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ABSTRACT

Relationships necessary for ring stability are

derived between the self-focusing forces of an electron

ring and the magnetic field gradient defocusing forces

present near and just subsequent to the start of ring

acceleration.
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It is well known that if an electron ring is accelerated too

quickly it will leave behind ions, since they are too massivE to keep

up with the electrons
l

). If the ions are supplying the ring self

foCuSing
2

) the ring will consequently lose integrity. Thus there are

upper limits on the magnitudes of the axial electric field, E , or the
z

radial magnetic field, B, which accelerate the ring. Below the limits,
r

ring stability is maintained and also ion acceleration is accomplished.

OftEn ring self-focusing is pr.;dominantly supplied by images 3 ).

The above-mentioned restriction on E or B is then no longer
z r

necessary for maintaining ring integrity (although still vital for ion

acceleration). There are even in this case, however, restrictions on

B or E that must be satisfied in 'Jrder to have ring axial integrity.r z

These restrictions must be satisfied nJ matter what the source of the

self-focusing.

The limits on the accelerating forces acting on the ring during

the transition from the magnetic potential well, where the ring is

formed and loaded with ions, to the region where the ring is subject

to the main accelerating force, requires particular attention. This

transition is obtained, at least in all the schemes considered up to

now, by decreasing the depth of the potential well and at the same time

introducing an axially varying radial magnetic field B .
r

Prior to,

and right up to, the start of ring axial acceleration with time-

independent external fields (spillout) the ring is subject to the field,

B , which creates nonelastic forces on electrons. These forces, unless
r
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counteracted by adequately large self-focusing forces, will pull the

ring apart in the axial (z) direction.

Electrons in the ring have a spread in energy, and hence in

equilibrium radii. Thus, because of the radial variation of B , there
r

is a force tending to tear the ring apart.

In summary, for given ring parameters, there is an upper bound

(most stringent at the spillout point) on (d
2

Br /dz
2

) and on (dBr/dr)

for maintaining ring integrity up to, and at, spillout.

Subsequent to spill also, energy spread in the ring combines

with Br and dBr/dr to tend to pull the ring apart axially. At the

same time, the unfavorable sign of dBr/dZ (just subsequent to spill)

also has a defocusing effect. Once again there are limits that must be

observed, for given ring parameters, in order to maintain ring integrity.

In this paper we examine a very simple model and obtain rough

estimates relating the ring self-focusing3), Q,,2, to ring parameters,
'"

to Br , and to the Br derivatives. We obtain a critical lower limit,
')

Q'~rit' on

For

Q c'.
s

parameters4) characteristic of the Lawrence Radiation

Laboratory Compressor III we find that is sufficiently small

that 2
Q".., can be larger than 2

Q but still small enough that--crit'

with the aid of the image cylinder--operation is possible with the

incoherent tune, ~,less than unity. This conclusion is valid for

a ring of small minor radius (of the order of o. "5 cm or less) . On

the other hand, 2 varies with the ring minor radius,Qcrit so that if

the minor radius is 2.0 cm (perhaps the situation if there is a
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resonance crossing during compression) then
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is excessively

large, and ring integrity will be lost during spillout.

The general analysis is presented in Sections 2, 3, and 4 of

this paper, with the Appendix supplying details of the postspill

analysis. Section 5 is devoted to a numerical example employing the

parameters of the LRL Compressor III. The final section (Section 6)

contains three general remarks.
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2. ANALYSIS FOR A MONOCHROMATIC RING IN THE PRES PILL FHASE

TYTli cal curves showin,,: H vs z
- l'

neighborhood of the spill point are shown in F . 1
4). We :Jpproxirrni,l'

B by the form
l'

B (z)
r

oj

dB 2t G
---E. (z ) (z - Z)I 1 ,,1' (z ) (z - Z )
dz e e ,( c' c·

dz
(1 )

The /, motion (with azimuthal angle G ;:':5 an indepr'Ylde!ji

variable) is governed by the potential function

2 [~:r ') R .. 1
1

,~")

E,2 E,

~JQ
s

,. eR
(ze)

r
(z ) I , JV - --

OJ m Yc ')

d"
F-

a L

WllETe E,.~ z - z is the amplitude of an lcc-t,ron in its 'nalior, ahc)lJj,
e

the equilibrium position z ,e R is thE' equilibrium radiuc;

which is related to

m 'rc
a

eB ( z )z e

by

,.. .', 1
\ ,'I

y i,' ihe ratio of an electron energ;y to j 1'8 rest mas,;and

The quantity
,

Q L

's

m
o

is the ring self-focusing, which will have contri-

butions (negative) from curvature effects, frornimage term,) (positive,

one hopes). and from ions (positive).
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The ~otential of Eq. (2) may be written in the form

v (4 )

which is plotted in Fig. 2. From the figure it is clear that the ring

minor radius a must be less than t, for stability. Thus we have
max

the stability criterion'

a < Smax (s)

