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Abstract

This report is a collection of documents written by the group members of the Engineer-
ing Sciences Research Foundation (ESRF), Laboratory Directed Research and Development
(LDRD) project titled “A Robust, Coupled Approach to Atomistic-Continuum Simulation”.
Presented in this document is the development of a formulation for performing quasistatic,
coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equa-
tions that arise due to kinematic coupling and corrections used for the calculation of system
potential energy to account for continuum elements that overlap regions containing atomic
bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic
simulations including measures of stress, temperature and heat flux, calculation used to de-
termine the appropriate spatial and time averaging necessary to enable these atomistically-
defined expressions to have the same physical meaning as their continuum counterparts,
and a formulation to quantify a continuum “temperature field”, the first step towards con-
structing a coupled atomistic-continuum approach capable of finite temperature and dynamic
analyses.

Keywords: atomistic simulation; continuum mechanics; stress; temperature;
thermal transport; coupling .
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Chapter 1

Introduction

Principle Author: J.A. Zimmerman

This report is a collection of documents written by the group members of the Engineer-
ing Sciences Research Foundation (ESRF), Laboratory Directed Research and Development
(LDRD) project titled “A Robust, Coupled Approach to Atomistic-Continuum Simulation”.
With the growing focus on predictive modeling and simulation, Sandia must develop the
capability to model deformation and failure in multiple scale settings. This project’s goal
was to develop a robust approach for coupled atomistic-continuum simulation, thereby con-
structing methodologies for both quasistatic and finite temperature/dynamic analyses. The
plan for this project evolved into efforts by sub-groups in the following areas:

• Improve the fidelity of a coupled approach for quasistatic analysis by including cross
terms in the equilibrium equations that arise due to kinematic coupling and by correct-
ing the contributions to the potential energy of the system so that no double counting
of energy occurs by the inclusion of both atomic bond energies and continuum strain
energies.

• Investigate and evaluate expressions found in the literature for calculating continuum
variables such as stress, temperature and heat flux within atomistic simulation. Deter-
mine the appropriate spatial and time averaging necessary to enable these expressions
to have the same physical meaning as their continuum counterparts.

• Combine the advancements achieved in these two areas to formulate a coupled atomistic-
continuum approach capable of performing finite temperature and dynamic analyses.
This formulation would necessarily include additional variables to quantify a contin-
uum “temperature field”, and energy would be properly transferred from vibrations
in the atomistic region to the separate modes of a scalar temperature field and long
elastic waves in the continuum.
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CHAPTER 1. INTRODUCTION

Although further verification work exists, we have successfully accomplished the first two
tasks listed above. A formulation for a quasistatic, coupled approach has been developed and
verified through comparison of simulations of homogeneous deformation and inhomogeneous
surface relaxation with pure atomistic systems. This work is documented in Chapter 2,
which has been written as a journal-ready publication to be submitted before the conclusion
of the 2004 fiscal year. In addition, this work was recently presented as a proceedings paper
at the 2004 Mesomechanics conference held in June of 2004 in Patras, Greece [1].

With regard to defining and evaluating definitions for continuum quantities that can be
evaluated locally within an atomistic region, much of the background research in this area
was accomplished in the first two years of the project’s life. During the course of the 2002
fiscal year, several articles pertaining to definitions of stress were reviewed, and the key
ones were identified and summarized via internal documents. By the conclusion of the
2002 calendar year, these documents were collected and published as a SAND report [2].
One of the key products of this background research was the identification and preliminary
evaluation of the formulation by R.J. Hardy. Hardy’s approach was unique in the fact that
it permits the analyst to designate a characteristic size on the atomic scale to be used to
define a continuum material point. The choice of this characteristic size enables one to
“fine tune” the degree of smoothness that the calculated stress field will possess, and for
specific selections, Hardy’s expressions degenerate into other expressions presented within
the literature. More advanced evaluation of Hardy’s expression for stress, and a comparison
with volume averages of the standard expression used by atomistic simulation practitioners
is provided in Chapter 3, and was previously presented in both a proceedings paper for
the 2nd MIT Conference on Computational Fluid and Solid Mechanics held in Cambridge,
Massachusetts in June of 2003 [3] and in a recent special issue of Modelling and Simulation in
Materials Science and Engineering [4]. Hardy’s formulation also includes the derivation of an
expression to calculate heat flux in an atomistic simulation. In addition, Hardy has separately
put forth an expression for calculating a scalar temperature field. Both of these expressions
are reviewed and evaluated in Chapter 6, which was presented in-part as a proceedings paper
at the 2004 Mesomechanics conference held in June of 2004 in Patras, Greece [5]. The work
discussed in this chapter has been instrumental in determining minimum spatial and time
averaging limits necessary to properly transfer energy and information from the atomistic to
the continuum.

Chapter 4 reviews concepts relevant to equilibrium and non-equilibrium statistical mechanics.
A thorough understanding of these concepts was necessary to analyze the thermo-mechanical
behavior of atomic crystals with regard to fundamental balance equations and variables used
within continuum mechanics. Chapter 5 then goes on to review the essential elements re-
garding heat transport in materials via phonons. For most conventional atomistic simulation
methods, phonons are the sole means by which energy is transferred between particles in a
dynamic fashion; most techniques do not include contributions to energy transport due to
the movement of electrons as the electrons themselves are not explicitly modeled. It will
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be important to quantify how heat transport occurs within atomistic systems, under both
transient and steady-state conditions (examined in some detail in Chapter 6), in order to
construct the constitutive model for the continuum which has been coupled to that atom-
istic system. Some of the rudimentary ideas developed by the group will be presented in
Chapter 7, including an expression for a continuum temperature field that is derived by
projecting the fine-scale portion of the atomic kinetic energies onto the coarse-scale grid of
the overlapping continuum.
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Chapter 2

Coupled, Atomistic-Continuum
Simulation using Arbitrary
Overlapping Domains

Principle Authors: P.A. Klein and J.A. Zimmerman

We present a formulation for coupling atomistic and continuum simulation methods for
quasistatic analysis. In our formulation, a coarse-scale continuum discretization is assumed
to cover all parts of the computational domain with atomistic crystals introduced only in
regions of interest. The geometry of the discretization and crystal are allowed to overlap
arbitrarily. Our approach uses interpolation and projection operators to link the kinematics
of each region, which are then used to formulate a system potential energy from which
we derive coupled equilibrium equations. A hyperelastic constitutive formulation is used
to compute the stress response of the defect-free continuum with constitutive properties
derived from the Cauchy-Born rule. A correction to the Cauchy-Born rule is introduced in
the overlap region to minimize fictitious boundary effects. Features of our approach will be
demonstrated with simulations in 1, 2 and 3 dimensions.

2.1 Introduction

The primary objective of modern materials modeling is to predict the material response and
failure governed by deformation mechanisms, and to assess the mechanical reliability of com-
ponents. These material deformation mechanisms operate at specific length scales, which
vary from nanometers to microns. Multi-scale materials simulations have been the focus of
many studies [6] using techniques such as atomistic simulation, phase-field calculations, and
finite element (FE) analysis. Continuum mechanical modeling efforts have evolved beyond
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using ad-hoc failure criteria to include cohesive approaches for surface separation and damage
accumulation models for bulk material degradation. However, these techniques only capture
anticipated deformation phenomena. Atomistic simulation procedures, such as molecular
statics (MS) and dynamics (MD), use simple interatomic potentials as the underlying con-
stitutive relation between material particles and allow the derived forces to govern the basic
physics of the system’s response to an applied load. These potentials use parameters fit-
ted from ab-initio calculations and physical measurements of material properties. Atomistic
simulation uses the smallest length scale intrinsic to all materials, that of crystal lattice
spacing, and has the ability to display competing mechanisms of material deformation, such
as fracture, dislocation nucleation and propagation, and void nucleation, growth and coales-
cence. However, limits of computational power prohibit analysis of micro-scale systems using
only atomistic simulation, even in large-scale, parallel calculations. Methods to circumvent
this size limitation also introduce fictitious boundary effects in simulations that degrade the
fidelity of the results.

It is clear that some coupled methodology must be established to combine the strengths
of both atomistic and continuum modeling. Although this field has acquired a substantial
history, it remains an active area of research. Early work by Kohlhoff and collaborators
[7, 8] created a methodology that combined finite element analysis with atomistic modeling,
named FEAt. The FEAt model uses an atomic lattice surrounded by an FE mesh with a
limited overlap region that enforces boundary conditions on both atomistic and continuum
domains. Consistency is achieved by requiring the strains in the overlap region to be equal for
both the atoms and the continuum, and by matching the elastic constants of the continuum
constitutive model to those derived from the governing interatomic potential. In [8], non-
linear elasticity is used via a Taylor series expansion of elastic energy about strain that
contains first, second and third order elastic constants. The FEAt model works well for
static simulations, but displays some anomolous behavior for dynamics. However, it has
the inherent disadvantage that the FE mesh within the overlap region must be refined so
that nodal spacing is at the atomic scale with node position dictated by the crystal lattice
structure.

More recently, several methods have been introduced that attempt to improve upon the
original efforts by Kohlhoff et al. These include the Quasicontinuum (QC) method by
Tadmor, Ortiz and Phillips [9], Coarse-Grained Molecular Dynamics (CGMD) by Rudd and
Broughton [10], Molecular-Atomistic-Ab Initio Dynamics (MAAD) by Broughton, Abraham,
Bernstein and Kaxiras [11], and the Bridging Scale Decomposition (BSD) by Wagner and
Liu [12]. The QC method uses an FE representation of the displacement field over the entire
domain, requiring mesh refinement to the atomic scale in regions of severe deformation. The
strain energy within an element is determined from a single representative atom embedded
in a locally constructed crystallite. At lower levels of deformation, elements may be much
larger than the atomistic length scale, and the lattice is assumed to deform homogeneously as
described by the continuum deformation gradient. Deformation of increasing severity triggers
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mesh refinement until the element size is reduced to the atomic scale. Under these conditions,
the local crystallite spans multiple elements, leading to a non-local calculation of the strain
energy. Consistency between refined and coarse areas is achieved by using finite deformation
elasticity [13] and the Cauchy-Born rule [14, 15] that equates interatomic bond energy to
continuum potential energy in order to develop a non-linear continuum constitutive model
based on the interatomic potential used for atomistic simulation. While the QC approach
allows a blending between atomistic and continuum regions, it possess the disadvantages of a
reliance on adaptive mesh refinement to the atomic scale, a computationally intensive task,
and an inability to eliminate fictitious boundary effects at the local/non-local boundary.

Coarse-Grained Molecular Dynamics consists of replacing the underlying atomic lattice with
nodes representing either individual atoms or a weighted average collection of atoms. The
total energy of the system is calculated from the potential and kinetic energies of the nodes
plus a thermal energy term for the missing degrees of freedom assumed to be at a uniform
temperature. CGMD produces phonon spectra with wavelength dependencies similar to
those for pure atomistics; however, CGMD does possess wavelength-dependent limitations
on energy transmission. Newer versions of CGMD include implementation of a General-
ized Langevin equation (GLE) to dissipate high frequency motions not representable in the
coarser-scaled regions [16] and development of CGMD is ongoing.

More similar to Kohlkoff et al. ’s methodology, the MAAD approach separates the physical
system into distinct MD and FE regions. The system’s total Hamiltonian consists of contri-
butions from each individual region as well as a contribution from ”hand-shaking” between
regions. The FE mesh in this hand-shaking zone is refined to the atomic scale and nodes
occupy positions that atoms would occupy if the atomic region was extended into the FE
domain. Kinetic energy is attributed to both nodes and atoms in the hand-shaking zone,
while away from this zone uniform temperature terms are added for the missing degrees of
freedom, just as for CGMD. MAAD has successfully exhibited smooth and non-reflective
transmission of elastic waves between MD and FE regions, but it does suffer from the same
limitations as CGMD. At the hand-shaking zone, kinetic motion of atoms is transferred into
dynamic motion of nodes. While this allows temperature to be represented as motion in the
continuum region, nodes, unlike atoms, have no physical meaning and are introduced only
as part of the numerical discretization. The deformation solution should be independent of
nodal positions, which is certainly not the case for atomistic simulation and atomic positions.

Most recently, Wagner and Liu [12] have developed the Bridging Scale Decomposition ap-
proach for doing both static and dynamic atomistic-continuum coupling. Their approach
uses a continuous FE mesh for the entire domain with smaller regions of atoms placed in
regions where high fidelity modeling is needed. Atomistic simulation, either MS or MD, is
performed in the usual manner and the FE displacement solution for the overlying mesh
is determined from projection of the atomic displacements using FE shape functions. This
projection is known as the “bridging scale”; it is the portion of the atomistic simulation
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solution that must be subtracted from the total in order to separate the displacements into a
coarse scale, resolvable onto the FE mesh, and a fine scale. For the FE domain that does not
contain underlying atoms, the FE solution is solved for in the usual manner. Coupling be-
tween the two regions is accomplished by the expressions for forces on atoms and nodes and
by using “ghost” atoms that interact with free atoms at the atomic-FE boundary and whose
displacements are determined by interpolation of the FE displacement field. For dynamic
problems, Wagner and Liu have minimized reflections at the atomic-FE boundary by using
GLEs to account for the effect of the missing fine scale degrees of freedom in the isolated
FE mesh. Park et al. [17] have extended the BSD method to 2-dimensional systems by
numerically computing the resulting impedance force that needs to be eliminated in order
to represent the missing fine scale degrees of freedom. They have used this extension to
simulate elastic wave propagation and dynamic crack growth. The BSD approach possesses
many advantages; however, neither [12] nor [17] specify how to partition potential energy
consistently in the overlapping elements that are defined by both free and projected nodes
and contain bonds between free and ghost atoms. This partitioning is the crucial factor in
minimizing fictitious forces within the overlap region, as will be shown.

The coupling methods listed above have been used successfully to simulate materials defor-
mation such as crack-grain boundary interactions, dislocation nucleation from nanoindenta-
tion and the dynamic fracture of silicon. However, the weaknesses of these methods show
that more consideration is needed in developing a coupled atomistic-continuum approach.
Specifically, methods such as FEAt, MAAD and BSD do not provide a rigorous treatment
on how to partition potential energy between atomistic bonds and continuum strain energy
within the overlap regions. The MAAD methodology overlaps atomistics and continuum
within an extremely small region, and arbitrarily combines 1

2
of the energy from the atomic

bonds and 1
2

of the continuum strain energy to arrive at the full Hamiltonian for the coupled
system. For the BSD approach, the overlap region is wider and uses the mechanism of ghost
atoms; however, ghosts are introduced in an ad-hoc manner and the existence of ghosts is
not included in the equilibrium equations. In addition, the authors do not specify either
how to count bonds between free and ghost atoms or how the density of such bonds should
affect contribution of strain energy within overlapping elements. The problem of proper
partitioning of potential energy terms has largely been overlooked, and is often simplified
in many overlaying grid methodologies such as the bridging domain method by Xiao and
Belytschko [18]. In that article, the authors analyzed coupling for a 1-dimensional chain
and used a simple ratio of distance from a point to the boundary of the continuum region
over the total projected length of the atomic/continuum overlap region to scale the atomistic
and continuum contributions to the system energy from material within the overlap region.
It was found that this simple ratio is insufficient to eliminate spurious wave reflection in
2-dimensional systems, and was then modified in an ad-hoc manner. The issue of how to
partition energy within an atomistic-continuum overlap region clearly needs to be properly
addressed in order to maintain the integrity of the two views of material deformation, atom-
istic and continuum. Our goal for this work is to develop a formulation that preserves the
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integrity of the MS and FE methods for separate regions, but adapt each method to partition
potential energy consistently in the overlap region.

In this paper, we describe this formulation and the implementation of an atomistic-to-finite
element coupling method for quasistatic analysis. The formulation assumes a finite element
mesh covers all parts of the computational domain, while regions of interest in the domain
are also covered with an atomistic crystal. This approach was selected because it allows the
domain covered by the crystal to be changed by adding or removing atoms while not requiring
any changes to the finite element mesh. A hyperelastic formulation is used to compute the
stress response of the continuum using a Cauchy-Born constitutive model, which can be
shown to reproduce the response of the crystal exactly for the case of an infinite, defect-free
crystal subject to homogeneous deformations. For the quasistatic case, the coupling approach
is essentially concerned with coupling the displacement fields, with additional issues arising
to avoid fictitious boundary effects for both the atomistic and continuum regions and to
account for overlap between the continuum and underlying crystal. This overlap is treated
by the inclusion of specific cross terms that naturally appear in the equilibrium equations,
and by the use of a correction to the Cauchy-Born rule for elements within the overlap region.
Our approach will be validated through examination of homogeneous deformation and free
surface relaxation in 1, 2, and 3 dimensional crystals .

