 

and any oxygenated additives.  This ignition calculation is carried out under 

conditions of pressure, temperature and fuel/air ratios that are characteristic of a 

diesel engine at the top of the piston stroke.  The composition of the ignition 

products are then identified and their relative sooting tendencies are evaluated.   

 In order to carry out these model calculations, we must make several 

important simplifications to this problem.  Since we do not have kinetic reaction 
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mechanisms for all of the thousands of species present in conventional diesel 

fuel, we use n-heptane as a convenient substitute or surrogate for diesel fuel, 

using a kinetic reaction mechanism we developed33.  N-heptane has frequently 

been used as a diesel surrogate34-38.  The ignition properties of diesel fuel are 

described by its cetane rating in much the same way that the knocking behavior 

of gasoline in spark-ignition engines is characterized by its octane rating;  n-

heptane has a cetane rating of 56 that is typical of ordinary diesel fuels, and its 

rich ignition products include most of the species found to lead to soot 

production. 

 In addition, we do not directly simulate the mixing of the injected fuel and 

hot air, instead using the results of mixing experiments and other modeling 

studies as described by Naber and Siebers39 as follows.  The start of injection 

takes place about 10 degrees before Top Dead Center (TDC, the point at which 

the piston reaches the most compressed point in its cycle) in Dec’s engine15, so 

the compressed air already has a relatively high temperature and pressure.  We 

used temperature-dependent specific heats for the reactants and air, as well as 

the heats of vaporization of the fuel components, to mix cold fuel and hot air 

until the mixture reaches a temperature of about 770K, where the kinetic model 

indicates that significant reaction begins to occur.  At this point, the kinetic 

simulations begin.  The fuel/air equivalence ratio is usually close to 3.0, although 

not every mixture will have exactly the same equivalence ratio, since the specific 

heats and heats of vaporization of n-heptane and each of the oxygenates we used 
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are quite different.  We have assumed that the combustion chamber pressure is 

approximately 10 MPa at this point. 

 Once the ignition calculations begin, the simulations are performed in a 

constant pressure, spatially homogeneous environment, effectively decoupling 

the ignition process from the rest of the combustion chamber.  In addition to the 

considerable simplification that these assumptions provide, these conditions are 

quite reasonable since the ignition of these fuel/air mixtures is quite rapid  

(< 1 ms) in the diesel combustion chamber and there is little time for further 

exchange of heat or chemical species between the igniting mixture and the 

remainder of the combustion chamber.    

 In each model calculation, there is an initial induction period during 

which the temperature remains almost constant and the reactant concentrations 

decrease very slowly.  After this short time delay, a very rapid ignition occurs 

during which the reactants are completely consumed, the temperature increases 

from about 770K to about 1600K, and the products reach levels which remain 

nearly constant.  This sequence is illustrated in Figure 3 for the case of neat n-

heptane fuel, showing the major reactants and products, with the ignition 

occurring at about 0.75 ms.  Note that under these very rich conditions, the CO 

product concentration is much larger than that of CO2. 

 The key to this analysis is the identification of those species in the rich 

ignition products which enhance soot production and those which compete with 

soot production.  We rely largely on the soot modeling work of Frenklach22,23, 

which is based in turn on many careful and thorough experimental soot 
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Figure 3. Computed temperature and major species mole fractions in fuel-

rich ignition of n-heptane/air at equivalence ratio of 3, 10 MPa pressure, initial 

temperature of 767K. 
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evolution studies, including particularly24-30.  The overall picture of soot kinetics 

that emerges from these studies is that small aromatic and polycyclic aromatic 

hydrocarbons (PAH) such as benzene, toluene, naphthalene, pyrene and styrene 

are produced from small unsaturated hydrocarbons such as acetylene, ethene, 

propene, allene, propyne, and cyclopentadiene, as well as resonantly stabilized 

hydrocarbon radical species such as propargyl, allyl, and cyclopentadienyl31.  

Subsequent reactions increase the size of the PAH species, leading eventually to 

visible soot, with acetylene being the most significant growth species23,25.  

Another key to understanding sooting chemistry is that oxygenated species 

including CO and CO2 do not participate in the kinetics of soot production.    

