Fabrication of a Short-Period Nb3Sn Superconducting Undulator

PDF Version Also Available for Download.

Description

Lawrence Berkeley National Laboratory develops high-field Nb{sub 3}Sn magnets for HEP applications. In the past few years, this experience has been extended to the design and fabrication of undulator magnets. Some undulator applications require devices that can operate in the presence of a heat load from a beam. The use of Nb{sub 3}Sn permits operation of a device at both a marginally higher temperature (5-8K) and a higher J{sub c}, compared to NbTi devices, without requiring a larger magnetic gap. A half-undulator device consisting of 6 periods (12 coil packs) of 14.5 mm period was designed, wound, reacted, potted and ... continued below

Physical Description

4

Creation Information

Dietderich, Daniel; Dietderich, Daniel; Godeke, Arno; Prestemon, Soren; Pipersky, Paul T.; Liggins, Nate L. et al. June 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Lawrence Berkeley National Laboratory develops high-field Nb{sub 3}Sn magnets for HEP applications. In the past few years, this experience has been extended to the design and fabrication of undulator magnets. Some undulator applications require devices that can operate in the presence of a heat load from a beam. The use of Nb{sub 3}Sn permits operation of a device at both a marginally higher temperature (5-8K) and a higher J{sub c}, compared to NbTi devices, without requiring a larger magnetic gap. A half-undulator device consisting of 6 periods (12 coil packs) of 14.5 mm period was designed, wound, reacted, potted and tested. It reached the short sample current limit of 717A in 4 quenches. The non-Cu Jc of the strand was over 7,600 A/mm{sup 2} and the Cu current density at quench was over 8,000 A/mm{sup 2}. Magnetic field models show that if a complete device was fabricated with the same parameters one could obtain beam fields of 1.1 T and 1.6 T for pole gaps of 8 mm and 6 mm, respectively.

Physical Description

4

Subjects

Source

  • Journal Name: IEEE Transactions On Applied Superconductivity; Journal Volume: 17; Journal Issue: 2; Related Information: Journal Publication Date: June 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-815E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 936579
  • Archival Resource Key: ark:/67531/metadc901039

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 11:55 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 21

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Dietderich, Daniel; Dietderich, Daniel; Godeke, Arno; Prestemon, Soren; Pipersky, Paul T.; Liggins, Nate L. et al. Fabrication of a Short-Period Nb3Sn Superconducting Undulator, article, June 1, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc901039/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.