2.2 Kinematics of quasistatic coupling

Consider a coupled atomistic-continuum system as shown in Figure 2.1. It is assumed that a
finite element mesh covers all parts of the computational domain, while only limited regions
of interest are also covered with an atomic crystal. For example, such a region may be the
volume of material immediately surrounding a crack tip, or the material at the free surface of
a solid that will be mechanically loaded by a nanoindenter. Let the atomistic displacements
in the system be written as

Q̆ =
[
q(α),q(β), . . . ,q(γ)

]T
α, β, . . . , γ ∈ Ă, (2.1)

where q(α) is the displacement of atom (α) and Ă is the set of all atoms. Likewise, let the
nodal displacements be written as

Ŭ =
[
u(a),u(b), . . . ,u(c)

]T
a, b, . . . , c ∈ N̆ , (2.2)

where u(a) is the displacement of node (a) and N̆ is the set of all finite element nodes. In
this paper, lower case Greek symbols are used for atom indices, while lower case Roman
symbols are used for node indices. In order to satisfy boundary conditions for both regions,
the motion of some of the atoms is prescribed by the continuum displacement field. This
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Figure 2.1: Patch of a coupled atomistic-continuum system. The set of finite element nodes
N is shown as open squares �. The set of nodes N̂ is shown as solid squares �. The set of
atoms A is shown as open circles ◦, and the set of atoms Â is shown as solid circles •.

subset of atomistic displacements is denoted by

Q̂ =
[
q(α),q(β), . . . ,q(γ)

]T
α, β, . . . , γ ∈ Â, (2.3)

while the complement which contains the unprescribed atomistic displacements is denoted
by

Q =
[
q(δ),q(ε), . . . ,q(η)

]T
δ, ε, . . . , η ∈ A, (2.4)

where
Â ∪ A = Ă and Â ∩ A = ∅. (2.5)

Similar to the BSD approach found in [12], atoms that belong to the set Â are sometimes
referred to as ghost atoms, while atoms that belong to the set A are sometimes referred to
as free atoms. Analogously, the motion of some finite element nodes is prescribed by the
underlying lattice. These displacements are denoted by

Û =
[
u(a),u(b), . . . ,u(c)

]T
a, b, . . . , c ∈ N̂ , (2.6)

while the unprescribed nodal displacements are denoted by

U =
[
u(m),u(n), . . . ,u(s)

]T
m,n, . . . , s ∈ N , (2.7)

where likewise
N̂ ∪ N = N̆ and N̂ ∩ N = ∅. (2.8)

One can interpolate the continuum displacement field to the location of any atom as

u
(
X(α)

)
=
∑
a∈N̆

N (a)
(
X(α)

)
u(a), (2.9)
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where X(α) is the undeformed position of atom (α) and N (a) is the finite element shape
function associated with node (a). The finite element shape functions typically have compact
support, so the sum in (2.9) involves only the nodes whose support includes X(α). Generally,
one can consider the atomistic and continuum displacement fields to be related as{

Q

Q̂

}
= N

{
U

Û

}
+

{
Q′

0

}
, (2.10)

where

N =

[
NQU NQÛ

NQ̂U NQ̂Û

]
. (2.11)

The sub-matricies of N contain shape functions as defined by the interpolation given in (2.9).
By definition,

NQU = 0, (2.12)

since Q and U are independent. The component of the atomistic displacements

Q′ =
[
q′(α),q′(β), . . . ,q′(γ)

]T
α ∈ A, (2.13)

where q′(α) = q(α) − q̄(α) for α ∈ A and

q̄(α) =
∑
a∈N̂

N (a)
(
X(α)

)
u(a) α ∈ A, (2.14)

is introduced since the finite element shape functions in NQÛ are generally too coarse to
represent the atomistic displacements exactly. It will be the convention in this paper to
display the portion of any quantity S that can be represented at a coarse scale using the
finite element shape functions with the overbar symbol, S̄, while any portion of S that cannot
be represented by the finite element shape functions is deemed “fine scale” and is displayed
using the accent symbol, S′. This is similar to the convention used in [12]. Indeed, much of
the kinematic description presented thus far closely resembles the BSD methodology as given
in [12]. However, in this paper the symbols Q and q strictly refer to the displacements of
atoms and the symbol U only refers to the displacements of finite element nodes. The symbol
u refers to the continuum displacement field as dictated by the finite element solution. It can
be evaluated at points that coincide with atoms u

(
X(α)

)
, nodes u(a), or any point contained

within the finite element mesh u(X).

Since Q and Û may have arbitrary dimensions, where we expect the number of atoms
represented in Q to be larger than the number of finite elements nodes represented in Û,
N−1

QÛ
will not be defined, and so the prescribed nodal displacements Û are chosen to minimize

the error

e = Q′ ·Q′ =
∑
α∈A

q(α) −
∑
a∈N̂

N (a)
(
X(α)

)
u(a)

2

. (2.15)
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The nodal displacements u(a) for a ∈ N̂ are determined by solving∑
α∈A

q(α)N (b)
(
X(α)

)
=
∑
α∈A

∑
a∈N̂

N (a)
(
X(α)

)
u(a)N (b)

(
X(α)

)
b ∈ N̂ , (2.16)

which is the discretized L2 projection of the atomistic displacements onto the finite element
space containing N (a) for a ∈ N̂ using the atomistic positions X(α) for α ∈ A as integration
points. Here, the fine scale part of atomistic displacements Q′ is used only as an error
estimation, and can be used to guide the addition or removal of atoms from the crystal. In
the work by Wagner and Liu [12], this fine scale part is used in conjunction with a bridging
scale formulation to develop a method for dynamic coupling.

The solution to (2.16) can be expressed in matrix notation by first rewriting (2.15) as

e =
[
Q−NQÛÛ

]
·
[
Q−NQÛÛ

]
, (2.17)

which is minimized for
Û = M−1

ÛÛ
NT

QÛ
Q, (2.18)

where
MÛÛ = NT

QÛ
NQÛ. (2.19)

From (2.10) and (2.18), we can express the prescribed atomistic displacements entirely in
terms of the free atomistic and nodal displacements as

Q̂ = NQ̂UU + NQ̂ÛM−1

ÛÛ
NT

QÛ
Q, (2.20)

which shows the prescribed atomistic displacements depend not only on the displacements
of the free finite element nodes, but also on the displacements of the free atoms through the
projection of those displacements onto the overlapping part of the finite element mesh.

Note that MÛÛ has the structure (although not the dimensional units) of the finite element
mass matrix, evaluated using the atomistic coordinates as integration points. Immediately,
we recognize that this matrix will be rank deficient if an insufficient number of atoms lie
in the support of every node A ∈ N̂ . This number of atoms will depend on the element
topology. One can propose conditions for the stability of the projection. First, it is necessary
there be at least as many atoms in A as there are nodes in N̂ ; however, this is not sufficient
to insure the stability of the projection. The number of atoms in the supports of the nodes
in N̂ can be considered on an element-by-element basis. For instance, the mass matrix
for a bilinear quad requires four integration points to avoid rank deficiency, a sufficient
but not necessary condition to avoid rank deficiency of the assembled matrix. Combined,
the necessary and sufficient conditions ensure the stability of the projection. The cost of
the projection can be reduced by using a diagonal, or “lumped”, approximation to the
mass matrix. With this projection matrix, the nodal displacements will not be optimal
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for minimizing the error (2.15), so less of the atomistic displacement information will be
transferred to the nodes and more will remain as error. Moreover, the lumped approximation
does not allow linearly varying fields to be projected explicitly, a condition that will be
required in the subsequent formulation.

2.3 Coupled equilibrium equations

Equations (2.18) and (2.20) provide us the means to express the displacements of both
projected nodes Û and interpolated atoms Q̂ as functions of the unprescribed atomic Q
and nodal U displacements. To solve for these unprescribed displacements, we must develop
equilibrium equations that are derived by formulating the total potential energy of the entire
coupled atomistic-continuum system. We express the potential energy of the coupled system
as

Π(Q,U) = ΠQ + ΠU − FQ ·Q− FU ·U, (2.21)

where ΠQ represents the potential energy in the bonds of the crystal, ΠU is the strain
energy density integrated over the continuum, and FQ and FU are external forces acting on
the atoms and finite element nodes, respectively. To include the structure of the coupling
between the atomistic and continuum displacement fields from (2.18) and (2.20), we rewrite
the contributions to the total potential as

ΠQ = ΠQ(Q,U) = ΠQ

(
Q, Q̂(Q,U)

)
, (2.22)

ΠU = ΠU(Q,U) = ΠU

(
U, Û(Q)

)
. (2.23)

Incorporating the coupling relationships directly in the total potential insures that the cou-
pled system will also remain conservative if a hyperelastic formulation is used for calculating
the continuum response. The equations of static equilibrium are derived from total potential
as

RQ =
∂ΠQ

∂Q
+
∂ΠQ

∂Q̂

∂Q̂

∂Q
+
∂ΠU

∂Û

∂Û

∂Q
− FQ = 0, (2.24)

RU =
∂ΠU

∂U
+
∂ΠQ

∂Q̂

∂Q̂

∂U
− FU = 0. (2.25)

Using (2.18) and (2.20), the equilibrium equations can be expressed as

RQ =
∂ΠQ

∂Q
+ RÛNT

QÛ
− FQ = 0, (2.26)

RU =
∂ΠU

∂U
+
∂ΠQ

∂Q̂
NQ̂U − FU = 0, (2.27)
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where

RÛ =

[
∂ΠU

∂Û
+
∂ΠQ

∂Q̂
NQ̂Û

]
M−1

ÛÛ
. (2.28)

It is important to note the similarity between the internal force portion of (2.27) and the
term within the square brackets in (2.28). These terms represent the net force on free and
prescribed nodes, respectively, exerted by free nodes both directly, as a result of element-level
forces, and indirectly, as a result of kinematic coupling to ghost atoms.

For the analyses presented in this paper, we used a preconditioned conjugate gradient al-
gorithm [19] to solve equations (2.26) and (2.27). Alternatively, one could use a Newton
solution scheme to derive the general procedure for solving the coupled system of equations,
though some approximations to the procedure will be introduced later to make the solution
tractable for larger systems. Linearizing the equilibrium equations about the Q and U yields

RQ(Q,U) +
∂RQ

∂Q
δQ +

∂RQ

∂U
δU = 0, (2.29)

RU(Q,U) +
∂RU

∂Q
δQ +

∂RU

∂U
δU = 0, (2.30)

which may be written in matrix form as[
KQQ KQU

KUQ KUU

]{
δQ
δU

}
= −

{
RQ

RU

}
, (2.31)

where the components of the symmetric tangent matrix are

KQQ =
∂2ΠQ

∂Q∂Q
+ JQQ̂

∂2ΠQ

∂Q̂∂Q
+

∂2ΠQ

∂Q∂Q̂
JT

QQ̂
+ JQQ̂

∂2ΠQ

∂Q̂∂Q̂
JT

QQ̂
+ LQÛ

∂2ΠU

∂Û∂Û
LT

QÛ
, (2.32)

KQU = KT
UQ =

∂2ΠQ

∂Q∂Q̂
NQ̂U + JQQ̂

∂2ΠQ

∂Q̂∂Q̂
NQ̂U + LQÛ

∂2ΠU

∂Û∂U
, (2.33)

KUU =
∂2ΠU

∂U∂U
+ NT

Q̂U

∂2ΠQ

∂Q̂∂Q̂
NQ̂U, (2.34)

and

LQÛ = NQÛM−1

ÛÛ
. (2.35)

JQQ̂ = LQÛNT
Q̂Û

(2.36)

The solution of (2.31) could then be determined either monolithically or by staggering cal-
culation of the updates δQ and δU during the iteration i as

δQ(i) = −
[
K

(i)
QQ

]−1 [
R

(i)
Q + K

(i)
QU δU

(i−1)
]
, (2.37)

δU(i) = −
[
K

(i+ 1
2
)

UU

]−1 [
R

(i+ 1
2
)

U + K
(i+ 1

2
)

UQ δQ(i)
]
, (2.38)
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where state i is defined by
{
Q(i),U(i)

}
, while the state i+ 1

2
is defined by

{
Q(i) + δQ(i),U(i)

}
.

The numerical solution of (2.37) and (2.38) each involve the solution of a linear system. For
atomistic calculations, this linear solution is generally not tractable due to the size and
bandwidth of KQQ. Typically, a nonlinear conjugate gradient algorithm is used, employing
some approximation to K−1

QQ as a preconditioner. The matrix M−1

ÛÛ
is also not generally

available and could be replaced by a diagonal approximation here, as well as in the projection.

Due to these approximations, it may not be worthwhile to calculate K
(i+ 1

2
)

UQ in (2.38), and

acceptable rates of convergence may be preserved by substitution of K
(i)T
QU . The effects of

these approximations on the convergence rate and computational cost of the procedure need
to be assessed with some sample calculations.

2.4 Projection using moving least squares

One of the principal drawbacks with the L2 projection is calculation of M−1

ÛÛ
, both effectively

in the form of the solution of a linear system in evaluating the residual as given by (2.28)
and explicitly as it appears in (2.32) and (2.33) of the tangent matrix through the expression
for LQÛ given in (2.35). An approximation to M−1

ÛÛ
can be used for the tangent stiffness,

but approximations to the linear solution (2.28) required for evaluation of the residual will
directly affect the accuracy of the solution. Evaluation of M−1

ÛÛ
becomes especially prob-

lematic with the application of the coupling scheme to dynamic problems when the residual
will need to be evaluated a very large number of times.

Of course, the discretized L2 projection (2.16) is not the only option for transferring the
atomistic displacements to the finite element nodes. Rather than employing a global least
squares approach, we can make use of a local, or so-called moving least squares (MLS),
method to project atomistic information to the finite element nodes. The interpolants devel-
oped for the reproducing kernel particle method (RKPM) [20] possess a number of properties
that make them well-suited for use in a coupling scheme. Among these properties are that
the interpolants can be constructed to reproduce any desired function exactly. In partic-
ular, we will show that the interpolants must be able to reproduce a linear displacement
field exactly in order for the coupled method to solve homogeneous deformations exactly.
A number of additional useful properties of the interpolants is derived from the connection
between RKPM and wavelets. This connection lends the interpretation of interpolating dis-
placements from the atoms to the finite element nodes as a low pass filtering operation with
a well-characterized spectral behavior. Moreover, the wavelet formalism furnishes a method
wherein a series of these filters can be constructed to produce a heirarchical decomposition
of the atomistic field into components possessing different scales of information.

RKPM belongs to a class of methods for which the approximation, or “image”, of a signal is
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given by a kernel expression. In the transfer of displacements from the atoms to the nodes,
the atomic information serves as the signal while the nodal information is the image. Without
loss of generality, we can consider the expression for the approximation in one dimension

uRε(x) =

+∞∫
−∞

φε(x− y) u(y) dy, (2.39)

where φε is alternately called a weight, kernel, or smoothing function. From the analogy to
signal processing, φε may be viewed as a customizable low pass filter between the original
signal, or data, u(y) and its reproduced image. This function is positive, even, and has
compact support characterized by the dilation parameter ε. Liu and Chen[21] improved
the accuracy of the method by modifying the window function with a correction to yield a
reproducing condition as

uRε(x) =

+∞∫
−∞

φε(x− y) u(y) dy, (2.40)

where the modified window function

φε(x− y) = C(x;x− y) φε(x− y) (2.41)

incorporates the polynomial

C(x;x− y) = b0(x) + b1(x) (x− y) + b2(x) (x− y)2 + . . .+ bm(x) (x− y)m (2.42)

which ensures that the approximation can exactly represent polynomials of order m. In
general, we may express the correction function as

C(x;x− y) = b(x) · P(x− y) (2.43)

where P is a basis of polynomials that possess the desired degree of completeness and b(x)
is an vector of unknown coefficients determined from the reproducing condition (2.40). The
requirement that each member of the basis be reproduced follows from (2.40) as

P(0) =

+∞∫
−∞

b(x) · P(x− y) φε(x− y) P(x− y) dy. (2.44)

The vector of coefficients follows as

b(x) = M−1
ε (x) P(0) , (2.45)

where

Mε(x) =

+∞∫
−∞

P(x− y)⊗ P(x− y) φε(x− y) dy (2.46)
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is known as the moment matrix. Using the result from (2.45), the reproducing condi-
tion (2.40) can be written as

uRε(x) =

+∞∫
−∞

b(x) · P(x− y)φε(x− y) u(y) dy. (2.47)

First and higher order gradients of the field representation follow from (2.45)–(2.47) through
simple differentiation. For clarity, we present the expressions for derivatives. We note
that these derivatives may be evaluated exactly though some early work in the MLS field
advocated approximate expressions for these derivatives[22]. The gradient of the field may
be expressed as

∂uRε(x)

∂x
=

+∞∫
−∞

u(y)⊗
[
∂b(x)

∂x
P(x− y) φε(x− y) +

b(x)
∂P(x− y)

∂x
φε(x− y) +

b(x) · P(x− y)
∂φε(x− y)

∂x

]
dy,

(2.48)

where the gradient of the coefficient vector

∂b(x)

∂x
= −M−1

ε (x)
∂Mε(x)

∂x
b(x) (2.49)

follows from (2.45) making use of the relation

∂ [M−1
ε ]ij

∂xk
= −

[
M−1

ε

]
ir

∂ [Mε]rs
∂xk

[
M−1

ε

]
sj
. (2.50)

Higher-order gradients may be calculated by further differentiation of (2.48)–(2.50). Notably,
the expressions for the representation of the unknown field variables are general for an
arbitrary number of field and spatial dimensions, including the expressions for the first and
higher order gradients of the field.

In evaluating the representations for the nodal field from the atomistic information, we dis-
cretize the integrals in the previous expressions. The discrete reproducing condition follows
from (2.47) as

u(X) =

Np∑
β=1

b(X) · P
(
X−X(β)

)
φε
(
X−X(β)

)
q(β) ∆V (β), (2.51)

where Np is the number of sampling atoms under consideration, and X(β) and ∆V (β) are the
coordinates and integration weight (volume) associated with atom β, respectively. From (2.51),
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we can identify the RKPM nodal shape functions as

u(a) =

Np∑
β=1

Ñ (β)
(
X(a)

)
q(β), (2.52)

where
Ñ (β)(X) = b(X) · P

(
X−X(β)

)
φε
(
X−X(β)

)
∆V (β), (2.53)

a ∈ N̂ and β ∈ A.

With these interpolants, we can express the prescribed continuum and atomic displacements
respectively as

Û = ÑÛQQ, (2.54)

Q̂ = NQ̂UU + NQ̂ÛÑÛQQ, (2.55)

where ÑÛQ is the matrix of RKPM shape functions defined by the expansion (2.52). Us-
ing (2.54) and (2.55), the equilibrium equations can be expressed as

RQ =
∂ΠQ

∂Q
+

[
∂ΠU

∂Û
+
∂ΠQ

∂Q̂
NQ̂Û

]
ÑÛQ − FQ = 0, (2.56)

RU =
∂ΠU

∂U
+
∂ΠQ

∂Q̂
NQ̂U − FU = 0, (2.57)

which yield the components of the tangent matrix

KQQ =
∂2ΠQ

∂Q∂Q
+ J̃QQ̂

∂2ΠQ

∂Q̂∂Q
+

∂2ΠQ

∂Q∂Q̂
J̃T

QQ̂
+ J̃QQ̂

∂2ΠQ

∂Q̂∂Q̂
J̃T

QQ̂
+ ÑT

ÛQ

∂2ΠU

∂Û∂Û
ÑÛQ, (2.58)

KQU = KT
UQ =

∂2ΠQ

∂Q∂Q̂
NQ̂U + J̃QQ̂

∂2ΠQ

∂Q̂∂Q̂
NQ̂U + ÑT

ÛQ

∂2ΠU

∂Û∂U
, (2.59)

KUU =
∂2ΠU

∂U∂U
+ NT

Q̂U

∂2ΠQ

∂Q̂∂Q̂
NQ̂U. (2.60)

where
J̃QQ̂ = ÑT

ÛQ
NT

Q̂Û
. (2.61)

The choice of projection/interpolation method, L2 or MLS, combined with the designation
of atoms being free or ghost, determines whether nodes are classified as free or prescribed.
For example, we consider the case of an overlap element that contains both ghost and free
atoms and we assume that the relative size of the element is sufficiently large to contain
many atoms. Using the L2 method, we note that if the element contains any free atoms, all
nodes that bound that element must be prescribed in order to preserve the orthogonality of
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the shape functions. This is true even for situations in which very few of the atoms have
been designated as free atoms, and these free atoms are very distant from the node under
consideration. For such nodes, the resulting projection becomes overly sensitive to gradients
in the atomistic displacements at the crystal edge. However, a MLS method would only
require free atoms within a limited-sized support region surrounding the prescribed node. If
the free atoms are too far away, and an insufficient density of free atoms exists in the vicinity
of the node, the node can be designated as free. It is important to note that the designation
of the atoms as free or ghost and their distribution with regard to the underlying mesh
dictates which projection method would be best suited and what the resulting designation
of the nodes should be. Hence, atomistic character drives nodal character.