 Therefore we have used two methods to evaluate the relative sooting 

tendencies of rich ignition products under diesel conditions.  The first method 

couples the PAH production mechanism of Appel, Bockhorn and Frenklach23 

together with our own mechanisms for the fuel mixture ignition to predict levels 

of PAH species.  This coupled mechanism approach has previously been 

employed successfully to predict soot production11-14.  The second approach has 

been simply to sum all of the concentrations of known soot precursors (i.e., 

acetylene, benzene, ethene, toluene, propene and other unsaturated stable and 

resonantly stabilized hydrocarbons) that remain following the rich ignition 

event9,10,21.  Neither of these approaches can provide accurate values of total 

soot produced, and a great deal more experimental and kinetic modeling 
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analysis will be necessary to provide this capability, but these techniques provide 

realistic estimates of relative soot production, which is suitable for the present 

study of soot reduction kinetics. 

Kinetic Reaction Mechanisms 

 As noted above, n-heptane is used as the surrogate for diesel fuel.  The 

reaction mechanism for n-heptane33 has been used widely in kinetic modeling 

studies as noted above, due in part to it being conveniently available on the 

web40.  It includes more than 2400 elementary reactions with nearly 600 chemical 

species, including the low temperature, alkyl peroxy submechanisms that 

provide early heat release and advance the timing of the eventual hot ignition.   

 Most of the oxygenates used in this study had detailed kinetic reaction 

mechanisms already available which were used without further modification, 

including mechanisms for methanol41, ethanol42, dimethyl ether43-46, dimethyl 

carbonate47, and methyl butanoate48.  However, new kinetic mechanisms were 

also developed for dimethoxy methane (DMM) and two other considerably more 

complex oxygenated species, tri-propylene glycol methyl ether (TPGME), and di-

butyl maleate (DBM).  Both TPGME and DBM were recommended4 as 

oxygenated hydrocarbons with substantial O atom loading (4 oxygen atoms per 

molecule) which have satisfactory fuel properties such as diesel fuel solubility 

and are relatively economical to produce.  The structures of all of the oxygenates 

used in this study are summarized in Figure 4. 
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Figure 4.    Chemical structures of oxygenated species used in model calculations. 

 

 The methyl butanoate was selected for analysis as a convenient substitute 

for the very large methyl ester molecules that are typical of so-called biodiesel 

fuels.  This similarity is shown in Figure 4, showing that both molecules have the 
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same oxygenated section, but biodiesel molecules have a much larger 

hydrocarbon segment, often with as many as 16-18 C atoms.  As described  

below, the computed results for the methyl ester structure were sufficiently 

interesting and potentially important that we chose to also consider the kinetics 

of dimethyl carbonate, also shown in Fig. 4, which, along with DBM, also has an 

oxygenated structure similar to the biodiesel fuels.   

 Detailed chemical kinetic reaction mechanisms were developed for DBM 

and TPGME.  As in our previous mechanism developments47, thermodynamic 

parameters were estimated using quantum chemistry methods and group 

additivity49-51.  For most species the enthalpy of formation was computed using 

CBS-Q methods with geometries optimized at the B3LYP/6-31G9(d,p) level 

following Bozzelli52, and other details of the techniques are described by Glaude 

et al.47.  All of these kinetic mechanisms are available on our web page40. 

 

 

Computational Results 

 The baseline calculation for this study is the ignition of n-heptane and air, 

at an equivalence ratio of about 3.0, a fixed pressure of 10 MPa, and an initial 

temperature of 767K, as described above and shown in Figure 3.  Because this 

mixture is so fuel-rich, the product temperature of 1600K is considerably below 

the adiabatic flame temperature (>2200K) of the corresponding stoichiometric n-

heptane/air mixture.  The products and temperature rapidly approach a quasi-
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equilibrium in which the major products are CO and H2O, with smaller amounts 

of CO2, C2H4 and C2H2.  Very little CO2 is produced in this very rich mixture. 

and it is important to note that all of the fuel and initial O2 is entirely consumed.  

