High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability. I. Comparison to experimental data and to amplitude growth model predictions

PDF Version Also Available for Download.

Description

The reshocked single-mode Richtmyer-Meshkov instability is simulated in two spatial dimensions using the fifth- and ninth-order weighted essentially non-oscillatory shock-capturing method with uniform spatial resolution of 256 points per initial perturbation wavelength. The initial conditions and computational domain are modeled after the single-mode, Mach 1.21 air(acetone)/SF{sub 6} shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]. The simulation densities are shown to be in very good agreement with the corrected experimental planar laser-induced fluorescence images at selected times before reshock of the evolving interface. Analytical, semianalytical and phenomenological linear and nonlinear, impulsive, perturbation and potential flow ... continued below

Physical Description

PDF-file: 62 pages; size: 1.8 Mbytes

Creation Information

Latini, M; Schilling, O & Don, W May 15, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The reshocked single-mode Richtmyer-Meshkov instability is simulated in two spatial dimensions using the fifth- and ninth-order weighted essentially non-oscillatory shock-capturing method with uniform spatial resolution of 256 points per initial perturbation wavelength. The initial conditions and computational domain are modeled after the single-mode, Mach 1.21 air(acetone)/SF{sub 6} shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]. The simulation densities are shown to be in very good agreement with the corrected experimental planar laser-induced fluorescence images at selected times before reshock of the evolving interface. Analytical, semianalytical and phenomenological linear and nonlinear, impulsive, perturbation and potential flow models for single-mode Richtmyer-Meshkov unstable perturbation growth are summarized. The simulation amplitudes are shown to be in very good agreement with the experimental data and with the predictions of linear amplitude growth models for small times and with those of nonlinear amplitude growth models at later times up to the time at which the driver-based expansion in the experiment (but not present in the simulations or models) expands the layer before reshock. The qualitative and quantitative differences between the fifth- and ninth-order simulation results are discussed. Using a local and global quantitative metric, the prediction of the Zhang and Sohn [Phys. Fluids 9, 1106 (1997)] nonlinear Pade model is shown to be in best overall agreement with the simulation amplitudes before reshock. The sensitivity of the amplitude growth model predictions to the initial growth rate from linear instability theory, the post-shock Atwood number and amplitude, and the velocity jump due to the passage of the shock through the interface is also investigated numerically. In Part II [Phys. Fluids (2006)], a comprehensive investigation of mixing induced by the reshocked single-mode Richtmyer-Meshkov instability is performed using the present simulation data to assess and quantify the effects of reshock and other waves on the mixing dynamics, including the post-reshock growth, circulation deposition, mixing profiles and fractions, baroclinic circulation deposition, energy spectra and statistics.

Physical Description

PDF-file: 62 pages; size: 1.8 Mbytes

Source

  • Journal Name: Physics of Fluids, vol. 19, N/A, May 1, 2007, pp. 024104-1-024104-19; Journal Volume: 19

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-221480
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 936681
  • Archival Resource Key: ark:/67531/metadc900849

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 15, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 29, 2016, 12:41 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Latini, M; Schilling, O & Don, W. High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability. I. Comparison to experimental data and to amplitude growth model predictions, article, May 15, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc900849/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.