2.5 Correction to the Cauchy-Born rule in the overlap

region

The previous sections describe how atomistic and continuum degrees of freedom are coupled;
however, the specific form of the total potential has not yet been given. Naturally, atomistic
contribution to the potential energy is computed from a sum of bond energies in the crystal.
The continuum strain energy is computed using the Cauchy-Born rule [14, 15], which accu-
rately describes the long wavelength behavior of the lattice. A critical detail to address is
how one corrects for the overlap of the continuum and the underlying crystal. The proposed
coupling method covers the entire domain with finite elements, but prescribes the motion
of select portions of the mesh using an underlying atomistic crystal. Around the edges of
the embedded crystals, there will be some region over which there is overlap between the
bonds between free and ghost atoms and finite elements containing nodes with both free
and prescribed displacements. In this overlap region, the weighting of the contributions to
potential energy from the bonds and finite elements needs to be determined in such a way
that the total energy for the coupled system is consistent with the result one would obtain
from a pure atomistic system, regardless of the location and orientation of the embedded
crystals with respect to the overlaying finite element mesh.

We can determine immediately that the weighting of the bonds between free and ghost
atoms must always be 1 to preserve the energy per atom among free atoms, while the
weighting of contributions from elements containing both active nodes and ghost atoms
must be compensated to maintain the correct strain energy density. An initial attempt
to quantify this weighting factor can be made by considering elements with uniform strain
energy density, and by expressing the total strain energy in the continuum as

ΠU =
Ne∑
e

weΦeVe, (2.62)
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where Φe and Ve are the strain energy density and volume, respectively, of element e and all
elements e ∈ Ne contribute energy according to a weighting factor we. For elements with no
underlying atomic lattice, we = 1, while for elements that are bounded only by nodes with
displacements projected from the underlying atomic lattice, we = 0. For overlap elements
that contain ghost atoms and are bounded by both free and prescribed nodes, 0 ≤ we ≤ 1.
Note that the problem of finding these weights is underdetermined if one only considers the
total energy of the system. That is, any number of combinations of weights can be found that
reproduce the same total energy for the coupled system under homogeneous deformations.
However, only one combination maintains the homogeneously deformed state as the lowest
energy configuration. For simple one-dimensional examples, one can deduce the weights we.
For the case of pair interactions, the weighing for these elements, assuming homogeneous
stretching over the entire system, is

we = 1−

∑
αβ

r̂
(αβ)
e ϕ(αβ)

VeΦe

, (2.63)

where r̂
(αβ)
e is the fraction of the bond between atoms α and β that lies within the element

and ϕ(αβ) is bond energy. Given that Φe is calculated for the continuum using the same bond
potentials as for the crystal subject to the Cauchy-Born rule, it may be possible to express
the weight we in a way that is independent of the state of deformation. That is, we must
be expressed strictly in terms of the geometric parameters r̂

(αβ)
e and Ve, independent of Φe

and ϕ(αβ); otherwise, the weighting factor would appear to be a function of the deformation
even for the case of homogeneous deformation. If one uses elements with dimensions that
are multiples of the crystal’s unit cell, elements completely covering the underlying crystal
have we = 0 since the strain energy density following the Cauchy-Born rule dictates

Φe =
1

Ve

∑
αβ

ϕ(αβ). (2.64)

For the extension to multiple dimensions and nonuniform strain energy density within el-
ements, a general approach for introducing weighting into the total potential must be de-
veloped as well as a method for determining the optimal weighting, where optimality is
associated with maintaining the homogeneously deformed state as the lowest energy config-
uration. The approach for introducing weighting into the total potential follows directly from
the Cauchy-Born rule. A generalized form of the Cauchy-Born rule for particles interacting
with pair potentials was introduced by Gao and Klein in their Virtual Internal Bond model
(VIB) [23, 24]. The VIB form of the strain energy density function is

Φ =
1

V0

∫
V ∗
0

U(r)DdV, (2.65)
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where V0 is the undeformed representative volume, r is the deformed virtual bond length,
U(r) is the bonding potential, D is the volumetric bond density function, and V ∗

0 is the inte-
gration volume defined by the range of influence of U . Depending on the range of influence
of the bond potential function, the integration volume V ∗

0 may not correspond with the rep-
resentative volume V0. This difference may be illustrated for crystalline materials whenever
the bond potentials extend beyond the lattice unit cell. The precise definition of D(R, θ, φ)
is that D(R, θ, φ)R2 sin θ dR dθ dφ represents the number of bonds in the undeformed solid
with length between R and R + dR and orientation between {θ, φ} and {θ + dθ, φ+ dφ}.
The case

D(R, θ, φ) = δD(R−R0)Dθφ(θ, φ) (2.66)

corresponds to a network of identical bonds of undeformed length R0. The Dirac delta func-
tion is denoted here with δD. A crystal lattice such as face-centered cubic with interactions
limited to only first nearest neighbors can be represented as

D(R, θ, φ) = D0 δD(R−R0)
M∑
m=1

N∑
n=1

1

sin θ
δD(θ − θm) δD(φ− φn) , (2.67)

where D0 is a scaling constant and θm and φn are the orientation angles for the neighoring
atoms. Each bond in D(R, θ, φ) is representative of all bonds in the crystal with the same
orientation and length.

For the coupled system, the bond density function needs to be modified as

D(R, θ, φ,X) = D0 δD(R−R0)
M∑
m=1

N∑
n=1

1

sin θ
δD(θ − θm) δD(φ− φn) ρmn(X) , (2.68)

where the spatially varying 0 ≤ ρmn(X) ≤ 1 is introduced because the energy contained
by bonds between atoms that are explicitly represented, such as between free atoms and
other free atoms or free atoms and ghost atoms, is already contributing to ΠQ. Hence, that
energy does not need to be accounted for in ΠU. In regions of the domain superposed by a
complete underlying crystal, ρmn(X) = 0 since all bonds are represented at the density of the
crystal. Conversely, ρmn(X) = 1 over the parts of the domain without any underlying crystal
since the Cauchy-Born strain energy density must account for all of the potential energy. In
general, the strain energy for a crystal subject to pair interactions can be expressed as the
sum

Φ(C,X) =
1

V0

nb∑
i

ρ(i)(X)ϕ
(
r(i)
)
, (2.69)

where ϕ is the interaction potential,

r(i) =
√

R(i) ·CR(i), C = FTF, (2.70)

R(i) is the vector representing bond (i) in the undeformed configuration and F is the defor-
mation gradient. In this paper, (i) refers to not just a single bond, but rather all bonds of
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the same type, i.e. having the same orientation and length in the reference configuration.
Hence, nb is the total number of bond types.

With this generalization of the Cauchy-Born, we decompose the contribution to the total
energy from the continuum (2.23) as

ΠU =

nb∑
i

[ΠU](i) (2.71)

where
[ΠU](i) = [Π′

U](i) +
[
Π̃U

]
(i)

+
[
ΠU

]
(i)
. (2.72)

[Π′
U](i) represents the contribution over the domain where ρ(i) = 0, which in the undeformed

configuration will be denoted Ω′
0(i),

[
Π̃U

]
(i)

represents the contribution over the domain

where 0 < ρ(i) < 1, which in the undeformed configuration will be denoted Ω̃0(i), and[
ΠU

]
(i)

represents the contribution over the domain where ρ(i) = 1, which in the undeformed

configuration will be denoted Ω0(i). Clearly, [Π′
U](i) = 0. However, for completeness the

decomposed domain in the undeformed configuration is defined as

Ω0 = Ω′
0(i) ∪ Ω̃0(i) ∪ Ω0(i), (2.73)

where
Ω′

0(i) ∩ Ω̃0(i) = ∅ Ω̃0(i) ∩ Ω0(i) = ∅ Ω0(i) ∩ Ω′
0(i) = ∅. (2.74)

Notice in (2.73) that while each of the decomposed domain sub-regions depends on the bond
(i) being considered, the total domain Ω0 refers to the entire volume of the system and no
bond designation is necessary. The contribution to the strain energy from the bonds of type
(i) represented in the continuum is given by[

Π̃U

]
(i)

=
1

V0

∫
eΩ0(i)

ρ(i)(X)ϕ
(
r(i)
)
dΩ (2.75)

[
ΠU

]
(i)

=
1

V0

∫
Ω0(i)

ϕ
(
r(i)
)
dΩ. (2.76)

In (2.75), the spatially varying bond density is introduced to account for the overlap between
the continuum domain and the underlying crystal. We must still define how these bond den-
sities are determined. For bonds r(αβ) with atoms α and β both within given volume, such
as a finite element, the contribution of r(αβ) to the bond density of the volume is clear;
however, if either α or β lies outside the volume, the fraction of the bond to attribute to this
volume is not clear. Considering fractions of the bond length is an arbitrary construction
that is only defined unambiguously in 1-dimensional systems. However, in multiple dimen-
sions bond fractions may lie outside the elements containing either α or β, as illustrated
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α

β

B

Figure 2.2: Bond between atoms near element boundaries.

in Figure 2.2, even when the atomic spacing is much smaller than the element dimensions.
In Figure 2.2, the bond between atoms α and β is shown to overlap an element bounded
by node B. However, it is unclear whether this bond should exert forces on node B since
neither atom α nor atom β lie within that element. For multi-body interactions, the division
of the bond energy in space is even more difficult to define unambiguously.

To avoid the ambiguity associated with partitioning a bond, we determine the bond densities
in (2.75) based on a consistency condition. The coupled system should produce homogeneous
deformations given the appropriate boundary conditions. This concept is analogous to the
”patch test” for assessing the convergence of the FE method [25]. One could consider the
unstressed system, but in general we would like to satisfy this consistency condition for any
homogeneous state of deformation which the atomistic or continuum system would produce
individually. For the atoms α ∈ A which are not located near surfaces or other crystal defects,
this condition is satisfied automatically. These atoms only interact with other atoms in A or
with the ghost atoms in Â which have been introduced to provide a complete surrounding.
For nodes whose support lies entirely in Ω0(i), the homogeneous solution will be reproduced

as long as the element formulation satifies the patch test. However, for nodes a ∈ N̆ whose
support intersects Ω̃0(i), this consistency condition is not guaranteed. Let Ω

(a)
0 denote the

support of node a in the undeformed configuration, as illustrated in Figure 2.3. We define
Ñ(i) as the subset of N̆ containing all nodes satisfying

Ω
(a)
0 ∩ Ω̃0(i) ≡ Ω̃

(a)
0(i) 6= ∅. (2.77)

We begin the derivation of this consistency condition by considering a general state of ho-
mogeneous deformation, which may be expressed as

u(X, t) = c(t) + Q(t)F∗X, (2.78)
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a

Figure 2.3: The support of node a ∈ Ñ(i).

where c(t) is a rigid body translation, Q(t) is a rigid body rotation, and F∗ is the homo-
geneous deformation gradient over the entire domain. Since all contributions to the total
potential are frame invariant, we can consider the following state of homogeneous deforma-
tion

x = F∗X and u = (F∗ − 1)X (2.79)

without loss of generality. In determining the total internal force on a node in Ñ(i), we find

three types of contributions. There are continuum contributions from
[
Π̃U

]
(i)

and
[
ΠU

]
(i)

,

and a third contribution from bonds between free atoms in either Ω′
0(i) or Ω̃

(a)
0(i) and ghost

atoms in Ω̃
(a)
0(i), represented by the terms

∂ΠQ

∂Q̂
NQ̂U in (2.27) and

∂ΠQ

∂Q̂
NQ̂Û in (2.28).

First, we consider the atomistic contribution. The potential energy in the bonds is given by

ΠQ =
∑
α

∑
β 6=α

ϕ
(
r(αβ)

)
. (2.80)

The atomistic contribution to the force on a node in Ñ(i) is given by

f
(a)
Q = − ∂ΠQ

∂u(a)
a ∈ Ñ(i). (2.81)

For this analysis, we examine the total force on node (a) which includes contributions from
all bond types i = 1, 2, . . . , nb as long as there is at least a single bond type for which
a ∈ Ñ(i). We shall show later that for those bonds for which a /∈ Ñ(i), the expression for

total force evaluates to zero. The only bonds contributing to f
(a)
Q are those between free

atom (α), which resides in either Ω′
0(i) or Ω̃

(a)
0(i), and ghost atom (β), which resides in Ω̃

(a)
0(i).
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The bond vector may be expressed as

r(αβ) = x(β) − x(α)

=
[
X(β) + u

(
X(β)

)]
−
[
X(α) + q(α)

]
= X(β) +

∑
a∈ eN(i)

N (a)
(
X(β)

)
u(a) −X(α) − q(α),

=
∑
a∈ eN(i)

N (a)
(
X(β)

)
u(a) − q(α) + R(αβ),

(2.82)

and
∂r(αβ)

∂u(a)
= N (a)

(
X(β)

)
1. (2.83)

Using this result, f
(a)
Q (2.81) may be expanded as

f
(a)
Q = −F∗

∑
α∈A

∑
β:X(β)∈eΩ(a)

0

ϕ′
(
r(αβ)

)
r(αβ)

R(αβ)N (a)
(
X(β)

)
. (2.84)

The continuum contribution over Ω0(i) follows from

f̄
(a)
U = −

nb∑
i

∂ΠU(i)

∂u(a)
= −

nb∑
i

∂

∂u(a)

∫
Ω

(a)
0(i)

ΦdΩ = −
nb∑
i

∫
Ω

(a)
0(i)

P :
∂F

∂u(a)
dΩ, (2.85)

where Ω
(a)

0(i) ≡ Ω0(i) ∩ Ω
(a)
0 and P = ∂Φ

∂F
is the non-symmetric, first Piola-Kirchhoff stress.

From Φ given by (2.69), the Piola-Kirchhoff stress is

P = F
1

V0

nb∑
i

ϕ′
(
r(i)
)

r(i)
R(i) ⊗R(i), (2.86)

using the relations

r(i) = F∗R(i) and
∂r(i)
∂F

=
1

r(i)
r(i) ⊗R(i). (2.87)

Using
∂FiJ

∂u
(a)
k

=
∂N (a)

∂XJ

δik, (2.88)

we can expand f̄
(a)
U as

f̄
(a)
U = −F∗ 1

V0

nb∑
i

∫
Ω

(a)
0(i)

[
ϕ′ (r)

r
R⊗R

]
(i)

∂N (a)

∂X
dΩ. (2.89)
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The contribution from
[
Π̃U

]
(i)

differs from (2.89) only by the introduction of the bond

density function ρ(i)(X) for i = 1, . . . , nb and the integration domain, and is given by

f̃
(a)
U = −

nb∑
i

∂Π̃U(i)

∂u(a)
= −F∗ 1

V0

nb∑
i

∫
eΩ(a)

0(i)

[
ϕ′ (r) ρ

r
R⊗R

]
(i)

∂N (a)

∂X
dΩ. (2.90)

Many terms in the integrands of (2.89) and (2.90) do not vary spatially if the body is in a
state of homogeneous deformation. Therefore, we can rewrite these expressions as

f̄
(a)
U = −F∗ 1

V0

nb∑
i

[
ϕ′ (r)

r
R⊗R

]
(i)

∫
Ω

(a)
0(i)

∂N (a)

∂X
dΩ (2.91)

and

f̃
(a)
U = −F∗ 1

V0

nb∑
i

[
ϕ′ (r)

r
R⊗R

]
(i)

∫
eΩ(a)

0(i)

ρ(i)
∂N (a)

∂X
dΩ. (2.92)

Since the Cauchy-Born expressions for the continuum response were selected to represent the
crystal structure of the underlying atomistic system, the bonds in (2.84) may be collected
into the same groups by orientation and length as those given by the bond types i = 1, . . . , nb
in (2.91) and (2.92). Using this observation, f

(a)
Q from (2.84) may be expressed as

f
(a)
Q = −F∗

nb∑
i

ϕ′ (r)r
R
∑

β:X(β)∈eΩ(a)
0 ,

R(αβ)=R

N (a)
(
X(β)

)


(i)

(2.93)

Collecting these expressions for the force on a node in Ñ(i), we find

f (a) = f
(a)
Q + f̄

(a)
U + f̃

(a)
U = −F∗

nb∑
i

[
ϕ′ (r)

r

]
(i)

f
(a)
(i) , (2.94)

where

f
(a)
(i) = R(i)

∑
β:X(β)∈eΩ(a)

0(i)
,

R(αβ)=R(i)

N (a)
(
X(β)

)
+

1

V0

[R⊗R](i)

 ∫
Ω

(a)
0(i)

∂N (a)

∂X
dΩ +

∫
eΩ(a)

0(i)

ρ(i)
∂N (a)

∂X
dΩ

 . (2.95)

Note that f
(a)
(i) in (2.95) has units of length, and thus can be directly interpreted as bond

overlap. Also, it is independent of the homogeneous state of deformation, depending only
on the geometry of the undeformed configuration.
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Earlier, we mentioned that (2.95) is evaluated for any node (a) such that a ∈ Ñ(i) for at least

one bond type (i). For any bond type (i) for which a /∈ Ñ(i), it can be shown that (2.95)

evaluates to zero. For such atoms, Ω̃
(a)
0(i) = ∅ and Ω

(a)

0(i) = Ω
(a)
0 . Thus, (2.95) simplifies to

f
(a)
(i) =

1

V0

[R⊗R](i)

∫
Ω

(a)
0

∂N (a)

∂X
dΩ. (2.96)

The integral of the gradient of the nodal shape function over the support of the zone is∫
Ω

(a)
0

∂N (a)

∂X
dΩ =

∮
∂Ω

(a)
0

N (a)NdΓ = 0, (2.97)

where N is the outward normal over ∂Ω
(a)
0 , the boundary of the support of node (a). We

can combine (2.96) and (2.97) to produce f
(a)
(i) = 0.