The major soot precursors, ethene, acetylene, propyne and propene, for this 

baseline mixture are shown in Figure 3.  The total amount of carbon present in 

these unsaturated products comprises approximately 44% of the total carbon 

present initially in the n-heptane fuel.  These quasi-equilibrium products then 

produce small aromatic species, including benzene, naphthalene and styrene, 

and eventually soot, as described by Appel et al.23. 

 We then repeated this baseline calculation, gradually replacing n-heptane 

fuel with varying amounts of the oxygenated hydrocarbon species shown in 

Figure 3.  For each of these oxygenated species, as n-heptane is replaced by the 

oxygenate, the fraction of carbon remaining in the form of soot precursors in the 

rich ignition products decreases, being replaced by increased levels of CO and 

CO2.  For example, the product concentrations for a fuel mixture consisting of a 

nearly equimolar mixture of n-heptane and methanol (0.4 n-heptane + 0.6 

methanol) are shown in Figure 5.  The ignition time is very slightly longer than 

the baseline but the overall chemical features of the two ignitions are quite 

similar.  However, important changes are the increase in the CO2/CO ratio in the 



 16 

0.0

0.1

0.2

0.0E+00 5.0E-04 1.0E-03 1.5E-03Time [s]

M
o
le

 F
ra

c
ti
o
n

O2

CO2

CO

H2O

n-heptane

CH3OH

0.00

0.01

0.02

0.03

0.04

0.05

0.0E+00 5.0E-04 1.0E-03 1.5E-03

Time [s]

M
o
le

 F
ra

c
ti
o
n

C2H4

C2H2

C3H6
p-C3H4

 

Figure 5.    Computed major species mole fractions in fuel-rich ignition of  

n-heptane/methanol/air at 10 MPa pressure, initial temperature of 767K. 

products, and the reductions in the total carbon in the unsaturated species in the 

products.  The reduction in ethene is quite large while the acetylene is only 

slightly reduced, and the overall reduction in this carbon soot precursor pool is 
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from 44% in the baseline case to about 28% in this mixed fuel case.  The fraction 

of oxygen in the two-component fuel is 15%. 

 Further replacement of n-heptane by more methanol continues the 

displacement of soot precursors in these products, until the soot precursor levels 

become very small, where oxygen has reached about 30% of the total mass of the 

mixed fuel of n-heptane and methanol, as shown in Figure 6.  At this point, the 

fuel consists of close to 17% n-heptane and 83% methanol on a molar basis, or: 

 Fuel composition at soot elimination = 1 C7H16  +  5 CH3OH 

 

Figure 6.   Computed reductions in soot precursor concentrations with addition of 

selected oxygenated species.  Abbreviations for fuels are identified in the text.
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Note that in the initial fuel mixture at this condition, 42% (i.e., 5 of 12) of the initial 

carbon atoms are already bonded to oxygen in the oxygenate (i.e., methanol) 

molecules.  Under these conditions it is clearly inappropriate to refer to the 

methanol as an “additive”, since it is the major component in the fuel on a molar 

basis and more than 60% of the total fuel mass.   

 Further insight is provided by noting that, since all of these mixtures are 

assumed to include the same amount of entrained air, the overall equivalence 

ratio, including the oxygen atoms in the methanol, has been reduced from 3.0 to 

about 2.2 by the addition of this much methanol.   

 The influence of mixture equivalence ratio at the time of rich ignition on 

sooting is complex.  In the present analysis, the equivalence ratio at the time of 

ignition is varied by inclusion of different amounts of oxygenated species, while 

the amount of entrained air is held fixed.  In contrast, Siebers and Higgins53 

systematically varied the amount of entrained air and therefore the equivalence 

ratio at the time of diesel ignition by varying the injection pressure of diesel fuel 

into a constant volume combustion bomb and the corresponding variation in 

flame lift-off length.  Siebers and Higgins found the amount of soot production to 

be quite sensitive to the equivalence ratio.  They also observed that soot 

production became negligible when enough air was entrained to produce a local 

equivalence ratio of approximately 2 at the time and location of ignition.  