Actually the requirement is that there be adequate stable phase volume

to contain the ring. This requirement is (roughly) a condition on
C)

Qsa
L

; we assume, in this analysis, that ~ has been chosen so as to

satisfy the phase-volume condition. Thus Eq. ('s) is to be considered

as a condition on 1; for given a.max'

At the spill point (dB /oz) is zero, and Q2 takes its
r

r)

smallest value of the prespill phase, namely, QSL. Thus Eq. (5) is

most stringent when evaluated at spill, i.e., when z e
z sp

Q 2
s

> Ra
2

(6)
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3. EFFECT OF ENERGY SPREAD IN THE PRESPILL PHASE

in equili lll'iurn radii. Since B varies vJith t'. Tiarticlc.: " I
r

ejj i'feren l I/V: f'gy feel differe:n t forces, wflierl e ffee t a1::o I, ne1.'; I.u

cause axjal ;:prcading of the ring. It may be i,it!\('n jnto""'lI'!

augmenting Rq. (~) with a term

vJhc're (I'E/F:) is the energy ,:.:pread in the rinl:.

The c ci terion of Eq. (' .. ) now become:;

)

~

'max

r
'max

, ,.
:0 ven by Eq. (',) [and is clearl~/ the mClx:irnurn 0:' 'hi'

(/E/E) = 0:1. The cond; tj c,n c
"lli:IX

i.:' t l L,-).) r',

.
c-
'1fi.'1 >:

' . a -I

dB
r , \

~\Zf~J

d' B

~(Zc.,)
dZ' ,

which may be transformed into the form [corresponding to
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(10)
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D'yn,:J.II~ic::: of independent c'Jcctrons i:3 de:~crihed fly :J' flcinci

of least actir)fl:

o ( 1 J )

w:i.th the mechanical momentum measured in units of "magnetic }'jgidi ty. "

From Eq. (11) follow the equations of motion,

d
dP [P~'J E

D
r B

z
o ,

dd" l- p z '1 - r B
'" D J l'

u

where p is the magnitude of the mechanical momentum, and

D
')

[ r' j z'" 1" (1 .' )

and primes denote derivatives with respect to 8.

We wi::1J to study motion of electrow3 in the neighborhood of

a central--ot' n:.:ference--electron. For the refc~rence particlF~ ':iF

viriLe

r r (t)
o

z z (t) .
o (14)

For an arbitrary electron WE write



-10-

r r (t) + ~(t) ,
o

z z (t) + s(t) ,
o
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p p + l:>p •o

Inserting Eq. (15) into Eqs. (12), and keeping only first-order terms,

we obtain (by steps detailed in the Appendix)

p r"
o 0

r
o

P z"
-0 0

r
o

- p + r B (r ,z )
o 0 zoo

- r B (r ,z )
oro 0

o ,

o (16)

(li:l)

o

Equations (H;) and (17) determine the reference trajectory, whereas

Egs. (18) and (19) describe electron motion relative to the reference

particle.
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It ,:llffices, for evaluation of Ulf co·ct't'ici"'llt,.: ~I; ti C' "lint lUi'

for r:.) to II:," the approximate :;olution of

R B (H) z )
Z 0

'U)

Itlhere we have identified I' a,: the ring raclilJ:~ H. FurUlcrrnorr·, viP
o

."
must augment Eq. (19) with the ,;e1f-focusing tu'ms Qs"~.

ThE co(~fficients in Eq. (19) are, of cour,;e, functions of G.

However, thr:y are slowly varying functions of G under the 8s,;umption

that B
r

,~Lnd Bz
vary slowly in space and LS small. rrhu::: w,-

approximate'l.v ::;olve Eq. (19) by taking lh'> coefficients tiS con:;L~nts.

The> general solution is of the form

~,

where B i::: proportional to (/\P/P
o

)'

The eigenfrequency is, to fir,~t order, given by

') R
oB

L r
Q

s
(0 - - Jz

I-
S

Z

The nonoscillatory term is) to first order,

R
"o

Ring integrity in the z direction (there is no problem in the

I' direction) requires
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The condi t iJJn (In

',)

(tl > 0 ,

[) .c: a ( >! I )

is necessary to prevent ring explosion, w)l<c'rt'a,-~

the condi tiu!l on FJ is a self-consistency requirement. In:: umm:u'y ,

:Jlld expre,-;~;irll< Eq. (?h) as a condition on the 3l~lf-focusing Lerm

'"j

ct', we hav,. T lit conditions
'"

nnd

.)

