Oxidation of Alloys Targeted for Advanced Steam Turbines

Gordon R. Holcomb, Bernard S. Covino, Jr., Sophie J. Bullard, Malgorzata Ziomek-Moroz, and David E. Alman Albany Research Center, U. S. Department of Energy, 1450 Queen Ave SW, Albany, OR 97321 Email: holcomb@alrc.doe.gov; Telephone: (541) 967-5874; Fax: (541)-967-5914 Email: covino@alrc.doe.gov; Telephone: (541) 967-5828; Fax: (541)-967-5914 Email: bullard@alrc.doe.gov; Telephone: (541) 967-5989; Fax: (541)-967-5914 Email: moroz@alrc.doe.gov; Telephone: (541) 967-5943; Fax: (541)-967-5914 Email: alman@alrc.doe.gov; Telephone: (541) 967-5943; Fax: (541)-967-5914 Email: alman@alrc.doe.gov; Telephone: (541) 967-5885; Fax: (541)-967-5914

Abstract

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Oxidation of Alloys Targeted for Advanced Steam Turbines

Gordon R. Holcomb, Bernard S. Covino, Jr., Sophie J. Bullard, Malgorzata Ziomek-Moroz, and <u>David E. Alman</u>

National Energy Technology Laboratory NETL-Albany 1450 Queen Ave. SW, Albany OR 97321

TMS, San Antonio, March 12-16, 2006

Office of Fossil Energy

Outline

- Introduction and Background
- Research Approach
- Results of Research in Progress
- Summary

Introduction

- Project funded out of the Advanced Research (AR) Program of Fossil Energy (FE) of DOE
- In support of DOE Advanced Power System goals of 60% efficiency from coal generation that require USC steam turbine conditions of:
 - -760°C (1400°F)
 - -37.9 MPa (5500 psi)

Efficiency Improvement over a Subcritical 16.5 MPa/538°C/ 538°C Plant

Steam Conditions	eam Conditions Recent Power Plant Examples		Net Plant Efficiency, %
28.4 MPa/538/566°C	Schwarze – 1998	2.9	39.9
Each 1% in	4.0	41.0	
~1,000,000 to	4.5	41.5	
of an 800-M	4.9	41.9	
31.0 MPa/593/621°C 31.0 MPa/593/593/593°C	Alvedore 1 – 2000 Westfalen – 2004 Nordjylland - 1998	5.2 6.5	42.2 43.5
	Swanek	amp, 2002	

NETL Contacts: Scott Klara, klara@netl.doe.gov Erik Shuster, erik.shuster@sa.netl.doe.gov

OCES 12/22/2004

Research Goals

- Determine the steamside oxidation behavior of target alloys for use in USC turbines
- Determine the role of pressure on oxidation mechanisms
- Examine curvature effects on spallation

High Pressure (HP) Turbine

Steam Cooled IP Turbine

Engineering Options

Closer to usage are steam-cooled, high temperature, intermediate pressure turbine sections

Cost vs Temperature

Masuyama, 2004

Research Approach

- Ultra Supercritical Steam Exposures
 - -Temperatures 593 to 760°C (1112-1400°F)
 - -Pressures of 2400 to 5500 psi (16.5-37.9 MPa)
- Cyclical Oxidation in Moist Air
 - Hourly cycles to examine adhesion and spallation behavior of protective oxides

TGA in Steam+Argon

Determine oxidation mechanisms, kinetics, activation energies

• Furnace Exposures in Moist Air

- Economical long-term tests

Alloy Compositions

Nominal compositions of alloys of interest for USC turbine applications.												
Alloy	Fe	Cr	Ni	Со	Мо	Nb	С	Si	Mn	Ti	A	Other
12	Bal	11		3		0.07	0.1	0.3	0.2			3 W 0.2 V 0.04 Nd 0.04 N
6W		23	43			0.18	0.08	0.4	1.2	0.08		6 W 0.003 B
617 UNS N06617		22	55	12.5	9		0.07				1	
230 UNS N06230	<3	22	55	<5	2		0.1				0.35	14 W <0.015B 0.02 La
740	1	24	49	20	0.5	1.8		0.5		1.6	0.75	
90 UNS N07090	1.5	19.5	55.5	18			0.06			2.4	1.4	
718 UNS N07718	18.5	19.0	52.5		3	5.1	0.08 max			0.9	0.5	0.15 Cu max
J1		12.1	Bal		18					1	0.8	
J5		12.5	Bal		22				0.5	1		0.04 Y

Candidate alloys for USC turbine applications

Low CTE Nickel Alloys

Alloy Strength

USC Test Loop

USC Feed Water System

TGA Testing in Steam

Thermogravimetric analysis to give kinetics and corrosion mechanism information.

Temperatures up to 800°C Flowing steam plus Ar Atmospheric pressure

Feed water is oxygen saturated

TGA Results

Thermogravimetric analysis (TGA) for 300 hr tests in O₂-saturated steam plus 60%Ar at 800°C

Alloy	%Cr	Reaction Order, n	Parabolic R ²	Parabolic Rate Constant, k _p mg ² cm ⁻⁴ s ⁻¹
12 (9.5Cr)	9.5	1.78	1.000	1.2 × 10 ⁻³
12 (9.5Cr)	9.5	1.90	1.000	1.4 × 10 ⁻³
12 (10.5Cr)	10.5	1.70	1.000	1.6 × 10 ⁻³
12 (10.5Cr)	10.5	1.76	0.995	1.7 × 10 ⁻³
J1	12.1	1.73	0.990	3.5×10^{-7}
J5	12.5	1.91	0.990	1.5 × 10 ⁻⁷
617	22	1.62	0.960	1.4×10^{-7}
617	22	2.63	0.585	3.9 × 10⁻ ⁸
230	22	1.78	0.878	6.9 × 10 ⁻⁸
230	22	1.79	0.645	3.7×10^{-8}
6W	23	1.87	0.524	3.3 × 10 ⁻⁸
740	24	2.20	0.527	7.2 × 10 ⁻⁷

Furnace Exposures

Furnace Exposures

Cyclic Oxidation

Scale adhesion information during thermal cycles

Temperatures up to 800°C Flowing steam/air mixture Atmospheric pressure Hourly cycles 7 samples at a time

Curvature Samples

2 mm

CYS12B-Cave-1(side-2)

2 mm

CYS12-Vex-1(side-1)

Summary

- DOE Advanced Power System goal of 60% efficiency from coal generation
 - Require USC steam turbine conditions of 760°C & 37.9 MPa

• Mass Change Results:

 From a simplistic mass change standpoint, all of the Ni-base alloys look acceptable at up to 800°C, and Alloy 12 up to 700°C

Alloy Degradation Below Oxide Scale

- All alloys show degradation below the oxide scale
 - 740 shows the least
 - 230 is next best

Curvature

- No evidence of curvature effects shown