If we define the quantity R̃ to be

R̃ =
[
f (a)
]T
a ∈ Ñ(i), (2.98)

then in the absence of external loads being imposed directly on the nodes in Ñ(i), we would

expect
∣∣∣R̃∣∣∣ = 0 for all states of deformation. For the case of homogeneous deformation,

this amounts to enforcing the condition f
(a)
(i) = 0 for all i = 1, . . . , nb and a ∈ Ñ(i) , which

implies (2.95) provides a means for defining the discretized values of ρ(i) optimally. In most
situations, the discretization of the bond density ρ(i) may be insufficient to capture the

local fluctuation in the bond density required to produce f
(a)
(i) = 0 exactly. Therefore we

approximate this condition by introducing

P(i) =
1

2

∑
a∈ eNi

f
(a)
(i) · f

(a)
(i) . (2.99)

and then select ρ(i) that satisfies

min
ρ(i)

[
P(i)

]
, (2.100)

where ρ(i) represents the vector of values for all FE integration points at which we are

evaluating ρ(i)(X). The expression for f
(a)
(i) given in (2.95) suggests an alternative form for

the quantity P(i) requiring a simpler calculation of R(i) · f (a)
(i) in place of f

(a)
(i) · f

(a)
(i) since f

(a)
(i) is

collinear with R(i),

P(i) =
1

2

∑
a∈ eNi

(
R(i) · f (a)

(i)

)2

. (2.101)

41



CHAPTER 2. COUPLED, ATOMISTIC-CONTINUUM SIMULATION USING
ARBITRARY OVERLAPPING DOMAINS

The number of independent equations we can extract from P(i) is determined by the number

of spatial dimensions and the number of nodes in Ñ(i). We cannot uniquely determine ρ(i)

if it possesses more unknowns. If we introduce unknowns at the integration points used
for the finite element calculations, the number of unknowns is determined by the number
of elements covering Ω̃0(i) and the number of integration points per element. Clearly, the
number of unknowns may generally exceed the number of independent equations. Therefore,
it may be necessary to introduce an additional term into either (2.99) or (2.101) to ensure
the solution of ρ(i). One possible addition is a term that tends to smooth the bond density
distribution, resulting in the modified function

P ∗
(i) =

1

2

∑
a∈ eNi

(
R(i) · f (a)

(i)

)2

+
1

2
κ

∫
eΩ0(i)

∇Xρ(i) · ∇Xρ(i)dΩ, (2.102)

and ρ(i) satisfies

min
ρ(i)

[
P ∗

(i)

]
, (2.103)

where κ is a parameter used to adjust the influence of the gradient regularization. This
method is known as Tikhonov regularization and is commonly found in the literature [26].
The stability of determining ρ(i) for general cases of overlap between the crystal and mesh
needs to be investigated further.

In summary, the continuum strain energy for overlap elements is calculated using a modifica-
tion of the Cauchy-Born rule that includes bond density correction functions, ρ(i)(X). These
functions are determined by solving the minimization problems given in equations (2.102)

and (2.103) using the expression for f
(a)
(i) given in equation (2.95). For our analyses, we use a

Newton solution scheme to solve for the vector of values ρ(i) subject to the constraint that
for each value, 0 ≤ ρ(i) ≤ 1.

2.6 Implications of the overlap correction

Examination of (2.95) allows us to quantify the magnitude of the fictitious force on nodes

in Ñ(i) if no correction is made to the Cauchy-Born rule. In this case, the uncorrected bond
density function is ρ(i)(X) = 1 for all i = 1, . . . , nb, representing full density for all bond
families nb. Using (2.97) with the uncorrected bond density function, we find

f
(a)
(i) = R(i)

∑
β:X(β)∈eΩ(a)

0(i)
,

R(αβ)=R(i)

N (a)
(
X(β)

)
. (2.104)
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From (2.94) and (2.104), we can determine the total fictitious force acting on nodes that
bound the overlap region as a result of uncorrected overlap between the continuum and the
underlying crystal.

Interpretation of the expression given in (2.95) is difficult given that integration of the

shape function gradient occurs over two distinct domains, Ω
(a)

0(i) and Ω̃
(a)
0(i). However, detailed

examination enables us to conclude that the total force on node (a) from bond type (i) comes
from a combination of forces exerted on ghost atoms within the overlap element from free
atoms and the force on the node exerted by the continuum to compensate for the bonds that
are not present. At equilibrium, f

(a)
(i) = 0. It is interesting to note that this result can also

be obtained naively by omitting cross terms between free nodes and ghost atoms,

R(i)

∑
β:X(β)∈eΩ(a)

0(i)
,

R(αβ)=R(i)

N (a)
(
X(β)

)
→ 0, (2.105)

and by using the uncorrected Cauchy-Born rule (ρ(i) = 1) within the overlap elements,

1

V0

[R⊗R](i)

 ∫
Ω

(a)
0(i)

∂N (a)

∂X
dΩ +

∫
eΩ(a)

0(i)

ρ(i)
∂N (a)

∂X
dΩ

→ 1

V0

[R⊗R](i)

∫
Ω

(a)
0

∂N (a)

∂X
dΩ = 0.

(2.106)
In effect, decoupling the atomistic and continuum analyses is accomplished by eliminating
the influence of ghost atoms on free nodes that border overlap elements combined with
treating the overlap element with the constitutive model derived from the normal Cauchy-
Born rule as though the overlap element has no underlying crystal lattice present. Thus, the
correct solution for the displacement field is obtained without regard to force cross terms.
It is important to realize that both of the actions discussed above must be done for this to
be true. If ghost atom influence is eliminated and a corrected Cauchy-Born rule is used, or
vice-versa, the solution obtained will be incorrect.

2.7 One-dimensional examples

To demonstrate the key features of the coupling approach, consider the patch of a one-
dimensional coupled system shown in Figure 2.4. The patch consists of the complete support
of node (a), which is comprised of two elements of dimension h, and a single pair bond of
length R. For this system, bonds exist only between nearest neighbor atoms. Hence, the
subscript (i) may be omitted since only a single type of atomic bonds exists for all atoms.
The nodal shape function and derivative for this case is given by
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N(a)(X)

X(a)

h

R

Figure 2.4: Patch from a one-dimensional coupled system.

N (a)(X) =


1− X(a)−X

h
X ∈ Ω̃

(a)
0 ,

1 + X(a)−X
h

X ∈ Ω
(a)

0 ,

0 elsewhere,

and
∂N (a)(X)

∂X
=


1
h

X ∈ Ω̃
(a)
0 ,

− 1
h

X ∈ Ω
(a)

0 ,

0 elsewhere,

(2.107)

respectively. Using (2.95) and setting f(a) = 0, we find the optimal bond density must satisfy∫
eΩ(a)

0

ρdX = h
(
1−N (a)

(
X(β)

))
for X(a) − h ≤ X(β) ≤ X(a) − h+R, (2.108)

which holds for
ρ = 1−N (a)

(
X(β)

)
(2.109)

over Ω̃
(a)
0 . Note that in this case, the problem of determining ρ does not have a unique

solution if ρ is discretized with more then one unknown and more than one integration point
is used to evaluate the left hand side of (2.108). For this example, we can see how the bond
density simply compensates for the overlap in the continuum and the underlying lattice.
As mentioned above, attributing fractions of a bond’s energy to certain domains becomes
ambiguous in multiple dimensions for which the general method for determining the bond
density distribution becomes necessary. This point was not addressed by the authors of [12],
who examined only one-dimensional chains of atoms with nearest neighbor interactions.

Figure 2.5 shows the displacements of a coupled system composed of five nodes and five
atoms. This analysis, and all subsequent simulations shown in this paper, was performed
using a research-oriented program capable of both finite element analysis and atomistic
simulation that was developed at Sandia National Laboratories [27]. The sets of nodes with
free and prescribed displacements are N = {4, 5} and N̂ = {1, 2, 3}, respectively. The
sets of atoms with free and prescribed displacements are A = {1, 2, 3, 4} and Â = {5},
respectively. The chain of atoms is bound by the quadratic potential ϕ(r) = 1

2
k (r −R)2

acting between nearest neighbors with R = 1
2
. From the Cauchy-Born rule, the elements,

with dimension h = 1, have an initial modulus E = Rk. To demonstrate the effect of
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Figure 2.5: Homogeneous displacements of the 1-dimensional coupled system for both the
corrected bond density of ρ(X) = 3

4
and the uncorrected bond density of ρ(X) = 1. Atom and

element numbers are given within the figure by the digit shown above or below, respectively,
the corresponding part.

the bond density function, we prescribe ρ(X) = 1, meaning no correction is made for the
overlap of elements and bonds between node 4 and atom 5. The system is loaded with the
prescribed displacements Q(1) = X(1) = 1

4
and U (5) = X(5) = 4, so that the homogeneously

deformed shape should have a constant slope of 1. The results plotted in Figure 2.5 show
the coupled system does not deform homogeneously. The reduced slope in the element 3—4
is the result of increased stiffness of this region over the other parts of the system resulting
from the overlap between bonds and elements. The slopes of the atomic chain 1—2—3—4
and element 4—5 are the same indicating the stiffness produced by the Cauchy-Born model
is consistent with the lattice. Finally, we note that nodes 1, 2, and 3 lie on a straight line
defined by displacements of the atomic chain 1—2—3—4, indicating that the method used to
transfer the atomistic displacement to the nodes in N̂ , an L2 projection in this case, is able
to reproduce homogeneous displacements exactly. In order to reproduce the homogeneous
solution, we must define ρ(X) = 3

4
for 2 ≤ X ≤ 3, as given by (2.109).

The simple example shown above of the homogeneously stretched one-dimensional atomic
chain was performed using an L2 projection method. Because of the computational cost,
we seek alternatives to calculating M−1

ÛÛ
associated with the L2 projection of atomistic dis-

placements to the nodes in N̂ . One simple alternative is to use a diagonal approximation
to MÛÛ, which has the structure of a finite element mass matrix. A number of “lump-
ing” methods has been developed for the solution of dynamic problems with explicit time
integration schemes. Figure 2.6 shows the displacements for a coupled system with MÛÛ

diagonalized using Hinton’s method [28]. The results show that although all of the nodes
in N and atoms in A follow the homogeneous solution Q(X) = U(X) = X, the nodes and
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Figure 2.6: Displacements of a coupled system using a diagonal approximation in the L2

projection.

atoms with prescribed motion, those in N̂ and Â, respectively, do not follow the homo-
geneous solution. This solution is produced by defining the bond density ρ(X) = 6

11
for

2 ≤ X ≤ 3 and by weighting the energy of bond 4—5 as 16
7
, which were determined by

requiring ∂Π
∂Q(4) = 0 and ∂Π

∂U(4) = 0 for the system with all active displacements following a ho-
mogeneously deformed solution. The additional weight of the 4—5 bond is required because
the approximate L2 projection, using the diagonalized form of MÛÛ, is unable to reproduce
homogeneous solutions exactly. The displacement field across nodes 1, 2, and 3 does vary
homogeneously, but not with the correct slope. Consequently, atom 5 fails to lie on the
solution with homogeneous deformation since it is constrained to lie on the solution between
nodes 3 and 4. Further testing with this small case showed that no diagonal matrix could
reproduce the homogeneous strain field exactly. These results enable us to conclude that use
of diagonalized MÛÛ is not recommended. Either the original, L2 projection method or the
MLS alternative should be used.

We also examine a 1-D atomic chain with atoms subject to multiple neighbor interactions.
For this example, we use the Lennard-Jones potential [29, 30] that has been truncated [31]
such that each atom interacts with all of its neighbors out to the 5th nearest neighbor. In this
simulation, the chain has been given free boundary conditions on the atoms at either end
and the system has been relaxed using a conjugate gradient, energy minimization algorithm.
Figure 2.7 shows the bond density correction calculated for each of the five different bond
types. For clarity, the crystal itself is also shown with the same symbols as in Figure 2.1 used
for free and prescribed atoms and nodes. For the example shown, the four outer-most atoms
on either end are free atoms while the remaining atoms are ghost atoms. In this example,
it is clear how the volume Ω̃

(a)
0(i) differs with regard to each different bond type (i). It is also

interesting to note that for this small system, ghost atoms are required within all elements
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Figure 2.7: ρ(i)(X) for a 1-D atomic chain using a 5th nearest neighbor Lennard-Jones
potential.

in the interior due to the long range of the interatomic potential. Even within the center
element ρ(5), the bond density correction associated with the bonds between an atom and
it’s 5th nearest neighbors, never reaches the value of unity as ghost-free bonds are present.
However, if the chain were made longer, we would see elements for which ρ(i) = 1 for all 5
bond families, and ghost atoms could be omitted. In other words, the overlap region would
essentially remain the same size that it is in Figure 2.7 while more and more of the system
can be modeled using pure continuum elements. Figure 2.8 shows atomic displacements
for two such longer 1-D atomic chains. In Figure 2.8(a), the ratio of element size to atomic
spacing is 2:1 and the system contains 26 atoms, 14 nodes and 13 elements. In Figure 2.8(b),
this ratio is 6:1 and the system contains 30 atoms, 6 nodes and 5 elements. In both figures,
we see that without any free atoms on the surface, the system displays zero relaxation, and
as successively more free atoms are used at the outer layers, the displacement field converges
to that of a pure atomistic 1-D atomic chain. For the 2:1 ratio, this convergence occurs for 4
or more layers of free atoms while for the 6:1 ratio, it occurs for 6 layers of free atoms. Thus,
the ratio of element size to atomic spacing, as well as the interaction range of the interatomic
potential, affects how many layers of free atoms are needed to achieve this convergence.

2.8 Two-dimensional examples

We next examine the 2-dimensional analog of the homogeneous deformation example given in
the previous section. A rectangular region covered by a finite element mesh composed of four-
node elements contains a limited region of atoms from a hexagonal crystal lattice, as shown
in Figure 2.9(a). These atoms interact through a nearest neighbor, quadratic potential. This
region is homogeneously deformed by stretching the system’s boundaries in the horizontal
direction, as shown in Figure 2.9(b). As mentioned in section 2.6, this case proves to be
unaffected by whether the cross terms in equations (2.26) and (2.27) are included or not.
For homogeneous deformation, the force coupling cross term between projected nodes and
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Figure 2.8: Displacements for the relaxation of a free, 1-D atomic chain using a 5th nearest
neighbor Lennard-Jones potential. Each curve represents a different number of layers of free
atoms used at the chain’s surfaces. The ratio of element size to atomic spacing is (a) 2:1 and
(b) 6:1.

free atoms disappears,

RÛ = 0 → RQ =
∂ΠQ

∂Q
− FQ = 0. (2.110)

This decouples the displacement of the atoms from the displacement of the overlaying finite
element mesh. Indeed, the correct displacement field for the free nodes is obtained if one
assumes

RQ̂ = 0 → RU =
∂ΠU

∂U

∣∣∣∣
ρ=1

− FU = 0. (2.111)

In other words, the correct solutions for both the atomic and nodal displacement fields were
obtained by treating them as separate problems. Their only connection is to use the Cauchy-
Born rule to create the same material properties for the continuum as for the atomistic
system, and the kinematic coupling used for interpolation and projection. Once again, it is
important to realize that (2.111) results from eliminating the cross terms to calculate forces
on free nodes due to ghost atoms and by setting bond densities,

{
ρ(i)

}
, to unity. Only by

omitting both coupling mechanisms is the correct FE solution realized. In addition, this
decoupling of the problem is possible because the interatomic potential used is a nearest
neighbor interaction only. Thus, the atomic crystal shown in Figure 2.9 exhibits no surface
relaxation and the Cauchy-Born model based on the same interatomic potential displays the
same response as the actual crystal. For longer-ranged potentials, surface relaxation would
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(a) (b)

Figure 2.9: (a) The 2-dimensional coupled system consisting of a rectangular mesh of square
elements and a portion of a hexagonal lattice. Atoms are colored according to whether they
are free (red) or ghost (green and blue). (b) The 2-d system homogeneously stretched in the
horizontal direction. Color denotes the magnitude of stretch from zero (blue) to the highest
value (red).

occur and the deformations of the decoupled atomistic and continuum systems would no
longer coincide.

A case for which the cross terms are important, and the correction for energy of overlapping
elements is required to obtain the correct displacement solution, is one in which inhomo-
geneous deformation occurs, such as the surface relaxation of a cross-section of nanowire.
Figure 2.10(a) shows a system composed of a hexagonal lattice with free surfaces overlapped
by a square FE mesh. For the coupled system, the atoms that lie within the outer layer of
elements are free atoms while all other elements contain ghost atoms. For this example, our
potential is the Lennard-Jones potential [29, 30] that has been shifted and truncated [31]
such that an atom that interacts with all of its neighbors out to the 3rd nearest neighbor
is equivalent to an atom within a bulk crystal. The system relaxes outward as shown in
Figure 2.10(b). The coupled system (red atoms) can be directly compared with a system
simulated purely with atomistics, (green atoms). Agreement is very good, but not perfect
due to the severe inhomogeneous deformation at the corners. Once again, the small system
size necessitated the placement of ghost atoms within all elements comprising the system.
For larger systems, there would exist a minimum coverage of ghost atoms beyond which
placement of additional ghost atoms would be unnecessary. However, for moderate size sys-
tems placing atoms everywhere would enable adaptive lattice extension (contraction) to be
easily implemented. All one would have to do is to switch the character of the atoms from
ghost to free (free to ghost) to grow (shrink) the atomic crystal region and then re-determine
the character, prescribed or free, for the system’s nodes.
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(a) (b)

Figure 2.10: (a) A 2-D, hexagonal lattice with free surfaces composed of free (green) and
ghost (blue) atoms. The overlapping square FE mesh is shown in red. (b) The relaxed
configuraton of (a) for the coupled system (red) and a system treated purely with atomistics
(green). Displacements are magnified by a factor of 200.

This two-dimensional surface relaxation problem also enables us to investigate the influence
of the overlapping mesh on the coupled solution. Specifically, we examine a system in which
triangular elements are used instead of square ones. The mesh for this system is shown in
Figure 2.11(a). We notice that this system contains fewer atoms per element (202 atoms
overlapped by 52 elements) as compared with the square mesh (202 atoms overlapped by 25
elements). Figure 2.11(b) shows the relaxed system with displacements magnified by a factor
of 200 for both the coupled (red atoms) and purely atomistic (green atoms) systems. For
this case, the displacements fields do not agree as well as for the square mesh. The primary
reason for the deficiency of the triangular mesh system is that while square elements use four
integration points per element for the FE calculation, triangular elements only use one point
per element. Thus, triangular elements can only represent strains that are constant over the
element. The use of a single integration point reduces the spatial discretization of

{
ρ(i)

}
and

results in a lower resolution representation of the coarse scale portion of the solution. This
leads to a loss of accuracy in the calculation of continuum field variables, and produces a
stiffer overall response for the element.