Comparison of this result with the present kinetic modeling results shows that 

providing additional oxygen for the ignition, either through extra entrained air 

or through its presence within the fuel molecules, reduces the amount of carbon 

in those species available for producing soot.  This suggests that the critical 
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parameter in soot production is the amount of available carbon once all of the 

oxygen has been consumed, and there are at least two ways to influence the size 

of that post-ignition carbon pool.   

 We repeated the same type of rich ignition calculations using other 

oxygenated species including ethanol, dimethyl ether, dimethoxy methane, and 

methyl butanoate.  These model calculations produced results very similar to 

those for methanol, and the resulting decreases in soot precursor concentrations 

in the ignition products are summarized in Figure 6.  It is important to note that 

all of these nearly straight lines are quite similar to the results from the 

experimental diesel engine studies summarized in Figure 1.   

 The major soot precursors remaining in the ignition products of all of 

these mixtures are acetylene, ethene, propene, and other C3 compounds 

including propargyl radicals (C3H3), as shown in Figures 3 and 5.  Nearly all of 

the oxygen appears as CO and H2O, with quite small amounts of CO2.  Water is 

produced via H atom abstraction reactions from the fuel by OH, and water 

production is responsible for most of the heat release leading to ignition.  As the 

mass fraction of oxygen in the fuel mixture increases, a larger fraction of the total 

amount of carbon in the fuel is converted to CO and CO2 and a smaller amount 

of carbon is present as soot precursors.  When the PAH formation kinetic model 

of Appel et al.23 is incorporated into our model calculations, the concentrations 

of PAH’s in the products are correspondingly reduced steadily as the oxygen 
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content of the fuel increases, reaching near-zero levels when the oxygen content 

in the fuel reaches approximately 30%. 

 Careful examination of the kinetic pathways associated with the ignition 

of these oxygenates showed that nearly all of the oxygen atoms initially present 

in the oxygenates react directly to produce CO;  the strong CO bond remains 

intact during the ignition, so the C atom in this bond never becomes available for 

soot production.  When methanol is the oxygenate, it is consumed41 primarily 

via a very linear reaction path: 

 CH3OH     H2COH    CH2O    HCO      CO 

In dimethoxy methane and di-methyl ether, each oxygen atom is initially bonded 

to two C atoms, but although one C - O bond is broken during its combustion, 

the O atom remains bonded to another C atom.  Specifically, in the case of DME, 

the dominant reaction pathway is H atom abstraction to produce: 

 CH3OCH3    H2COCH3    CH2O + CH3 

which leaves the O atom bonded to one C atom.  As in methanol oxidation, 

formaldehyde reacts directly via HCO to produce CO.  Similarly, DMM reacts 

primarily by H atom abstraction: 

 CH3O(CH2)OCH3    H2CO(CH2)OCH3    CH2O + H2COCH3 

followed by    H2COCH3    CH2O + CH3 

with each O atom remaining bonded to one C atom, leading to CO formation. 

 The same analysis for TPGME is somewhat more complex, since the 

molecule is much larger and there are many possible H atoms that can be 
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abstracted to initiate its oxidation.  One of the 11 possible H atom abstraction 

steps can be used as an illustration as shown in Figure 7.  In this case, one of the  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.     Schematic diagram of overall products of consumption of TPGME. 

 

H atoms from the CH3 group at the end of the molecule has been abstracted, 

leaving a large radical species that, under the present ignition conditions, 

decomposes rapidly via a series of β-scission paths.  The ultimate set of products 

is shown as two formaldehyde molecules, two propylene molecules, one 

molecule of acetaldehyde and an OH radical.  In this example, three of the four O 

atoms in TPGME remain bonded to carbon atoms, and these carbon atoms are 

therefore eliminated from the pool of possible soot precursor species.  When the 

same analysis is repeated for the other 10 radicals that can be produced from H 
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atom abstraction from TPGME, a very similar group of products is created, in 

which one or two propylene molecules are produced and either 3 or 4 O atoms 

remain bonded to C atoms.  None of these reaction paths produces two O atoms 

bonded to a single C atom, so the overall result is an efficient usage of the O 

atoms initially present in the TPGME in preventing those C atoms from 

contributing to the pool of available soot precursor species.  The important 

feature is the distribution of O atoms in the TPGME molecule, so that each O 

atom leads to a CO molecule in the ignition products.   