Q C

S
:> ( " )

(~
2B

R
dB

R
dB

;_: H r r r
(t I -

~ JZa \.E 13 P, Jl,., z z z

Clearly sati:;tying Eq. (;Y;) is sufficient. ~;ince Eq. U",)

strong condition than Eq. (2h).

( I

.I. DC' c'
' ..•.., ..
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') . A NUMERICAL EXAMPLE: THE LRL COMPRESSOR III

We adopt, for the purpose of demonstrating the significance of

the requirements of Eqs. (10) and (26), the values characteristic of

the LRL Compressor III')):

R

L"E
E

B
z

a

17 kG J

0.5 cm ,

2
(:J B

G---;f-( z ) 3 --,-,
"dzL sp c-

cm

f dB
drr(zsp) !-~)

G
~

cm

dB
Gr

(~B (zsp)
;)

~'-' " cm

B "" 50 G . ( ~~,?)
r

The radial field corresponds to a rather "poor" adjustment of operating

conditions, such as might have been the case in the first experiments.

One obtains

~)

[1.4 1.2J X
-Lf

Q
s

> + 10

;) -)+
Q

0

t'_.

3·9 X 10
,0

,-,
-')

Q,s
c.-_

1.3 X 10 -

[prespill condition of Eq. (lO)J,

[postspill stability of Eq. UKi) i

[postspill self-consistency of

Eq. ( ) ] (

Self-focusing of this magnitude is available from the image

cylinder and ion focusing. There is an ion loading percentage low

enough to keep v
R

well below unity and large enough to satisfy Eq. ),

but it might be hard to achieve in practice. For a "good" adjustment

of operating conditions the field derivatives are much smaller than the
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values used above (for example; d2
Br /dZ2

is only 1/25 as large) in

one computational example) than the value in the "poor" case) and there

exists a wider range of ion loading satisfying Eq. (28) and vR < 1.

If) however) a is larger than 0.5 cm (such as might be the

result of a blowup caused by excessive ion loading in poor vacuum

conditions, causing a crossing of the incoherent vR = 1 resonance),

then neither images nor ions could supply the required values of 2
Q .

s

In this circumstance one would observe a diffuse spill ("peel-off")

rather than a fast spill, as was, in fact, the case in the first

experiments with Compressor 1114).
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6. THREE REMARKS

Remark II]

It u; interesting to inquire \-,hether the postspi 11 '~('!ldi i ion

for focusinc;i ,; necessary: Perhap:;; even in Q,~ 0, the r'!;" of

bJowup is sufficiently small that the increase in ring size

for the short (flO cm) acceleration length of a typical model. A very

good acceleration column has

dB
r

0. 1+ Clcm ,

vi: th Ul'.: [.j nv covering (say) 24 cm in 90 nsec. In this case the

uncompensated blowup e-folds by

.", J ( ",I) )

un::Lcceptable; r:ondi tion

R k iff,emar lie

For a ring of rather good quality, ion self-

focusing i,; 'Iiry powerful, and adequate--by :i tself--to ov,~rCClrne

curvature
")

I'm:: in Q
0
~. In thi,; C::Lse one can contemplate operiition

~,

in which no image cylinder is used ( and henCE v
H

= 1 is crossed,

iJut--perh,lp,> -rapidly enough t.o be innocuous). As surning the ion .c'.elf-

focusing to be much larger than the curvature effects, WE! may ore

the latter and write
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s

N R r f
e e

"
lTra'--
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where N is the number of electrons in the rin~", r i ~~ the cl:t~~s ical
e e

electron radius, Y is the rati.o of the electron energy to 'j t:; rcc~t

energy, and f is the fraction of electrical neutralization of tile

ring.

Inserting Eg. (31) into Eqs. (10) and (26), we obtain lower

bounds on f:

rtY [a3 d
2

B

~: (~) ~IJf > r +
N r 2B

dz
2

e e z

N"~ {(~)a 2B
R

dB 2 dBr1
f >

r r a
+ dr +

B B B dZr
e e z z Z I

I

)

(32 )

It must be remembered that a necessary requirement for the validity of

Eqs. (32) and (34) is that ion self-focusing dominates curvature effects.

These last formulas are of interest in that the dependence upon ring

parameters is explicit, in particular, the important dependence upon

Nand a.
e

Remark #i)

It is amusing to relate the postspill condition of Eq. (3.3) in

its dependence upon B
r

to the condition for ring acceleration without

the loss of ions. This last-mentioned condition is, for ions of mass

M and ionization Ze,



<

-17- UCRL-19398 Rev.