2.9 Three-dimensional examples

A similar surface relaxation simulation is performed for the 3-dimensional system composed
of a cube of atoms. This cube contains a face-centered-cubic crystal of 32,000 atoms, and
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(a) (b)

Figure 2.11: (a) A 2-D, hexagonal lattice with free surfaces composed of free (green) and
ghost (blue) atoms. The overlapping triangular FE mesh is shown in red. (b) The relaxed
configuraton of (a) for the coupled system (red) and a system treated purely with atomistics
(green). Displacements are magnified by a factor of 200.

atoms interact with a 5th nearest neighbor Lennard-Jones potential with parameters suitable
for the simulation of gold. This potential is given by the expression

ϕ
(
rαβ
)

= ϕLJ

(
rαβ
)
− ϕLJ(r

c)−
[
rαβ − rc

]
ϕ′LJ(r

c) , (2.112)

where

ϕLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (2.113)

rαβ =
∣∣x(α) − x(β)

∣∣, ε = 0.567895 eV, σ = 2.623117 Å and rc = 2.63σ. Magnified displace-
ments for half of the cube are shown in Figures 2.12(a), (b), and (c) for the purely atomistic
system, coupled atomistic-continuum system with hexahedral elements, and coupled system
with tetrahedral elements, respectively. The ratio of element size to atomic spacing is ap-
proximately the same for calculations using the hexahedral (5.34:1) and tetrahedral (5.33:1)
elements. In Figure 2.12, atoms are colored according to their potential energy with red
denoting the highest value for all atoms within the individual system and blue denoting the
lowest value. Hence, in Figure 2.12(a), the highest potential energy atoms are found at the
cube corners and along the cube edges and are therefore colored red and yellow, respectively.
The interior atoms possess the bulk potential energy of gold atoms and are colored dark
blue. In Figure 2.12(b), the red and yellow colors are assigned to interior ghost atoms as
they do not have any potential energy attributed to them unless bonded to free atoms in
the outer layers. It is still observed that free atoms sufficiently far from the surface have
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(a) (b) (c)

Figure 2.12: One-half of a 3-D cube modeled with (a) pure atomistics, (b) coupled atomistics-
continuum using a hexahedral element mesh, and (c) coupled atomistics-continuum using a
tetrahedral element mesh. Displacements are magnified by a factor of 200.

potential energies equal to the bulk cohesive energy for gold, and that surface, edge and
corner atoms have higher potential energies. Comparison of potential energies for the free
atoms in the coupled system with the same respective atoms in the purely atomistic system
shows agreement to the fourth significant figure. Atomic potential energy is dominated by
the creation of surfaces, while a change in energy due to relaxation is a secondary effect.

Figure 2.12(c) shows similar values of energies to those found in Figure 2.12(b), again agreeing
with the purely atomistic system’s energies to the fourth significant figure. However, the
relaxed configuration with the tetrahedral mesh does not display the same level of accuracy
as with the hexahedral mesh. Once again, this loss of accuracy is due to the hexahedral
elements possessing the ability to represent varying strain while the tetrahedral elements
can only represent constant strain.

Further comparison between the purely atomistic and coupled systems can be made through
examination of the stress field created by the surface relaxation. Figure 2.13 shows the
variation of the hydrostatic stress for nodes along a line passing through the middle of
the cube between opposing faces. The different curves correspond with the numbers of
surface layers of free atoms, with 20 layers corresponding to the purely atomistic system.
It is observed that when 6 or more atomic layers are used within the atomic region, the
coupled system essentially matches the stress field obtained with pure atomistics, especially
with regard to the value of tensile stress within the outer layers of the cube. The interior
compressive stress also agrees very well, especially for the use of 6 or 8 atomic layers. For
comparison, we can also examine the same hydrostatic stress curves produced for system
coupled only through kinematics. For these analyses, neither the cross terms nor the bond

52



2.10. SUMMARY

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

-40 -30 -20 -10  0  10  20  30  40

20 layers
8 layers
7 layers
6 layers
5 layers
4 layers
3 layers
2 layers

hydrostatic stress (eV/Å3)

X (Å)

Figure 2.13: Hydrostatic stress for nodes along a line passing through the middle of the
relaxed cube. The legend refers to the number of layers of free atoms used for the outer
surface of the crystal.

density corrections to the Cauchy-Born rule were used. As shown in Figure 2.14, we observe
that while it is again the case that using 6 or more atomic layers comes closest to the pure
atomistic solution and the interior compressive stress agrees best when using 6 or 8 atomic
layers, this agreement is not as good as when force coupling mechanisms are implemented.
This is made obvious by the much wider range of values of compressive stress for the nodes
within the cube.

2.10 Summary

We have presented a formulation for an atomistic-to-finite element coupling method for
quasistatic analysis. Our quasistatic coupling approach is comprised of three components:

• kinematics - the description of how displacements are transferred from nodes and atoms
in N and A to nodes and atoms in N̂ and Â.

• coupled equilibrium equations - equations derived from the total energy of the coupled
system incorporating the kinematics of the coupling in displacements.
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Figure 2.14: The same curves as in Figure 2.13 for a system coupled only through kinematics
and use of the Cauchy-Born rule (no force coupling mechanisms used).

• generalized Cauchy-Born - modifications to the usual Cauchy-Born rule needed to
compensate for regions of overlap between the continuum and the underlying lattice.

The moving least squares field construction, like that provided by RKPM, appears the most
promising for the transfer of atomistic displacements to the nodes in N̂ . The formulation
provides a method for “fitting” a displacement field over atoms in a given region that can
be constructed to reproduce a selected order of polynomials exactly. This property can be
used to guarantee that a homogeneous deformation field is transferred to the nodes exactly.
Moreoever, RKPM has well-defined spectral properties, especially when calculated over a
regular set of points, such as a lattice. These properties will allow us to characterize exactly
which scale or wavelength of information is transferred to the finite element nodes and which
ones need to be accomodated in some other fashion.

The most significant outcome of this work has been the development of a generalized Cauchy-
Born procedure for use in finite elements with a limited amount of underlying crystal lattice.
The method does suggest it should yield better performance with mesh refinement. The
improved results would be the result not only of the finer scale in the finite element basis
function, but also as a result of higher resolution in the discretized bond density function.
Note that this function only needs to be determined once, over the undeformed configuration,
for a given system geometry. The simple one- and two-dimensional examples provided show
that the solution may not be unique with the current method of solution.
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We do observe that the approach described in this paper, specifically the inclusion of force
cross terms within the equilibrium equations and the bond density corrections to the Cauchy-
Born rule, does possess good stability with regard to yielding a numerical solution. Omission
of these features often results in our energy minimization algorithms failing to converge
to any solution for many of the systems described in this paper. This failure is highly
dependent on the orientation of the mesh with respect to the underlying atomic lattice and
the size of lattice region used. Under limited conditions, the issue of overlap correction can
be addressed by terminating the atomistic crystal in specific ways within the mesh. This
approach has allowed previous efforts in atomistic-continuum coupling to produce seemingly
accurate results. Our development and inclusion of these features eliminates this dependency,
and is more generalized for the proper treatment of multi-dimensional systems and longer
range potentials.

A remaining concern with this approach, to be addressed in future work, regards the quan-
tification of solution errors obtained with coupled systems. We have minimized the error
through our use of cross terms within the equilibrium equations and the bond density cor-
rections to the Cauchy-Born rule. However, several approximations were made to obtain
solutions for those same bond density corrections, including the use of a limited number
of integration points at which the bond densities ρ(i) are evaluated. Whether the error
these approximations introduce to our solution is much smaller than error eliminated by our
approach remains an unanswered question.

Several areas for further development of our approach have been identified. Currently, we are
working to parallelize the algorithms discussed in this paper for applicability of our approach
to large systems. We also plan to develop expressions for the bond density corrections
that correspond to multi-body types of interatomic potentials such as the Embedded Atom
Method [32], used for modeling FCC and BCC crystals, and the Stillinger-Weber potential
[33], used for modeling silicon and other materials with the diamond cubic crystal structure.
Finally, the methodology presented in this paper will be adapted to analyze coupled dynamic
systems. The bond density corrections developed here will still be used to compute the
potential energy portion of the system’s Hamiltonian, but more thought will be required
with regard to the partitioning and calculation of the kinetic energy portion.
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Chapter 3

Evaluation of Stress in Atomistic
Simulation

Principle Authors: J.A. Zimmerman, E.B. Webb III, J.J. Hoyt,
R.E. Jones, P.A. Klein and D.J. Bammann

Atomistic simulation is a useful method for studying material science phenomena. Examina-
tion of the state of a simulated material and the determination of its mechanical properties
is accomplished by inspecting the stress field within the material. However, stress is inher-
ently a continuum concept and has been proven difficult to define in a physically reasonable
manner at the atomic scale. In this paper, an expression for continuum mechanical stress in
atomistic systems derived by R.J. Hardy is compared with the expression for atomic stress
taken from the virial theorem. Hardy’s stress expression is evaluated at a fixed spatial point
and uses a localization function to dictate how nearby atoms contribute to the stress at that
point; thereby performing a local spatial averaging. For systems subjected to deformation,
finite temperature, or both, the Hardy description of stress as a function of increasing char-
acteristic volume displays a quicker convergence to values expected from continuum theory
than volume averages of the local virial stress. Results are presented on extending Hardy’s
spatial averaging technique to include temporal averaging for finite temperature systems.
Finally, the behavior of Hardy’s expression near a free surface is examined, and is found to
be consistent with the mechanical definition for stress.

3.1 Introduction

An important issue of multiscale mechanical modeling is the development of definitions for
continuum variables that are calculable within an atomic system. Connections between con-
tinuum variables and microscopic quantities originates from long-wavelength elasticity theory
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or long-time, equilibrium ensemble averages giving rise to macroscopic balance equations.
The instantaneous atomic contributions to these averages do not have the same physical
interpretation as the corresponding “point-wise” continuum quantities. A classic example is
the Cauchy, or true stress and the ensemble stress defined by the virial theorem (VT). The
VT was developed by Clausius [34] and Maxwell [35, 36] to determine the stress field applied
to the surface of a fixed volume containing interacting particles. Although the expression
developed is a time and spatial averaged quantity, it is often inappropriately used to obtain
a point-wise, local virial stress. This results in erroneous estimates of stress for simple situ-
ations. An example of this can be seen for a crystal with free surfaces, as done by Cheung
and Yip [37] who showed that the atoms within the outer layers of the crystal possessed
non-zero values for the normal component of the stress tensor. Nevertheless, the virial stress
expression has become an invaluable computational diagnostic tool for evaluating simula-
tions of materials science phenomena such as void formation during thin film growth [38],
internal stress fields due to inhomogeneous precipitates [39] and finite deformation leading
to atomic-scale plasticity [40]. A comprehensive review on the derivation and application of
the VT can be found in the manuscript by Marc and McMillan [41].

There have been several efforts to correct the misuse of the VT by developing definitions for
stress that satisfy the equation for balance of linear momentum for a dynamic continuum.
Irving and Kirkwood [42] were the earliest to use expressions for mass, momentum and
energy densities that are defined for a spatial point at an instant of time based on the
statistical distribution of particles near to the point chosen. Their resulting formula for
stress contains several expressions that require integration over phase space of quantities
weighted by the Dirac delta function and a probability distribution function. One of these
quantities is an infinite-series expansion of differential operators. While their pioneering
effort is indeed noteworthy, the end product is difficult to implement within a standard
particle simulation. Schofield and Henderson [43] also noted that the expression developed
by Irving and Kirkwood is non-unique due to the taking of an ensemble average in regions
of inhomogeneity.

A different approach to deriving a local stress tensor was taken by Tsai [44], who used
considerations of forces acting across, and motion through, a spatial boundary to develop
an expression for stress within a 1-dimensional atomic chain. Cheung and Yip [37] later
revisited this approach to calculate the normal stress on each atomic plane for a relaxed
crystal with planar free surfaces. As already mentioned, they showed that the local virial
stress expression produces an unphysical oscillation in normal stress for the atomic plane at
the free surface and the nearest adjacent planes while their modification of Tsai’s expression
correctly yields zero normal stress. This approach has also been used to examine interplanar
stress across strained interfaces [45]. While this approach certainly appeals to the mechanical
intuition for a definition of stress, their resulting expression is also difficult to implement in
a point-wise sense. The examples considered by these authors are 1-dimensional, and it is
unclear how to define a local area surrounding a spatial point such that an inhomogeneous
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stress field can be correctly determined. Rowlinson and Widom [46] have presented a similar
analysis that examines forces between atomic pairs that interact through differential areas.
However, their approach uses a known pair correlation function, which in general may not
be easily determined, and estimates the kinetic contribution to stress from the equilibrium
temperature of the system,which may not be properly defined for some cases.

There have been several more recent attempts to improve upon the approach originally
conceived by Irving and Kirkwood. Lutsko [47] derived a stress-like tensor from a local
momentum balance equation by the use of Dirac delta functions and transformation into
Fourier space. Cormier et al. [48] used Lutsko’s work to develop an expression for stress
that is convenient for calculation within an atomistic simulation. However, this approach
is limited for two reasons. First, the use of the integral Fourier transformation assumed a
particle system of infinite spatial extent. Cormier et al. noted this, and commented that the
presence of system boundaries needs to be considered to develop a more rigorous expression
that accounts for the role of image defects. Second and more important is the fact that
Lutsko used an incorrect formulation of the spatial form of the balance of linear momentum.
Equation (1) of reference [47] contains the material time derivative of a momentum density,
dp
dt

. The proper term for the left hand side of this equation should be a mass density multiplied
by the material time derivative of a velocity field, ρdv

dt
. This was pointed out by Zhou [49, 50],

who also noted that even if the spatial time derivative, ∂p
∂t

, is used instead of the material
time derivative the balance equation is still incorrect (compared to equation (1.2) in [42])
and the resulting expression makes improper use of the momentum terms involving atomic
velocities. Recent publications by Zhou and McDowell [51] and Zhou [49, 50] attempted to
correct these errors by interpreting mechanical stress as an internal force interaction between
material points. They asserted that expressions for stress should only contain terms related
to those forces and no terms involving a momentum flux through an arbitrarily defined
spatial region. These authors made several insightful points about the nature of stress and
virial-like expressions for the stress tensor; however, the expression they derived included a
term for an arbitrarily-sized volume containing a single atom.

Among these efforts already discussed is the notable work by Hardy and colleagues [52, 53,
54]. The formalism developed by Hardy bypasses some of the mathematical complexities
of Irving and Kirkwood’s approach by using a finite-valued and finite-ranged localization
function in lieu of the Dirac delta function. This property of having a finite range is also
referred to as the function being of compact support. While the range of this function —
the characteristic size of the volume that contains atoms contributing to properties at the
spatial point chosen — can be selected arbitrarily, the resulting expression for stress contains
terms that theoretically remain constant for different size volumes. It can also be shown that
several of the expressions already mentioned, including the virial stress, can be recovered by
taking Hardy’s expression to appropriate limits. In this paper, we review Hardy’s formalism
and present a computational comparison between Hardy’s expression for stress and local
volume averages of the virial stress within a FCC crystal. For a bulk crystal, we present
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results for a variety of simulated conditions: unstrained and deformed lattices, zero and
finite temperatures, and at single instances in time and averages over multiple time steps.
Our results show that for all but the most trivial of conditions, the Hardy stress expression
is as accurate or more than the virial stress. The value of stress fluctuates with changing
characteristic volume for both expressions, and the magnitudes of these fluctuations are
minimized by using a larger characteristic volume or by time averaging over a minimum
number of time steps. We also present results for the behavior of the stress expression in
a crystal with a free surface. It is observed that the effective free surface of a solid does
not coincide with the top-most atomic layer, but is instead positioned at a distance beyond
which no force interactions can be detected.

3.2 Hardy’s Formalism for Atomistic-Continuum Equiv-

alence

Hardy’s development started with the spatial forms of the balance of mass, linear momentum
and energy for a continuum point[13]:

∂ρ

∂t
= ∂x · (ρv) (3.1)

∂p

∂t
= ∂x · (σ − ρv ⊗ v) , (3.2)

∂e

∂t
= ∂x · (σ · v − ev − q) , (3.3)

where ∂x ≡ ∂
∂x

, ρ is mass density, p is linear momentum density, e is internal energy density
consisting of potential, kinetic and thermal contributions, q is heat flux vector and the
material velocity field v is defined such that p = ρv. Hardy then defines the continuum
fields of ρ, p and e as functions of a fixed spatial point x at time t in terms of atomic
positions (xα) and velocities (vα) by using localization functions, ψ:

ρ(x, t) =
∑N

α=1m
αψ(xα − x) (3.4)

p(x, t) =
∑N

α=1m
αvαψ(xα − x) (3.5)

e(x, t) =
∑N

α=1

{
1
2
mα (vα)2 + φα

}
ψ(xα − x) (3.6)

Here, mα and φα represent the mass and potential energy, respectively, attributed to atom
α. The localization function ψ spreads out the properties of the atoms (α = 1, 2, . . . , N),
and allows each atom to contribute to a continuum property at the position x at time t.
The function ψ has units of inverse volume and ψ 6= 0 only in some characteristic volume
surrounding the spatial point x. Hardy has established a few rules with regard to the
behavior of ψ:
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1. ψ(r) is a normalized function, thus
∫
R3 ψ(r) d3r = 1.

2. The spatial gradient of the localization function, ∂xψ(xα − x), is equivalent to the the
negative of the gradient of ψ with respect to its argument, r = xα − x,

∂ψ(r)

∂x
=
∂ψ(r)

∂r

∂r

∂x
= −∂ψ(r)

∂r
.

This relation can be used to show that ∂ψ
∂t

= −vα · ∂xψ.

3. A bond function Bαβ(x) between atoms α and β is defined by the expression

Bαβ(x) ≡
∫ 1

0

ψ
(
λxαβ + xβ − x

)
dλ,

where xαβ = xα − xβ. Bαβ represents a weighted fraction of the bond length segment
between atoms α and β that lies within the characteristic volume. By taking the
derivative of ψ

(
λxαβ + xβ − x

)
with respect to λ,

∂ψ
(
λxαβ + xβ − x

)
∂λ

= −xαβ · ∂xψ
(
λxαβ + xβ − x

)
,

and then integrating from λ = 0 to λ = 1, one obtains

ψ(xα − x)− ψ
(
xβ − x

)
= −xαβ · ∂xBαβ(x) .

More detailed information regarding the use of these localization functions can be found in
[52], [55] and [4].

In order to derive an expression for a symmetric stress tensor, Hardy has made four key
assumptions about the forms of the energies and forces for the atoms in the system:

i. The total potential energy of the system, Φ, can be considered to be the summation
of individual potential energies of each atom within the system, Φ =

∑N
α=1 φ

α.

ii. The force on any atom can be expressed by the summation Fα ≡ − ∂Φ
∂xα =

∑N
β 6=αFαβ. In

general, it is not clear what the physical meaning of Fαβ is. When Φ is the summation
of pair potentials, φα = 1

2

∑N
β 6=α φ

αβ
(
xαβ
)

where xαβ = |xαβ|, Fαβ obviously means the
force exerted on atom α from atom β. However, for some multi-body potentials the
meaning is not so straight-forward.

iii. The atomic potential energies depend only on interatomic distances, φα = φα
(
xαβ, xαγ, . . . , xβγ

)
,

so Fα = −
∑N

β 6=α
∑N

γ=1
∂φγ

∂xαβ
xαβ

xαβ . This expression includes the possibility that α = γ.
While this assumption clearly holds for radially-symmetric potentials such as pair
potentials and the Embedded Atom Method (EAM) [32], it is necessary to consider
invariance of the system potential energy to show that it also holds for potentials that
depend on bond orientations (see Section 3.5).
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iv. Each atomic potential energy depends only on the distances between the atom under
consideration and all other atoms, φα = φα

(
xαβ, xαγ, . . . , xαN

)
. Thus, the force be-

tween atoms α and β can be expressed as Fαβ = −
{

∂φα

∂xαβ + ∂φβ

∂xαβ

}
xαβ

xαβ . Clearly, while

this assumption holds for pair potentials and EAM, it does not for some multi-body
potentials such as the 3-body potential of Stillinger-Weber [33] used to model silicon.