 For all of the oxygenates above, almost every O atom in the oxygenate 

removes one C atom from the pool of species that can produce soot.  In each case, 

the O atom is initially bound to a C atom, and this bond is not subsequently 

broken.  These oxygenated species displace C atoms in the diesel fuel with C 

atoms that are bonded to O atoms.  This displacement exchanges C atoms that 

can produce soot with C atoms that, since they are bonded to O atoms, cannot 

contribute to soot production.  Each of these oxygenated species is equally 

effective, per O atom in the additive, because each O atom removes one C atom 

from the soot producing pool of species.  The specific structure of the oxygenate 

has little impact on this process, providing that the structure retains the ability of 

each O atom to remove one C atom from the soot producing pool of species. 

 All of the oxygenates shown in Figure 6 reduce the levels of soot 

precursors and at sufficiently high concentrations will eliminate soot emissions.  

From the results in Figure 6, most of these oxygenates are quite similar in their 

ability to reduce soot emissions.  However, the curve for methyl butanoate (MB) 

suggests that its inhibiting power is slightly less than the other oxygenates in its 

ability to reduce soot precursor formation.  This result could be due to errors in 
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the development of the kinetic mechanism, for which very little experimental 

data are available for mechanism validation.  MB had been chosen for attention 

because of its similarity to biodiesel fuels, so it is important to determine if this 

trend is significant and reflects real kinetic features, and if so, what kinetic factors 

are responsible for the computed behavior. 

 

Ester Structures 

 There is considerable interest in the use of so-called biodiesel fuels, fuels 

which are derived from a variety of vegetable oils and have combustion 

properties similar to conventional diesel fuels.  Such fuels are attractive since 

they represent a type of renewable fuel, and the fact that they include oxygen 

atoms gives them the potential to also reduce soot emissions when used in diesel 

fuels.  Biodiesel fuels are usually produced from vegetable oils by esterification, 

which results in a characteristic structure with two O atoms located at the end of 

a long hydrocarbon chain.  For most vegetable oils of interest54, the hydrocarbon 

chain contains 16 to 20 carbon atoms which can include several unsaturated 

segments, with a characteristic methyl ester group at one end shown in Figure 4. 

 We had chosen MB for kinetic modeling study in order to reduce the 

computational complexity of the actual bio-diesel fuels, with its butyl radical 

group replacing the C16 - C18  radical chain.  This makes it possible to investigate 

the features of the methyl ester group without the computational complexity of 

the larger hydrocarbon group.   

 As shown in Figure 4, the main feature of this group is that the two O 

atoms are both bonded to a single C atom.  The double C = O bond is difficult to 
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break, and the important question is whether or not the other O atom remains 

bonded to the same C atom.  Using conventional rules for kinetic rates, we found 

that during combustion of the MB, approximately half of the reaction pathways 

resulted in both O atoms remaining bonded to the single C atom.  As a result, 

CO2 was produced directly, and the two O atoms together removed only one C 

atom from the pool of reactive hydrocarbons that could produce soot.   

 To examine this effect in greater detail, two additional oxygenated species 

were selected for further consideration, including dimethyl carbonate (DMC) 

and a larger species, di-butyl maleate (DBM), that had been selected by the same 

committee that had recommended TPGME for further study4.  These structures 

are shown in Figure 4;  both dibutyl maleate and dimethyl carbonate are 

characterized by variations of the same ester structure as in MB.  Dimethyl 

carbonate was selected for two reasons;  first, its high weight fraction of oxygen 

offers the possibility that it could have a strong soot inhibition effect on diesel 

combustion, and second, it provides a relatively clear way to examine the role of 

the ester group in determining the kinetic fate of oxygen atoms in these 

oxygenated species.  DBM was included because it was a more realistic practical 

diesel fuel component which had the same ester structure as MB and DMC but 

had a higher O atom content than the other oxygenates with the same structure.  