The B term of Eq. OJ) (which actually js th,· nwnericall,'/ :no::r
r

~:ignificant tJ'rm in thE- case of Compressor III) yjelds

B
r

<
N e f

e

(
I'E )

2 n RaE.

The condition of Eq. (y!) will automatically be :~aUsfjed, pruvided

ihe ion-acceleration condition of Eq. (7)+) is ::.:ai,L;fied, if

f

:' (IE)
Ji',"

Zmy
}If

(.' ,)
\

Since} for usually contemplated parameters, f >-

and ZmY/M ~ 1/100, we see that Eq. ( ) is satisfied: the left-hand

side is at least ~O times as large as the right-hand side.

However, :tll thi,'; holds only for a strongly ion-,~ If-focused

t'Lng. Wbu) it dues not, then ::ati:,:fyinr; the jon 'lee lct'a 1 ;"n c,r:clii"ior:

() f' Eq. ( 7
1 ) cJ c) (.,')),1

l)f Eq. (2() ) .

not u;uarantee satisfYing the rinv inte;,';ri Ly ('undi LLur,;:
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APPENDIX. DERIVATION OF SIMPLE EQUATIONS FOR POSTSPIL1 MOTION

In this appendix we derive Eqs. (1(,) through (19). from Eq,s.

(12) , (13) , (11+), (1'5) .
r' z' r"

and We employ the fact that - , - , - ,
r r r

0 0 0

z"
and 0£

p o
are small quantities.

Thus we expand Eq. (12), keeping only terms through second

order. It is necessary to keep second-order terms because the relative

motion in the z direction (described by s) is only weakly defocusing

and is described (to lowest order) by second-order terms. In more

detail, it can be seen in the answers [Eqs. (16)-(19)] that in zero

order (B constant,
z B

I'
0) I'll == z" == O.

o 0
The particles oscillate

(strongly) in the r direction about a uniformly moving ring of constant

radius. In first order (B slowly changing, B /B «1) the referencez r z

particle accelerates slowly, and particles oscillate in the r direction

but r," = o. Only in second order does the t, equaU_on describe F

oscillations.

To second order, Eqs. (12) become:

PI''' 1 2 1
,)

r' z'
p -e)- i- p --rs- i- r B

r
,-)

"-- 2 zr r
p

~r - p - r B
r

o .

Introducing Eqs. (14) and (1')), and then isolating the reference

particle, we obtain for it
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,-,
-J

P r 1f

1
r,L

1
z' c_

o 0 0 0
BPo + P --C) -l-- r Po -'

r ') 2 ,-,
0 zo

0 r I'
0 0

Z
II r' z'
0 0 0

B 0Po Po --,,- I'
I' t- o ro

0 l'
0

Neglecting term,; of sEcond order in thesE first -order equa tion ylr'lds

f'~qs. (1(-,) and (l'() of the text.

From T':qs. (57) we obtain linear equations in

namely:

T1 and

P ri"

fro
dB

r~] 1J

[ r ~fj'
0 r 0

z' F 'J f: l'
:!.

+ B
20 TJ + dT - Po -, T} - - I-.--)

0" dzI' '-. "- ()

0 r I'
0 0

P F" dB dB 1 P
0 r

~ [~~B dfjTJ ~(r'FI z'ri ']-- - r dZ - + r +-
~ . 0 ro 0 2 0' (>

0 r
0

Tn the equatinrJ for TJ there is a first-order focusing term, ,;0 we

may neglect sEcond-order terms. In the ~ equation we may neglect

o .

fast oscillating TJ terms and replace T] with

obtain

(r 6p/p ).
o 0

We
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r ( dB

1:," 0 r
- Po ()Z
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[
r.;YJ' z~r.!]

Tj" + Tj - -- - --
r r

o (]

[2 ' ]r r C em
~

0
B

o r l'p- + -) d (-.. )rop YO 1 (] r Po(]

r
o

[

r ' ~ , Z •.11' ]o· 0
- --f--

r r
o (]

We have carefully reta.ined second-order terms involving and

(40)

t '.' ,

since they produce antidam:ping. However, they are negligible; they

simply describe the well-knmm increase in beam major and minor radii

during expansion acceleration--a :,ma.l]. effect in the early expansion

phase. Dropping these terms, we obtain Eqs. (18) and (19) of the text.
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!"ig. 1. nadial field, B , as a function of z. for times W"U' i ',t
r

Spillout is close to

spill time t
3

" The curve corresponding to t~ is used to

define ze--the point where Br ~ 0 and aBr/az <

z
sp

Fig" 2. Potential V as a function of amplitude r.
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