Using the density functions shown above within the balance equations, and by considering
the four assumptions listed, Hardy developed the following expression for stress at a spatial
point,

σ(x, t) = −

{
1

2

N∑
α=1

N∑
β 6=α

xαβ ⊗ FαβBαβ(x) +
N∑
α=1

mαuα ⊗ uαψ(xα − x)

}
, (3.7)

where uα ≡ vα − v. Hardy’s formalism also provides expressions for the heat flux vector q
and the internal energy density e.

It is possible to recover various definitions for atomic stress already mentioned by making
specific choices for the characteristic volume. For example, if the characteristic volume is
taken to be the entire volume of the atomic system, and the system is static, (3.7) ex-
actly reproduces the result of the virial theorem, the average stress within the system,
σ̄ = 1

V

∫
R3 σ(x) d3x. In this case time averaging is unnecessary since the assumption of

static equilibrium for the continuum is made. For a dynamic continuum, the calculation of
the material velocity at the chosen spatial point, v, would be necessary because a non-zero
value would affect the quantities {uα} in (3.7). Another example is that of the characteristic
volume collapsing to a spatial plane containing no atoms. Hardy noted this case in his origi-
nal publication [52], and showed that his stress expression reduces to the common definition
for stress of force divided by area. This result demonstrates the physical intuitive quality
desired by both Tsai and Cheung and Yip, while avoiding the need to consider momentum
transport across spatial boundaries. Finally, it can be observed that for a characteristic
volume that surrounds a single atom, the expression derived by Zhou [49, 50] for the average
stress within the volume is obtained. In this situation, the material velocity of the continuum
equals the velocity of the atom encased, v = vα, and no momentum term appears in the
stress expression.

The stress expression developed by Hardy and given in equation (3.7) is robust in that it
defines a suitable measure of stress at any length scale, and is also supposedly independent
of the choice of localization function. However, in the next section we test those assertions
and develop guidelines for the ways in which to use this expression.
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3.3 Results and Discussion

For our simulations, we use the EAM potentials for copper (Cu) by Foiles, Baskes and Daw
[32]. Unless otherwise noted, the localization function has a constant value within a spherical
volume of radius Rc and equals zero outside of the volume, i.e. ψ(r) is a radial step function
centered at r = Rc. With this choice of ψ, Bαβ has the simple geometric interpretation of
the fraction of bond length between atoms α and β (normalized by 4

3
πR3

c) that lies within
the characteristic volume. As both Hardy and Cormier et al. have noted, this applies even
for situations in which neither atom α nor atom β lie within the characteristic volume, but
a portion of the line segment connecting the two atoms does.

3.3.1 Stress in a crystal at zero temperature

Quasi-static simulations were performed for a bulk Cu lattice comprised of 3,072 atoms with
periodic boundary conditions on all sides at zero temperature and pressure. The size of
the computational box was 8 x 8 x 12 unit cells. For this system, the stress at any spatial
point should equal zero; however, this was not observed as shown in Figure 3.1. The Hardy
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Figure 3.1: Virial and Hardy stress for an atomic system at zero temperature and pressure.

stress contains small fluctuations that diminish in magnitude as Rc increases. Hardy, Root
and Swanson [54] noticed this correlation between fluctuations in stress and the size of the
characteristic volume. Also displayed in Figure 3.1 is the volume average of the local virial
stress for a spherical volume of radius Rc. This volume average can be expressed by the
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relation

π = − 1

Vc

{
1

2

N∑
α∈Vc

N∑
β 6=α

xαβ ⊗ Fαβ +
N∑

α∈Vc

mαuα ⊗ uα

}
, (3.8)

where Vc = 4
3
πR3

c . For quasi-static analysis, the second term in the above expression vanishes.
Figure 3.1 shows that the value for π̄11 is exactly zero, to the limit of computational precision,
for all values of Rc, an expected result since all individual atomic stresses are zero for this
case. The behavior of the Hardy stress expression is due to differing amounts of force
contribution for individual interacting atomic pairs as the characteristic volume changes.
As the characteristic volume increases, the bond function Bαβ changes its value only for
those atomic pairs that have at least one of the atoms lying outside the volume. As Rc

increases, the magnitude of these force contributions become much less significant than the
force contributions from atomic pairs already inside the volume. Since the number of bonds
lying completely within the volume increases as R3

c and the number that partially contribute
to the stress increases as R2

c , one would expect the amplitude of fluctuations to decay as
roughly R−1

c . However, analysis of the values shown in Figure 3.1 reveals that this decay
occurs much faster, with the magnitude of the fluctuation decreasing at a rate between
R−2.4
c and R−3

c . Future efforts will be undertaken to understand the mathematical and
physical significance of this. A more detailed examination of this fluctuation was done by
varying the position of the spatial point within a unit cell of the crystal lattice, as shown in
Figure 3.2. For this detailed analysis, a cubic function was used for the localization function,
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Figure 3.2: Hardy stresses within a Cu crystal at zero temperature and pressure. Spatial
position is varied across 2.5 unit cells of lattice parameter equal to 3.615 Å.

ψ(r) ∼ 1 − 3
(

r
Rc

)2

+ 2
(

r
Rc

)3

where r ≡ |xα − x| < Rc. This function has the properties

that ψ(r) → 0 and ψ′(r) → 0 as r → Rc, and permits us to isolate the general behavior
of using any localization function from the discontinuous nature of the step function. This
figure shows that the fluctuation of stress occurs over the length scale of the crystal’s lattice
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parameter around a zero mean value. It also reveals that the magnitude of the fluctuation
is much smaller for a cubic localization function than for the constant function. While it is
disturbing that application of the Hardy expression contains an intrinsic fluctuation for the
zero stress case, it will be demonstrated that this fluctuation is insignificant for particular
simulations at either non-zero stress or finite temperature.

The curve shown in Figure 3.1 was for the normal stress evaluated at a single spatial point
chosen at random. Examination of the mean of this curve averaged over many such randomly
chosen points, shown in Figure 3.3, reveals that the magnitude of these fluctuations becomes
vanishingly small as the number of averaging points increases. The fluctuations decrease
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Figure 3.3: Mean of the Hardy stress averaged over many spatial points.

in magnitude by a factor of 10 when stress is averaged over 10 or 100 spatial points, and
decrease by a factor of 50 or greater when stress is averaged over 1000 points. This behavior
is consistent with the definition of the Hardy stress (3.7). As more spatial points are used
for averaging, we are, in-effect, integrating (3.7) over all space. This integration results in
recovery of the average system stress predicted by the virial theorem, which is zero for this
case. These evaluations were primarily done using a localization function of constant value
within the characteristic volume. However, we also performed an averaging of 10 spatial
points using the cubic function already discussed. It is clear that for a given characteristic
volume size, the use of a localization function that smoothly and continuously evaluates to
zero at the volume boundary, i.e. ψ(r) → 0 and ψ′(r) → 0 as r → Rc, produces a more
consistent estimate of continuum stress.

The impact of these fluctuations is indeed less significant for cases of non-zero values of
stress, as shown in Figure 3.4 for a system under 2% uniaxial strain. The Hardy stress
fluctuates around the expected value of 0.02 eV/Å3, with the magnitude of the fluctuation
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Figure 3.4: Virial and Hardy stress for an atomic system at zero temperature and 2% uniaxial
strain.

decaying with increased Rc. The error is acceptably low at even moderate values of Rc, it
is only 4% at Rc = 6 Å. The virial stress also fluctuates about the expected value due to
the minor changes in volume that alter all continuum densities. The error in the averaged
virial stress does not decay as quickly as for the Hardy stress, and is significant even up to
distances of 8 Å.

3.3.2 Stress in a crystal at finite temperature

Stress within a system at finite temperature was also evaluated. Figure 3.5(a) shows the
stress evaluated at two distinct spatial points within a Cu system consisting of 4,000 atoms
(10 x 10 x 10 unit cells) equilibrated to zero pressure at room temperature, 300 K. The
two points are located at positions (A) {11.3 Å, 15.5 Å, 7.0 Å} and (B) {-11.7 Å, -12.5 Å, -
14.8 Å}, where the bounds of the system are ±18.075 Å in each direction. In our simulations,
temperature control is performed by exerting a drag force on each atom that is proportional
to both the difference between the current temperature and the desired temperature for the
system and the atom’s velocity [56]. We observe that the value of stress evaluated at an
arbitrarily chosen spatial point at an instant of time varies much more than for the zero
temperature case shown in Figure 3.1. We also note that this variation does not possess the
periodic nature with oscillations of a single wavelength,the lattice parameter. The curves
shown for the two spatial points possess much more complex shapes than the zero tempera-
ture case, and differ significantly from one another. For the range of Rc > 6 Å, the variations
in each curve, and the differences between the two curves, are at a much smaller scale and the
value of stress is close to zero, although the difference between the finite temperature value
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Figure 3.5: Virial and Hardy stress for an atomic system at 300 K temperature at (a) zero
pressure and (b) 2% uniaxial strain. The heavy horizontal line in (b) is the system value of
stress as determined from the virial theorem. Two sets of lines are shown for each stress to
signify the two spatial points, A and B.

of stress predicted at even the largest value of Rc, 14 Å, and the system averaged value is
significant. This provides evidence that a larger characteristic volume must be used at finite
temperature in order to capture the statistics at a similar level of accuracy as for the zero
temperature case. For systems of limited size, we would recommend either averaging over
multiple volumes centered on nearby spatial points at a given time step or averaging over
the same characteristic volume for multiple time steps. The former sacrifices the resolution
for inhomogeneous stress fields while the latter requires a sufficient time window of analysis.

It can also be noticed in Figure 3.5(a) that the behavior of the locally averaged virial stress is
very similar to the Hardy stress, especially for values of Rc > 6 Å. The characteristic shape
common to both stresses may be due to the kinetic contribution to the stress tensor since
this term is the same expression for both equations (3.7) and (3.8). However, it is important
to note that for even moderate values of Rc, Hardy and virial stress are comparable.

Figure 3.5(b) shows the stresses for the same system at 300 K uniaxially strained by 2%. As
before, it is noticed that at finite temperature the variations in stress with Rc possess both
larger magnitudes, ∼ 0.005 eV/Å3 as compared with ∼ 0.001 eV/Å3 for the zero temperature
case in Figure 3.4, and a more complex shape.

We have already proposed that by averaging the stress expression evaluated for the same
characteristic volume over multiple time steps, the Hardy and virial expressions for stress may
achieve a higher level of accuracy and would be statistically similar to the single time step,
zero temperature evaluations. Figure 3.6 shows the resulting time averaged curves for one of
the spatial points evaluated in Figure 3.5. Although curves are displayed only for the Hardy
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stress expression, the volume-averaged virial stress behaves similarly in all cases, especially
for Rc > 6 Å. Figure 3.6(a) shows the curves resulting from averaging the stress component
σ11 over 1, 10, 100 and 1000 MD time steps (∆t = 2 fs) for the zero pressure simulations at
300 K and Figure 3.6(b) shows similar curves for the system uniaxially strained 2%. Both
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Figure 3.6: Hardy stress for an atomic system at 300 K temperature at (a) zero pressure
and (b) 2% uniaxial strain. The dotted horizontal line in (b) is the system value of stress
as determined from the virial theorem. Each point plotted is actually the value of stress
averaged over 1, 10, 100 or 1000 MD time steps (∆t = 2 fs), as denoted by the legend.

sets of data make a compelling case for time averaging at finite temperature. In particular
for the zero stress case, σ11 is observed to be predominantly tensile for both the 1 and 10 ∆t
data at small values of Rc. For averaging over 100 ∆t, this behavior is absent and the data
converges on an acceptable description of the system stress state for Rc > 5 Å. Examination
of Figure 3.6(b) shows that longer averaging time, at least 1000 time steps, i.e. 2 ps, is
needed to reduce the error in the predicted stress to some tolerable level. These curves do
indicate that statistical behavior becomes noticeably more consistent in going from 10 ∆t to
100 ∆t. For both 1 and 10 ∆t, the behavior in the predicted stress is not consistent; indeed,
at Rc = 10 Å, the curves possess deviations from the ensemble average that are increasing as
Rc increases. For both 100 ∆t and 1000 ∆t averaging, however, the predicted stress moves
consistently towards the ensemble average as Rc is increased. Thus, in order to maintain a
localized characteristic volume and obtain some predetermined level of accuracy, one must
restrict the analysis to some minimum time for averaging. One conclusion that can be made
is that just as both the Hardy and virial stress expressions converge to expected continuum
mechanical behavior by using some type of local volume averaging, this convergence is even
more pronounced by performing a localized time averaging. Also, just as the value of Rc

— the size of the characteristic volume for weighted spatial averaging — is required to be
larger than some minimum value related to either the lattice parameter or the inter-atomic
potential interaction range in order to achieve a sufficient level of accuracy, so too should
the time averaging window size be required to be larger than some minimum period. It is
unclear what precisely determines this minimum amount of time, but it may be influenced by
the phonon lifetimes characteristic for the particular materials and temperatures simulated.
The ability to attain the same level of statistical accuracy by enlarging one of these windows
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while refining the other suggests that an ergodicity property exists for sub-sets of the full
atomistic system.

This analysis shows that at finite temperature, deformation, or both, the Hardy stress ex-
pression is certainly as good as the virial stress and even displays improved behavior in some
instances. The finite temperature analysis also establishes a significant motivation for time
averaging of the stress expression.

3.3.3 Stress in a crystal with a free surface

The underlying basis for fluctuations of stress with characteristic volume size greatly im-
pacts stress evaluation for regions with inhomogeneous structure, such as at a free surface.
Figure 3.7 shows the stress within a Cu crystal as a function of distance from a free surface
for two values of Rc, 6 and 10 Å. We first examine Figure 3.7(a) and (b), which display the
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Figure 3.7: Virial and Hardy stress for an atomic system at zero temperature and pressure
with a free surface. The dashed line denotes the position of the top layer of atoms while the
solid line denotes the effective position of the free surface of the crystal. (a), (b) The normal
stress for the direction perpendicular to the free surface for Rc = 6, 10 Å. (c),(d) The normal
stress for directions parallel to the free surface for Rc = 6, 10 Å.
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normal stress for the direction perpendicular to the free surface. Within a distance Rc of the
top atomic layer, the magnitude of fluctuations is comparable for both expressions. However,
the wavelength of the virial fluctuation is clearly tied to the size of the characteristic volume.
It equals twice the value of Rc. This result shows a smearing of the oscillation in local virial
stress noticed by Cheung and Yip [37]. In contrast, the wavelength for the Hardy stress
fluctuations is considerably smaller than for the virial, and is roughly the same for both
values of Rc. Also, the Hardy value decays within the region between the top atomic layer
and the “effective” surface of the crystal, located at a distance equal to Rc, while the virial
stress increases in magnitude, only dropping to zero within 0.5 Å of the effective surface.
Again, it is important to notice that within a distance Rc above the top atomic layer, atomic
force interactions are detectable and contribute to the calculation of stress.

Also examined were the normal stress components for directions parallel to the free surface,
the planar stress that normally corresponds to surface stress. This is shown in Figure 3.7(c)
and (d) for the same atomic system discussed above. We observe that the stress distribution
is essentially the same for both the Hardy and virial expressions, displaying a build-up of
finite stress below the effective surface that represents a material’s surface stress, and a drop-
off to zero at the effective surface of the solid. We also notice that the maximum value of
the tangential stress is smaller for Rc = 10 Å than for 6 Å, while the extent of the build-up
region is larger as it equals 2Rc. It is the case that for both choices of Rc, the integration of
σ11 over the build-up region yields a value of surface stress of 0.085 eV/Å2.

3.4 Conclusions and Discussion

Our analysis has shown that, for most situations of non-zero deformation, finite temperature,
or both, the definition for Cauchy stress in an atomic system developed by Hardy provides
an estimate for continuum mechanical stress as or more accurate than the expression based
on the virial theorem. In general, fluctuations in the Hardy stress are lower in magnitude
and decay faster with increasing characteristic volume size. Use of a smooth, continuous
localization function with compact support reduces the magnitude of variations in the Hardy
stress from expected values. Our results also showed that the fluctuations in stress for
systems at finite temperature are larger in magnitude than at zero temperature. However, it
was discovered that time averaging of the stress expression yields improved convergence to
the expected value of stress at finite temperature for both unstrained and deformed states
of the crystal. Given this result and the results shown for spatial averaging, it is clear that
a lower limit for spatial and temporal resolution exists when trying to make a legitimate
correspondence between a sub-volume of atoms during a sub-interval of time and a continuum
material point at a particular time. This limit implies that for systems that are either too
small in size, or simulations that are too short in duration, connections between such systems
and an equivalent continuum cannot be made. For simulations involving inhomogeneous
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deformation or rapidly time varying atomistic quantities, there may also exist an upper limit
of resolution beyond which information is lost when trying to map atomistic quantities to
their continuum counterparts. Finally, the behavior of the Hardy expression for stress near a
free surface was found to be consistent with the mechanical definition of stress. Visualization
of the normal stress field revealed that the effective free surface of a solid does not coincide
with the top-most atomic layer, but rather at a distance beyond which no force interactions
can be detected. The free surface itself is now defined as the spatial plane at which the
component of σ(x, t) for the direction normal to the plane equals zero.

An attempt can be made to improve upon Hardy’s method with regard to the elimination
of stress fluctuations, at least for the case of zero temperature, by recognizing its similarity
to moving least squares (MLS) particle methods [57, 58] used by the continuum mechanics
community. An important consideration for such methods is the condition of consistency,
the ability of a numerical solution to a boundary value problem to reproduce certain states
of deformation, e.g. homogeneous stress, exactly. An example of such a method is the
Reproducing Kernel Particle Method (RKPM) [59], which uses a multiplicative combina-
tion of polynomial basis functions and a compact support window function. The resulting
“corrected” window function allows the solutions for field variables to exactly represent poly-
nomials up to the order given by the basis functions. The use of such corrected localization
functions within Hardy’s framework may be sufficient to capture homogeneous deformation
fields and eliminate fluctuations at the primitive cell scale. It is interesting to note that
in Hardy’s formulation fields such as velocity and stress are defined in a way that makes
them consistent with the continuum balance of linear momentum. Unlike MLS, where a
smoothing approximation would be applied first and then a constitutive law based on the
continuum displacement or velocity would be applied to obtain stress, Hardy derives his
stress ultimately from the interatomic energy potentials and the atomic velocity trajectories.
Hardy’s method may be interpreted as a post-processing step for a single configuration of
an atomistic simulation. However, given that his derived quantities are consistent with con-
tinuum balance laws, an outside observer could not tell whether continuum quantities were
derived from atomistic balance of linear momentum or the continuum version. This feature
may make Hardy’s method useful for atomistic-continuum coupling.