 In Figure 8 the relative effectiveness of these new oxygenated species on 

soot precursor reduction is summarized, together with the previous results for 

the cases with methanol and methyl butanoate as the oxygenates.  These results 

show that all three oxygenates that have the characteristic ester group are less 

effective at reducing soot precursor levels than the oxygenates without the ester 
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structure, on the basis of effect per unit oxygen atom in the fuel.  The DBM is 

even less effective than methyl butanoate or dimethyl carbonate.  In each of these 

 

Figure 8.   Computed reductions in soot precursor concentrations with addition of 

oxygenated species containing ester structure.   

 

cases, the kinetic modeling shows that the particular locations and bond 

structures involving the O atoms lead to a considerable fraction of direct CO2 

formation from the oxygenated fuel species.  This means that not every O atom 

in these compounds is able to eliminate a carbon atom from the soot precursor 

pool, resulting in a higher fraction of the remaining carbon atoms available to 

produce soot.   
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 Combustion of these oxygenates (i.e., those containing the ester group) 

produces considerable amounts of the alkoxy formyl radical, R O C = O , where 

R is an alkyl radical.  In the case of DMC as the oxygenated species, in which  

R is the methyl radical, approximately 78% of the methoxy formyl radical 

decomposes to produce CO2, with only 22% producing CO + CH3O.  In the case 

of DBM as the oxygenated species, nearly 90% of the analogous n-butoxy formyl 

radical produces CO2.  Glaude et al.47, McCunn et al.55 and Good and 

Francisco56 have examined the methyl formyl decomposition reaction, using 

CBS-Q and CCSD(T) methods at the B3LYP level, and all three studies agreed 

that the energy barrier to the CH3 + CO2 product channel is about 14.7 kcal/mol, 

while the barrier to the CH3O + CO products is more than 22 kcal/mol, 

explaining why the CO2 channel would be expected to dominate. 

 

Discussion 

 Reduction of soot production by oxygenated species is a recent 

development, and relatively few experimental tests have appeared to date that can 

be used for confirmation of the mechanism presented here.  Based on preliminary 

model predictions by the present authors, Buchholz et al.10 used radiocarbon 

labeling of different C atoms in dibutyl maleate (DBM) to show experimentally 

that a significant fraction of the O atoms in DBM were converted directly into CO2.  

They selectively labeled the three distinct carbon atoms shown in Figure 9 in 
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successive experiments and used Accelerator Mass Spectrometry (AMS) to detect 

14C in the CO2 exhaust gases, in the soot that was collected, and in the surface 

deposits that were produced.  Their analysis showed 

 

Figure 9.    Schematic diagram of DBM, showing sites where C atoms were labeled 

with 14C for accelerator mass spectroscopy.   

 

that the bonds between the 1-butyl groups and the adjacent O atoms were 

broken approximately 90% of the time and that the carbon atoms bonded to two 

O atoms in DBM remain bonded through the rich ignition period, resulting in 

direct production of CO2 .   

 Szybist and Boehman57 have carried out compression-ignition studies in a 

CFR test engine, using as fuels both n-heptane and methyl decanoate, a 

monomethyl ester with a saturated, straight-chain alkyl radical with 10 carbon 

atoms.  Their experiments measured heat release rates, gas temperatures, and 

exhaust gas composition using FTIR spectroscopy over a range of compression 

ratios leading to actual ignition.  One important observation of their study was 
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the production of CO2 at very early stages of combustion associated with fuel 

decomposition, before any significant heat release had occurred.  Early 

production of CO2 was observed only when the fuel was methyl decanoate, and 

no corresponding CO2 production was observed when the fuel was n-heptane.  

Their conclusion was that the CO2 was a direct product of the methyl ester group 

in their methyl decanoate, consistent with the present kinetic modeling analysis. 

 Mueller et al.9 directly compared the soot reduction effectiveness of DBM 

and TPGME in a diesel engine and in a constant volume combustion bomb.  

They found, in both experimental configurations, that TPGME was significantly 

more effective than DBM in reducing soot levels, which were measured using 

spatially integrated natural luminosity and line-of-sight laser extinction 

techniques.  Experimental engine studies by Zannis et al.59 also found that 

different oxygenated species structures produced different soot reduction 

efficiencies.  The results of all of these experimental engine studies are consistent 

with the present description of how O atoms in the oxygenated species are used 

to suppress soot production.   

