Electrical Contacts to Individual Colloidal Semiconductor Nanorods

PDF Version Also Available for Download.

Description

We report the results of charge transport studies on single CdTe nanocrystals contacted via evaporated Pd electrodes. Device charging energy, E{sub c}, monitored as a function of electrode separation drops suddenly at separations below {approx}55 nm. This drop can be explained by chemical changes induced by the metal electrodes. This explanation is corroborated by ensemble X-Ray photoelectron spectroscopy (XPS) studies of CdTe films as well as single particle measurements by transmission electron microscopy (TEM) and energy dispersive X-Rays (EDX). Similar to robust optical behavior obtained when Nanocrystals are coated with a protective shell, we find that a protective SiO2 layer ... continued below

Physical Description

14

Creation Information

Trudeau, Paul-Emile; Sheldon, Matt; Altoe, Virginia & Alivisatos, A. Paul April 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report the results of charge transport studies on single CdTe nanocrystals contacted via evaporated Pd electrodes. Device charging energy, E{sub c}, monitored as a function of electrode separation drops suddenly at separations below {approx}55 nm. This drop can be explained by chemical changes induced by the metal electrodes. This explanation is corroborated by ensemble X-Ray photoelectron spectroscopy (XPS) studies of CdTe films as well as single particle measurements by transmission electron microscopy (TEM) and energy dispersive X-Rays (EDX). Similar to robust optical behavior obtained when Nanocrystals are coated with a protective shell, we find that a protective SiO2 layer deposited between the nanocrystal and the electrode prevents interface reactions and an associated drop in E{sub c,max}. This observation of interface reactivity and its effect on electrical properties has important implications for the integration of nanocrystals into conventional fabrication techniques and may enable novel nano-materials.

Physical Description

14

Source

  • Journal Name: To come

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1242E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 944119
  • Archival Resource Key: ark:/67531/metadc900982

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 2, 2017, 12:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Trudeau, Paul-Emile; Sheldon, Matt; Altoe, Virginia & Alivisatos, A. Paul. Electrical Contacts to Individual Colloidal Semiconductor Nanorods, article, April 1, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc900982/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.