An important aspect in the derivation of Hardy’s stress expression is the group of under-
lying assumptions made, listed in section 3.2, that restrict the use of the expression to
systems governed by central potentials such as pair potentials and the EAM. Application of
Hardy’s formalism to generalized, multi-body potentials requires a redefinition of the quanti-
ties Fαβ. However, it is unclear if such definitions would still yield a symmetric stress tensor.
Modifications to Hardy’s derivation may be required that connect the atomic system to a
non-standard continuum model. This effort will be undertaken by the authors at a future
time.
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3.5 Appendix: Invariance of Atomic Bond Energies

For a finite system of N particle, the set of their positions, κ = {xα, α = 1..N}, with their
masses mα constitutes a ‘configuration’ in a static setting (momenta pα or velocities vα

are necessary to describe a configuration in a dynamic setting). The energy of the system
Φ depends on the configuration Φ = Φ(κ) = Φ({xα}); however, a basic symmetry rule,
invariance under superposed rigid body motion or change in coordinate frame, restricts how
the energy depends on the configuration. Invariance requires that

Φ+ := Φ({xα+}) = Φ({xα}) =: Φ

where
xα+ = Qxα + a, Q ∈ Orth+

In other words, the potential energy of the system cannot change with rigid rotations and
translations of the configuration. This implies that the energy cannot depend directly on
the particles’ positions.

Every atomistic system of particles has a substructure made up of bonds B, so that the total
energy can be decomposed as:

Φ =
∑
K∈B

φK .

The energy of an individual bond depends only on a subset of the configuration, e.g. two
{xα,xβ} or three {xα,xβ,xγ} or four atoms {xα,xβ,xγ,xδ}. By applying the invariance
principle, it is clear that φI can only depend on invariants like a distance

Id = ‖xαβ‖ where xαβ := xα − xα ,

a cosine of an angle

Ia =
1

‖xαβ‖‖xβγ‖
xαβ · xβγ ,

an area
Is = ‖xαβ × xβγ‖ ,

or a volume
Iv = [xβα,xγα,xδα] := (xβα × xγα) · xδα .

In all these invariants the difference in positions removes the dependence on the rigid trans-
lation a and the inner product or cross product removes the dependence on the rigid rotation
Q.
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Chapter 4

Statistical Mechanics and Multiscale
Processes

Principle Author: C.J. Kimmer

No robust multiscale method exists for coupling molecular dynamics (MD) and finite element
(FE) simulations when the MD region is at nonzero temperature and the continuum consti-
tutive model is temperature dependent. Coarse-grained molecular dynamics (CGMD) [10]
and the quasicontinuum method (QC) [60] are the main published attempts at this coupling,
but there are few demonstrations that they are complete or robust. Newer methods such
as the bridging scale [12] can in principle incorporate the effects of temperature in both the
atomistic and continuum regions, but an adequate means of doing so has not correctly been
identified yet.

All these approaches try to produce a high–fidelity representation of a system with many
degrees of freedom using a system with many fewer degrees of freedom. In addition to the
challenge of dynamically accounting for the removed, “unimportant” degrees of freedom, the
continuum stress–strain description is not the natural one for the MD system. Moreover, the
correspondence between a temperature–dependent continuum and a temperature–dependent
atomic system is defined only in the long time, large length scale limit. Here, it suffices to
consider model problems with a clear relationship between equivalent atomistic and con-
tinuum systems. Consequently, attention will be restricted to homogeneous deformation,
uniform temperature, or a uniform temperature gradient. Even in these cases, the long
time, large length scale limit leading to equivalence are much longer and larger than would
be practical or even useful for a coupling problem. To remedy this difficulty, the atomic–scale
data must be analyzed to extract useful information for the continuum, or the continuum
description must be modified to more accurately reflect atomic–scale phenomena at non–zero
temperature.

This chapter first reviews the basic notions of statistical mechanics (SM) for equilibrium and
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non–equilibrium systems. The description of equilibrium SM is classical and based on ”text-
book” approaches. Developments in nonequilibrium SM are much more current as the field is
still active, and at least parts of the discussion constitute a review of the literature. The next
section discusses relevant statistical measures for determining the correspondence between
equivalent atomistic and continuum systems at non–zero temperature. Assuming a generic
coupling method for transferring information between temperature–dependent MD and FE
simulations, the implications for consistency with the corresponding all–atomic system at
thermal equilibrium are discussed. Numerical examples illustrating the discussed measures
are given, and, finally, similar simulations and measures for nonequilibrium systems are
discussed.

4.1 Equilibrium Statistical Mechanics

4.1.1 Overview of Phase Space and Ensembles

A useful model Hamiltonian for a system with atoms labelled by α ∈ {1...N} is

H =
∑
α

p2
α

2mα

+
∑
α,β

φαβ(xαβ) (4.1)

The main assumption here is that only central force pair–potential interactions exist between
the atoms. The magnitude of the separation between atom α and atom β’s coordinates is
denoted by xαβ = |xαβ| = |xα − xβ|, and the momentum of atom α is pα.

Mechanical equilibrium states are extrema of the potential energy, but thermal equilibrium
describes a more complicated state determined by temperature and any number of other
macroscopic variables such as pressure (or stress) or applied external fields. Although the
thermal equilibrium state and a material’s macroscopic response is ultimately determined by
fundamental interactions at the atomic scale or smaller, it is neither possible nor practical to
possess a completely detailed knowledge of every degree of freedom in a macroscopic system
(N ∼ 1023). Consequently, the experimentally–obtained macroscopic quantities characteriz-
ing a material’s state are themselves temporal and spatial averages of quantities depending
on the details of atomic motion. Mathematically, macroscopic quantities are the averages of
functions of the N coordinates and momenta. The average value of the Hamiltonian H is
an example of one such quantity; it is the system’s internal energy.

To facilitate the description of macroscopic quantities that are possibly functions of the 6N
individual components of the momenta and coordinates, the concept of phase space is helpful.
Phase space is the 6N–dimensional space of the coordinates and momenta, and the concate-
nation of all components of the momenta and coordinates Γ = (p1,p2, ...,pN ,x1,x2, ...,xN)
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represents a microstate of the system. The set of all microstates with the same macro-
scopic value (of H, say) is a macrostate, whose thermomechanical properties are probed by
experiment.

If the initial conditions for the Hamiltonian of Equation 4.1 are known, the deterministic
trajectory in phase space is the solution to Hamilton’s equations of motion

ẋα =
∂H

∂pα
=

pα
mα

ṗα = − ∂H

∂xα
. (4.2)

When only the macrostate is known, there can be a considerable degeneracy of microstates
in the single macrostate. At this point, the dynamics specified by the equations is not a
very useful way to characterize the macrostate. The trajectories are less relevant than the
sets of degenerate microstates. These sets of microstates define an ensemble, and in statis-
tical mechanics, the ensembles of microstates are the tool for determining the equilibrium
macrostates. The most common ensembles are the microcanonical ensemble which is the set
of all states with a given energy U and volume V , the canonical ensemble with fixed N and
varying U , and the grand canonical ensemble in which N varies as well.

The distribution function f(Γ) is the likelihood of being in the microstate Γ. It is used to
compute the ensemble average< X > of a quantity X over all microstates:

< X >=

∫
f(Γ)X(Γ) dΓ∫
f(Γ) dΓ

. (4.3)

So far, two kinds of averaging have been mentioned—ensemble averages and the spatial or
temporal averages performed by a measurement. The two approaches are unified by the
ergodic hypothesis which posits the two to be equivalent, allowing the averaging over trajec-
tories performed by measurement to be replaced by ensemble averaging over microstates. A
second fundamental hypothesis states that an equilibrium system is equally likely to be in
any microstate with the correct equilibrium values of the macroscopic parameters. In other
words, the distribution function for the microcanonical ensemble is f = δ(H−U). In phase
space, the system, occupies an energy shell whose area Z is given by

Z(U) ≡
∫
δ(H − U) dΓ. (4.4)

The microcanonical ensemble correctly describes an energetically-isolated, macroscopic sys-
tem in thermal equilibrium.

For Hamiltonian systems, states in phase space are neither created nor destroyed, and the
total time derivative of the distribution function f is zero. For systems governed by more
general equations of motion, the creation of states in phase space must be taken into account,
but this aspect will not be treated here. At thermal equilibrium, the distribution function
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will depend on time only through the individual coordinates and momenta. The condition
df
dt

= 0 allows one to write

∂f

∂t
= −

∑
α

( ∂f
∂pα

· ∂pα
∂t

+
∂f

∂xα
· ∂xα
∂t

)
≡ −iLf (4.5)

and define the Liouvillian operator L. The Liouville equation 4.6 is the fundamental equation
of equilibrium and nonequilibrium statistical mechanics since it relates the time evolution
of f to the details of atomic motion, but its importance is more formal than practical. A
formalism for treating nonequilibrium dynamics using the Liouville equation is described in
Section 4.2.2.

At thermal equlibrium, the Liouville equation simplifies to∑
α

( ∂f
∂pα

· ∂pα
∂t

+
∂f

∂qα
· ∂qα
∂t

)
= 0. (4.6)

When f = f(H) one sees that

∂f

∂pα
=

∂f

∂H

∂H

∂pα
=

∂f

∂H

∂xα
∂t

and
∂f

∂xα
=

∂f

∂H

∂H

∂xα
= − ∂f

∂H

∂pα
∂t

. (4.7)

Consequently, for isolated systems (with time–independent Hamiltonians), thermal equilib-
rium is maintained by Hamilton’s equations of motion independently of the details of the
atomic–scale dynamics.

For a system of fixed N exchanging energy with its surroundings, the microcanonical ensem-
ble is inappropriate. To illustrate, divide an energetically isolated system into two subsytems
that exchange energy through the interaction of their respective particles. Labeling the sub-
systems particle numbers and Hamiltonians as N1, N2, H1, and H2, energy is exchanged
between the two systems because H1 depends on atoms in system 2, and vice versa. Denot-
ing the subsystems’ energies as U1 and U2, the quantities are constrained so that

N1 +N2 = N, U1 + U2 = U, dN1 = dN2 = 0, dU1 = −dU2. (4.8)

The total system is a microcanonical ensemble, so the best that can be said about the subsys-
tems is that Z(U) =

∫
Z1(U1)Z2(U −U1) dU1. For macroscopic systems with N,N1, and N2

large, the integral over U1 is dominated by its largest term, occuring when U1 = Ū1 and
U2 = Ū2 ≡ U − Ū1. To O( 1

N
) (this is why statistical mechanics works),

Z(U) ∼ Z1(Ū1)Z2(Ū2). (4.9)

Moreover, at U1 = Ū1
∂

∂U1

(Z1(U1)Z2(U2))U1=Ū1
= 0 (4.10)
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implies that the two subsystems are constrained by

∂ log Z1

∂U1

∣∣∣∣
U1=Ū1

=
∂ log Z2

∂U2

∣∣∣∣
U2=Ū2

. (4.11)

This constraint defines the entropy S1(U1) ≡ kB log Z(U1) and temperature T1 = ∂U1

∂S1
with

similar expressions for subsystem 2.

The distribution function for the canonical ensemble is obtained in the limit that one of the
subsystems is a heat reservoir providing or receiving energy to maintain the other subsystem.
So, taking one of the subsystems, say the second, as a reservoir: U2 � U1, N2 � N1 and
expanding about the state U1

kB log Z2(U2) = S2(U2) = S2(U)− U1

∣∣∣∣∂S2

∂U2

∣∣∣∣
U2=U

= S2(U)− U1

T
. (4.12)

Finally, exponentiating each side yields the form of Z and consequently f for subsytem 1 in
the canonical ensemble where energy varies near equilibrium due to contact with a thermal
reservoir

f(Γ) ∝ e−
U(Γ)
kT . (4.13)

Similar arguments apply to the grand canonical ensemble where the distribution function is

f(Γ) ∝ e−
U(Γ)−αN

kT (4.14)

where α is the chemical potential which is essentially the change in energy upon adding a
single particle to a system in equilibrium. The volume Z in phase space occupied by the
canonical and grand canonical ensembles is known as the partition function and is given by

Z ≡ 1

N !h3N

∫
f(Γ) dΓ. (4.15)

The constant of proportionality has been introduced for completeness but without justifica-
tion. It is given for compatibility with a quantum–mechanical system where the energy U
must be replaced by the Hamiltonian operator H.

4.1.2 Statistical Mechanics of a Harmonic Crystal

The coupling problem is considerably simplified if the material being modeled has crystalline
order, and virtually every theory or description of the dynamic behavior of a crystal makes
reference to the linear or harmonic material where the atoms interact via Hooke’s law.
Consequently, the results of the above section will be applied to a harmonic crystal. The
other relevant reason for taking the harmonic limit of the model Hamiltonian of Equation 4.1
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is that the displacement–based description of finite element codes is often overlaid on the
atomistic region in many coupling schemes, so that an atomic-scale description in terms of
displacements may be desired.

A perfect monatomic crystal’s lattice and atomic sites Xα can be generated by linear com-
binations of the linearly independent vectors aj

Xα =
∑
j

nαj aj. (4.16)

For a crystal with atom α displaced to position xα, the potential energy Φ can be Taylor-
expanded in terms of the displacements {uα ≡ xα −Xα}, and the result can be written as
a quadratic form of the uα:

Φ =
1

2

∑
α

∑
β 6=α

uα · D(Xα −Xβ) · uβ +O(u3) (4.17)

provided the displacements are small, |uα| � |aj|. The quantities D(Xα −Xβ) are known
as dynamical matrices, and their Xαβ ≡ Xα − Xβ-dependence is henceforth subsumed in
the notation Dαβ ≡ D(Xαβ) and Dα ≡ D(Xα). If Φ is assumed described by pair potentials
φαβ(xα,xβ), the Dαβ are given by

Dαβ = δαβ
∑
γ

∂2φαγ
∂xα∂xγ

− ∂2φαβ
∂xα∂xβ

(4.18)

Here, the φαβ will be taken as a single central-force potential φ(xαβ), and Equation 4.18 can
be rewritten as

Dαβ = δαβ
∑
γ

(Aαγ1 + BαγX̂αγ ⊗ X̂αγ)− (Aαβ1 + BαβX̂αβ ⊗ X̂αβ) (4.19)

with the coefficients Aµν and Bµν given by

Aµν ≡
1

Xµν

∣∣∣∣∂φ(x)

∂x

∣∣∣∣
x=Xµν

Bµν ≡
∣∣∣∣∂2φ(x)

∂x2
− 1

x

∂φ(x)

∂x

∣∣∣∣
x=Xµν

. (4.20)

When the variation of uα from site α to its neighboring ones is small, the Dαβ are related to
the elastic moduli cijkl by

cijkl = − 1

8Ω

∑
α

(
Xα
i Dα

jkX
α
l + Xα

j Dα
ikX

α
l + Xα

i Dα
jlX

α
k + Xα

j Dα
ilX

α
k

)
. (4.21)

Here Ω is the unit cell volume, and lowercase indices denote Cartesian components of their
respective vectors or matrices.
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Neglecting terms that are O(u3) and higher, the equations of motion are linear

mαüα =
∑
β

Dαβ · uβ, (4.22)

and they may be Fourier-transformed to obtain

−mαω
2ξλk =

∑
β

Dαβe
−ik·Xαβξλk ≡ Dkξλk. (4.23)

The original linear system for the N -atom crystal has been diagonalised yielding 3N inde-
pendent normal modes propagating according to the N wavevectors k

uα =
∑
k,λ

ξλke
−i(k·Xα−ω(k)t). (4.24)

The wavevector k is a reciprocal lattice vector while the direction, amplitude, and phase of
the motion are contained in the complex vector ξλk with λ = 1..3 indexing modes for each k.
The normal mode transformation diagonalizes the Hamiltonian so that it may be written in
terms of generalized momenta {pλk} and positions {qλk} as

H =
∑
k,λ

(
|pλk|2

2
+ ω(k)2 |qλk|2

2

)
. (4.25)

The relation between pλk, q
λ
k, and the normal modes of the crystal is

qλk = ω(k)|ξλk|e−iω(k)t, pλk = q̇λk. (4.26)

The modes are independent in the sense that a crystal described by Equation 4.22 and
excited to a single mode remains in that mode indefinitely—modes do not interact. This
statement is not true in general for nonlinear equations of motion.

Since the harmonic crystal has a diagonal Hamiltonian, the partition function can be written
as a product over normal modes

Z ∝
∏
k,λ

[∫
e
− (pλ

k)2

2kBT dpλk

∫
e
− (ω(k)qλ

k)2

2kBT dqλk

]
, (4.27)

and each integral may be evaluated separately. It is straightforward to evaluate the mean
kinetic energy, Tλk or potential energy, Uλ

k of a given mode using Equation 4.3 to obtain the
important result that

Tλk = Uλ
k =

kBT

2
. (4.28)

The total energy of the crystal is thus 6NkBT , and the normal mode amplitudes may be
obtained from Equation 4.26 as

|ξλk|2 =
kBT

2ω(k)2
. (4.29)
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Of course, this approach can say nothing about the phases of each normal mode.

The results of this section may also be obtained using either the generalized equipartition
theorem, 〈

p
∂H

∂p

〉
=

〈
q
∂H

∂q

〉
=
kBT

2
, (4.30)

or the virial theorem, 〈
3N∑
i=1

qiṗi

〉
= −3NkBT. (4.31)

Both of these theorems are valid for arbitrary Hamiltonians, but their derivation is more
lengthy than the brute-force approach used here. Most importantly, for the vast number of
systems with Hamiltonians whose kinetic energy has the same form as in Equation 4.1 , one
has 〈

1

2mα

pα · pα
〉

=
3

2
kBT. (4.32)

For the harmonic Hamiltonian, the generalized equipartition theorem confirms Equation 4.28
so that the average kinetic and potential energies are equal, but this result does not hold for
a more general potential.

Finally, these results were obtained in the canonical ensemble, so the energy is not strictly
constant but rather fluctuates about the mean values found above. For statistical mechanics
to be valid, the fluctuations must be small, and they may be characterized by the variance
of the Hamiltonian and calculated using the partition function

< δH2 >≡< (U −H)2 >=< H2 > − < H >2= 6NkBT
3. (4.33)

As N → ∞, the fluctuations become infinitesimal relative to U (which varies as N2), and
the equilibrium ensemble is equivalent to the microcanonical one.