 The most obvious test of the present mechanism is that it predicts 

accurately the rate of soot suppression a the oxygen level in the fuel increases 

and the oxygen levels required to eliminate soot entirely.  This is shown by 

comparing the experimental results in Figure 1 and the modeling predictions 

from Figure 6.  Although this is an integrated result, it also is a widely observed 

phenomenon, and the fact that the same behavior is observed for so many 
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oxygenated fuel components and that the model reproduces that observation as 

well makes this a convincing test of the model. 

 We calculated the chemical equilibrium compositions for the mixtures 

summarized in Figures 3 and 5, with n-heptane and an n-heptane/methanol 

mixture as the fuels.  We found that the major equilibrium components in each 

case consisted of CO, H2 and CH4, in addition to the N2 present in the air.  The 

other species in Figures 3 and 5, including H2O, CO2, C2H2 and C2H4 all are 

present in the equilibrium mixtures at levels of less than 1% mole fraction, 

indicating that the products computed kinetically are far from equilibrium.  The 

product compositions in Figures 3 and 5 therefore represent an arrested kinetic 

process that had been proceeding to oxidation products.  This permits us to 

summarize the evolution of the reactants through the ignition period.   

 Stoichiometric oxidation of n-heptane33 occurs primarily by means of H 

atom abstraction, followed by decomposition of the resulting heptyl radicals;  the 

principal next product is ethene as the long n-alkane chain is chopped into C2H4 

blocks.  Ethene is consumed by radicals to produce vinyl radicals (C2H3) which 

then decomposes to produce acetylene.  Subsequent oxidation of acetylene leads 

to CO and CO2.  In the diesel rich ignition calculations, it is clear that the 

computed reactions were proceeding normally towards combustion products 

when the limitations of the very fuel-rich environment quenched or interrupted 

the process.  Because the rich conditions provide less heat release than 

stoichiometric conditions, the system cannot produce enough radicals to 
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complete the oxidation process.  Those radicals that are produced convert as 

much ethene as possible to acetylene, but it is clear from Figure 3 that this 

conversion is far from complete.  OH radicals convert CO to CO2 and produce 

H2O from H atom abstraction reactions with the fuel, producing far more CO2 

and H2O than is present at equilibrium conditions at these temperatures, in an 

interesting example of a situation in which the dynamic, kinetics processes 

actually take the chemical system farther from equilibrium. 

 Kinetic production of superequilibrium CO2 levels is a very important 

feature of this rich ignition and the production of soot in the diesel.  At these rich 

conditions, the equilibrium composition contains none of the species normally 

associated with aromatic formation reaction pathways and soot production, 

particularly very low levels of ethene and acetylene.  At equilibrium, all of the 

available O atoms are present in the form of CO.  However, during the 

kinetically controlled ignition, the OH radicals that might have facilitated the 

equilibrium have instead oxidized CO to CO2 and produced H2O.  The 

remaining C and H have no way to avoid remaining in the form of soot 

precursors, because the kinetic system has achieved a composition that is locally 

stable although far from true equilibrium.  When O atoms in the oxygenated 

additive produce CO2 immediately, because of the unfortunate placement of O 

atoms within those molecules, the imbalance towards CO2 in the products is 
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even more pronounced and the kinetic system remains far from the equilibrium 

that otherwise would have limited sooting. 

 When the oxygenate, methanol in this example, is added, some additional 

radicals are produced because the overall mixture, including the oxygenate, is 

slightly less rich (or closer to stoichiometric).  The enhanced radical population 

converts more ethene to acetylene and more CO to CO2, both of which are 

reflected in the comparisons between Figure 3 and Figure 5.  In addition, there is 

less ethene to convert to acetylene, since a great deal of the n-heptane has been 

displaced by methanol.  As more oxygenate is added and the overall mixture 

becomes less fuel-rich, the steadily increasing radical pool is able to convert more 

intermediate species, particularly those which contribute to soot production, to 

non-sooting products.  Eventually, as the overall equivalence ratio reaches 2.0, 

there are enough radical species to not only consume the ethene, but also the 

subsequent intermediate acetylene.   

 This type of analysis suggests how soot suppression is accomplished for 

the cases in which extra air is entrained53.  Entrainment provides additional 

molecular oxygen, which can react rapidly with radical species such as vinyl and 

produce HO2 radicals which then can abstract H atoms from the fuel or react 

further with the unsaturated species.  Thus there are many reaction pathways 

that can be accelerated by the addition of more molecular oxygen. 

 Thus both increasing O2 by air entrainment and addition of oxygenates 

activate reaction pathways that advance the kinetic system towards final 

products and reduce the concentrations of those intermediates which lead to soot 



 32 

production.  Details of the two reaction pathways are different, but the result is 

the same.   

 The present analysis also suggests that different fuels will each have their 

own characteristic types of intermediate products with their own sooting 

properties.  The present analysis has used n-heptane as the surrogate for diesel 

fuel, and the resulting soot precursors are predominantly ethene and its product 

acetylene.  Branched alkanes will produce unsaturated intermediates that contain 

more branched species than in the present simulations, such as isobutene, in 

addition to acetylene and ethene.  Cyclic alkanes and alkenes, and aromatic fuels 

will each produce soot precursor species that are characteristic intermediate 

products of their oxygen-deprived or fuel-rich ignition.  This provides the system 

“memory” of its original composition so the sooting tendencies of each original 

fuel will vary as the distribution of the ignition products vary. 

 A particularly important subject for future study is the role of aromatic 

hydrocarbons in the fuel on the fuel-rich diesel ignition and the production of 

soot precursors.  The soot modeling work of Frenklach22.23, as well as a large 

body of experimental work, has established that production of aromatic and 

polycyclic aromatic species is a major step towards soot production, and the 

production of specific precursors to aromatic species formation has been a 

central element in the present study.  As shown in Figures 3 and 5, our kinetic 

model predicts that all of the original fuel is consumed during the rich ignition, 

but similar simulation of fuel-rich ignition of aromatic fuels under diesel 

conditions has not yet been addressed.  Since the specific hydrocarbon fragments 

in the ignition products are influenced by the structure of the fuel, the 
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composition of the soot precursors in the case of aromatic fuels may be quite 

different from the present species, and this will be addressed in future work. 

 Finally, it should be noted that the present analysis applies to the unique 

case of premixed ignition, which proceeds along a sequential reaction pathway.  

The same conclusions do not apply to non-premixed systems such as diffusion 

flames, which are kinetically much more complex than the present systems.  For 

example, McNesby et al.12 recently discussed soot formation in an opposed flow 

ethene/air flame, adding ethanol to the air stream and alternatively to the fuel 

stream, observing quite different responses of the sooting flame in these two 

cases.  This creates regions in which reaction pathways are important that do not 

contribute to the premixed diesel environment. 

 

Summary 

 Diesel engine chemistry has been primarily an experimental subject, but 

the phenomenological model of Dec15-21 has provided a framework within 

which focused computational studies can provide valuable insights.  The present 

kinetic modeling analysis fits conveniently into Dec’s framework, connecting the 

fuel vaporization and air entrainment processes with the soot growth period. 

 The key feature of the present study is that C-O moieties imbedded in the 

oxygenated species effectively displace carbon in the original diesel fuel;  the C-O 

bond survives the fuel-rich ignition intact, so there is less carbon available to 

make soot in the oxygen-depleted post-ignition environment.  Soot reduction has 

generally been measured experimentally as a reduction in soot emissions per O 
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atom included in the reactant molecules.  For some years it was believed3,54,58 

that reduction of soot depended only on the amount of oxygen added to the 

diesel and was not affected by the specific oxygenate type.  However, recent 

experimental and kinetic modeling analysis has shown2,9-11,59 that there are 

some oxygenated species that use their oxygen atoms less efficiently than others.  

The present work attributes these effects to details in the ways the oxygen atoms 

are present in the oxygenated additive species, particularly in the case of ester 

species in which two O atoms are initially bonded to single C atoms.  When these 

CO2 moieties result in direct production of CO2 molecules, the oxygen initially 

present in the oxygenated hydrocarbon additives is therefore less efficient in 

eliminating C atoms from the product pool of species that can subsequently 

make soot.   
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