4.2 Nonequilibrium Statistical Mechanics

4.2.1 Overview

Equilibrium statistical mechanics can only treat uniform macroscopic behavior, but any
MD–FE coupling at nonzero temperature may involve significant non–uniform or transient
material states. A weakness of the statistical treatment is that little reconciliation can be
affected between the macroscopic and microscopic viewpoints without f , and there are few
ways to reasonably obtain it away from equilibrium where even the most basic theory can
still be debated.
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The only spatial inhomogeneity that can be well-treated is coupling to an external field in
linear response theory (Section 4.2.4). Likewise, the only temporal inhomogeneity treated
in equilibrium statistical mechanics is relaxation to equilibrium after a fluctuation, and this
treatment is through linear reponse theory as well. Beyond linear response theory, a statis-
tically unlikely nonequilibrium state transforms itself into a statistically likely equilibrium
state through internal evolution as well as interaction with its surroundings. Often, the
internal and external interactions occur over vastly different timescales so that some sort of
internal equilibrium is achieved long before equilibrium with the surroundings is achieved.
In a normal mode language, high frequency modes correspond to rapid relaxation times since
they typically have short mean free paths while low frequency modes have longer mean free
paths and relaxation times and require much more global rearrangement (Section 4.2.5).

The treatment of temporal and spatially-inhomogeneous phenomena in a statistical frame-
work begins by considering correlated response to disturbances, and such considerations
lead to a generalized Langevin equation that treats the ”chaotic” microscopic motion statis-
tically. More phenomenologically, the major “textbook” [61, 62, 63, 64, 65, 66] components
of nonequilibrium statistical mechanics are the linear response of systems to small deviations
from thermal equilibrium or coupling to an external field and local equilibrium configurations
where macroscopically large subsystems of the still larger nonequilibrium system act as if in
equilibrium. To consider stronger deviations from the macroscopic homogeneity required of a
system in thermal equilibrium, one may continue to work in an equilibrium-based famework
and use hydrodynamics or kinetic theory to treat macro- and meso-scale deviations from
equilibrium, respectively. Another approach is to formulate a nonequilbrium theory from
scratch, generalizing the equilibrium definitions of macroscopic quantities to depend on a
larger set of variables. These aspects are summarized in turn.

4.2.2 Ensemble Equations of Motion

For nonequilibrium systems, the distribution function has time dependence if the system is re-
laxing towards equilibrium or perturbed from equilibrium. The Liouville Equation (Eq. 4.6)
has the formal solution

f(t) = e−iLtf(0) (4.34)

which could in principle describe relaxation to equilibrium. More importantly, for phase
quantities A(Γ) (i.e. functions of the atomic coordinates and momenta), Eq. 4.6 implies that
the phase quantities evolve according to

dA

dt
= iLA. (4.35)

Its formal solution is
A(t) = eiLtA(0), (4.36)
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and time–dependent ensemble averages can be written as

〈A(t)〉 ≡
∫

A(0)f(t) dΓ =

∫
A(0)e−iLtf(0) dΓ =

∫
A(t)f(0) dΓ. (4.37)

Ensemble averages in time–dependent systems can be thought of as an average of A(0) over
all initial microstates with distribution governed by f(t) (first integral in 4.37), or the average
may be taken over all current microstates subject to the initial distribution (final integral
above). Equilibrium distribution functions and equilibrium ensemble averages are stationary
in times.

Liouville’s equation has too many degrees of freedom for numerical treatment, but macro-
scopic response can be related to microscopic motion and inhomogeneities through a for-
malism introduced by Zwanzig[67] and refined by Mori[68] that uses Equation 4.37 as the
basis for an inner product space. For phase quantities A and B, the inner product is the
correlation function CAB

CAB(t) = 〈A(0),B(t)〉 ≡
∫

B(t)fA(0) dΓ. (4.38)

The time dependence of f is suppressed above to emphasize that this is an equilibrium
ensemble average and hence stationary in time. The physical interpretation of this inner
product is that orthogonal vectors are uncorrelated. Projection operators P and Q ≡ 1− P
decompose B into components parallel and orthogonal to A

PB(t) =
〈A,B(t)〉
〈A(0),A(0)〉

A =
CAB(t)

CAA(0)
A. (4.39)

Equation 4.35 can now be written as

dA(t)

dt
= eiLti(P + Q)LA(0). (4.40)

The P-term is the component of iLA(0) = Ȧ(t) parallel to A, so the only difficulty is the
treatment of the Q–term above. A few operator identities (see Chapters 3 and 4 of Evans [63]
for a complete derivation) allow the uncorrelated term to be written as the sum of two terms.
The simplest term is local in time, uncorrelated with A, and usually called the random force,
FA(t). The final term arising from the Q-term in Equation 4.40 has a nonzero correlation
with A arising from the cumulative effect of random forces over time. Finally, these three
terms give the generalized Langevin equation for A:

∂A

∂t
= CȦA/CAAA(t)−

∫ t

0

K(t′)A(t− t′) dt′ + FA(t). (4.41)

The first term is the equal-time, spatially-correlated response from the P term, and the
history-dependent memory kernel is given in terms of the random force as

K(t) = 〈FA(t)A(0)〉C−1
AA(0). (4.42)
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For all but the simplest systems, K(t) is unknown and must be computed numerically [69].

Langevin or projection-operator based formalisms have been extended to treat coordinates
and momenta symmetrically [70], inhomogeneous systems [71], and nonequilibrium MD sim-
ulations [72, 73]. Langevin or conceptually-related equations have also been applied to
atomistic simulations as a thermostat [74], to coarse grain in time [75] and space [76], and
to smooth over time [77]. The Laplace-transforms of L, P, and Q that are at the heart of
the operator identities leading to the generalized Langevin equation serve similar duty in the
bridging-scale formalism of Wagner [12].

4.2.3 Microscopic balance laws and hydrodynamics

Generally, hydrodynamics refers to the description of processes that occur much more slowly
than microscopic relaxation times and only describes processes where the magnitude of the
wavevector k approaches zero and frequency ω(k) = c|k|. In solids, then, hydrodynamic
modes are sound waves, and displacement by a long-wavelength wave is locally equivalent
to an energetically-degenerate uniform translation of the crystal. Modes satisfying these
restrictions obey macroscopic balance equations to low order in small k, and these restrictions
and results follow a macroscopic, phenomenological treatment of hydrodynamics [78]. In a
more thermodynamic, yet still phenomenological, picture, enough high–frequency collisions
occur during a low–frequency hydrodynamic excitation to maintain some sort of equilbrium.

In 1950, Irving and Kirkwood considered ensemble averages of microscopic balance laws for a
swarm of particles interacting through pair potentials[79]. They demonstrated that the above
results also arise from a microscopic formalism that is relevant to the atomistic–continuum
coupling problem. An atomic quantity Aα(t) formally exists only at atom α’s instantaneous
position xα(t) (i.e. these are Lagrangian coordinates). A field A(x, t) is defined by

A(x, t) =
∑
α

Aα(t)δ(xα(t)− x) (4.43)

with δ(x) the Dirac delta function. The units of A are those of the {Aα} divided by the
volume, the latter factor arising from δ(x), and the time dependence of field quantities will
be suppressed in the following, A(x) ≡ A(x, t). For a thermodynamic system, the quantities
of interest are the number, mass, momentum, and energy densities. They are respectively
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given by the following formulae:

n(x) =
∑
α

δ(xα(t)− x) (4.44)

ρ(x) =
∑
α

mαδ(xα(t)− x) (4.45)

p(x) =
∑
α

mαvαδ(xα(t)− x) (4.46)

e(x) =
∑
α

(1
2
mαvα · vα + φα

)
δ(xα(t)− x) (4.47)

The flow velocity v(x) is defined such that

ρ(x)v(x) = p(x), (4.48)

and local relative velocities uα(x) via uα(x) ≡ vα − v(x). Computing the time derivatives
of the above quantities allows the establishment of conservation laws

∂n

∂t
= −∇ · jn (4.49)

∂ρ

∂t
= −∇ · ρv (4.50)

∂ (ρv)

∂t
= ∇ · (σ − ρv ⊗ v) (4.51)

∂e

∂t
= ∇ · (v · σ − ev − q) (4.52)

The undefined quantities in the conservation laws follow:

jn(x) =
∑
α

vαδ(xα(t)− x) (4.53)

q(x) =
∑
α

(
(
1

2
mαuα · uα + φα

)
uα −

1

2

∑
β 6=α

xαβ(uα · Fαβ)

)
δ(xα(t)− x) (4.54)

σ(x) =
∑
α

(
mαuα ⊗ uαδ(xα(t)− x)− 1

2

∑
β 6=α

xαβ ⊗ FαβB
αβ
δ (x)

)
(4.55)

where Bαβ
δ (x) is given by

Bαβ
δ (x) =

∫ 1

0

δ(xβ + λxαβ − x)dλ. (4.56)
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The statistical-mechanical quantities Irving and Kirkwood considered are ensemble averages
of the above fields

ASM = 〈A〉 . (4.57)

They used Dirac δ-functions for their ensemble averages and merely stated that spatial and
time averages are necessary to obtain the macroscopic balance laws from these microscopic
ones.

Hardy’s corresponding value AH(x) [52] is obtained by averaging A over space with the
weighting function ψ(x),

AH(x) =

∫
A(x− x̃)ψ(x̃)dx̃ =

∑
α

Aα(t)ψ(xα(t)− x). (4.58)

Derivatives with respect to space and time commute with spatial-averaging; since the mi-
croscopic quantities satisfy balance laws for number density, mass, momentum, and energy,
Hardy’s averaged quantities do as well.

To obtain the hydrodynamic (i.e. long wavelength) limit of these balance laws, Irving and
Kirkwood do not leave Bδ in their macroscopic balance equations. They carry out an en-
semble average to transform Bδ to an integral of the pair correlation function, g(2)(r,R)
giving the probability of finding a particle at r + R given one at r. They retain only the
dominant terms in the Taylor expansion of the averaged Bδ, yielding for the configurational
contribution to the stress tensor

〈ρ(x)〉2

2m2

∫
R⊗R

R

dφ

dR
g(2)(x,R) dR, (4.59)

where φ is the (assumed) pairwise, centrosymmetric interaction potential. Alternatively,
these equations can be (and often are) Fourier-transformed and developed in k-space, too.
An advantage of this procedure is that the hydrodynamic or continuum limit is readily
available as the small-k limit, simplifying considerably the derivation of the quantities that
require the bond function for their determination.

The Irving and Kirkwood procedure shows that microscopic balance equations are satisfied
dynamically and by the ensemble–averaged quantities. The passage to the hydrodynamic
limit occurs when the corresponding macroscopic quantities vary slowly over microscopic
scales. In terms of a mean free path l and collision time τ , |k|l � 1, ωτ � 1 determine the
wave number and frequency responses well-treated by hydrodynamics. In the hydrodynamic
limit, the distribution function is the equilibrium one, the macroscopic mass, energy, and
number densities behave as the averaged microscopic ones, and the continuum balance laws
are achieved.

85



CHAPTER 4. STATISTICAL MECHANICS AND MULTISCALE PROCESSES

4.2.4 Linear Response

The equations of hydrodynamics are valid under many conditions, but they must be com-
pleted by constitutive relations, which to a first approximation are assumed to be linear
between flux and driving force. Calculation of these linear macroscopic quantities from the
microscopic properties of a material is the concern of the linear response formalism, which
begins by considering the weak deviations from equilibrium where linearity may be expected
to hold.

In the canonical ensemble, a heat bath is used as a means of introducing or quantifying
internal energy fluctuations δU(t) ≡ U(t)− < U > in the system. For equilibrium systems,
the likelihood p(δU) of a fluctuation depends on the entropy change δS(δU) it produces:

p(δU) ∝ e
− δS(δU)

kB , (4.60)

and similar formulae hold for fluctuations in other macroscopic quantities. Equivalently,
these fluctuations are Gaussian random processes in the thermodynamic limit since entropy
is maximized and terms higher than second order in the expansion of Equation 4.60 are
negligible. Consequently, fluctuations of A(t) are characterized entirely by the ensemble
average of the second moment 〈δA2〉 ≡ 〈A2〉 − 〈A〉2 6= 0, and comparison of the second to
higher moments of the momentum distribution in an MD simulation provides an effective
measure of how equilibrated the region is. The exact form of the variances of fluctuating
quantities depends on the ensemble used, and the application to MD simulations is treated
in Reference [80]. Fluctuations in nonequilibrium systems are examined in Reference [81].

There is also an intimate relation between fluctuations in macroscopic quantities and the
final stages of relaxation towards equilibrium. Statistical mechanics traditionally views the
system-heat bath interaction as one between a subsystem and its surrounding material.
Consequently, the mechanisms of energy exchange between system and reservoir are the
same as those of energy transport within the system, or more strongly, if an equilibrium
system is experiencing a fluctuation, it is impossible to know the system is at equilibrium
until the fluctuation dissipates.

Assuming a linear relation between response and driving force, the constant of proportion-
ality can be calculated from ensemble averages depending on either a quantity or its time
derivative. To make the discussion definite, consider heat transport where the driving force
for heat flux 〈q〉 is the temperature gradient ∇T . The heat equation

∂T

∂t
= ∇ · 〈q〉 (4.61)

is completed by the linear constitutive law of Fourier

〈q〉 = −κ∇T (4.62)
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with the thermal conductivity denoted κ. The heat flux is written as 〈q〉 rather than q to
emphasize that the proper quantity appearing in Fourier’s law is an ensemble average of a
microscopic heat flux such as Hardy’s q.

The first form for the conductivity is an Einstein relation that becomes exact in the long
time limit

κ = lim
t→∞

1

2V kT 2t
〈(Iq(t)− Iq(0))

2〉, (4.63)

where ∂
∂t

Iq ≡ q. This equation is obtained by calculating the average response to a temper-
ature perturbation at the origin, so Fourier’s law is assumed and then shown to have validity
in the small-k limit.

Equivalent to the Einstein relation is the Green-Kubo relation which relates the thermal
conductivity to an autocorrelation function

κ =
1

V kT 2

∫ ∞

0

Cqq(t)dt, (4.64)

following from Equation 4.63 by the definition of the derivative and that equilibrium ensem-
ble averages are stable with respect to time averages. In the above equation, the thermal
conductivity is a scalar and the correlation function is 〈q(t) · q(0)〉 since the ensemble av-
erage yields isotropic repsonse. The quantities appearing in the Green-Kubo relations are
time derivatives of the quantities appearing in the Einstein relations, and an advantage of
these linear relations is that, by the ergodic hypothesis, they require no knowledge of the
distribution function and can be computed from MD simulations.

Since the constitutive laws obtained by Einstein or Green-Kubo relations are derived from
a perturbation of the distribution function, it is possible to treat nonlinear response by
continuing the perturbation expansion further. This continued expansion is not treated here
since it is confined to mechanical effects that can be represented in the Hamiltonian as
an external field. Such a representation is not practically possible with thermal variables,
so nonlinear response is of limited utility in the atomistic-continuum coupling problem.
Linear response theory suffers from this same shortcoming, but there are enough different
derivations of the linear constitutive laws for the thermal conductivity that one does not
have to explicitly represent the temperature gradient as a mechanical perturbation.

4.2.5 Local Equilibrium

For a system subject to perturbation by external fields, there are well-developed techniques
for computing both linear and non-linear response of nonequilibrium systems. For a system
subject to a thermal perturbation or prescribed temperature fields, the machinery used for
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arbitrary external fields can only be applied by esoteric mappings converting the temperature
variation into a mechanical one.

The most intuitive description of a weakly nonequilibrium system is one where small portions
of the system act as if they are essentially in equilibrium, although macroscopic quantities
may vary spatially. This Local Equilibrium (LE) hypothesis is essentially the underlying
assumption of thermomechanical models where it is assumed that temperature, energy, and
entropy fields completely describe a body (although in reality the thermomechanical contin-
uum is described by rational thermodynamics[82] which is an extension of classical thermo-
dynamics rather than modern statistical mechanics), and LE is the underlying assumption
of hydrodynamics (previous Section) and kinetic theory (Section 4.2.7). To achieve this lo-
cal equilibration, one demands that high-frequency modes (short lifetimes, ’chaotic’ atomic
motion) quickly thermalize while long wavelength modes reponsible for collective motion
towards global relaxation thermalize much more slowly[83, 84]. For an inverse temperature
field β(x, t) ≡ 1/kT (x, t) and fields for the Hamiltonian density H(x), number density n(x),
and chemical potential µ(x), the system as a whole has the grand-canonical distribution
function

f(t) ∼ e−
R
β(x,t)(H(x,t)−µ(x,t)n(x,t)) dx. (4.65)

The proportionality constant is determined by the normalization of f over phase space.
For a system with flow velocity field v(x), the energy H appearing above must be in the
commoving frame (at local equilibrium v(x) = 0), and Equation 4.65 is generalized to

f(t) ∼ e−
R
β(x,t)

[
H(x,t)−µ(x,t)n(x,t)− 1

2
ρ(x)v(x)·v(x)

]
dx. (4.66)

Beyond these global distribution functions, the heart of the LE hypothesis is that local
ensemble averages can also be computed based on the values of the fields at arbitrary x.
The internal energy density field U(x, t) = 〈H(x)− 1

2
ρ(x)v(x)2〉 corresponds to the ensemble

or time average of Hardy’s thermal energy density et(x) and includes both strain energy and
thermal vibrations unless strain (or stress) is explicitly incorporated into the ensemble as an
independent macroscopic variable. The chemical potential need have no direct relevance to
Hardy’s formalism unless an external field is acting on the system or it is necessary to couple
MD simulations from a nonconstant-N ensemble to the continuum.

Virtually any definition of a temperature field in an MD or coupled system that relies on an
equilibrium measure of temperature is beholden to the local equilibrium hypothesis for its
justification. The local equilibrium approach has the virtue of being intuitive and relatively
easy to visualize compared to most statistical descriptions of mechanical systems, but it can
fail in the implementation for there is a priori no completely general way to define it as a
molecular dynamics post-processing step.

The LE distribution function of Equation 4.66 does not admit transport processes, for the
flow velocity and current densities necessarily have ensemble averages of zero in the local
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frame. In order to incorporate transport processes, Equations 4.66 and 4.65 are generalized as
in the linear response to a perturbation field, and no new results are produced. To first order,
then, there is no operational need to distinguish between a local equilibrium calculation and
a global equilibrium one. It may be that higher order local equilibrium corrections (which
show up, for instance, if the distribution of fluctuations is seen to deviate from the Gaussian
equilibrium) are important to ensure that a local equilibrium formalism is applied correctly.

The LE hypothesis is often invoked to explain results and concepts and less often tested.
It is semi-directly tested in an MD simulation of shear fluid flow [85] where a form of local
averaging is used to smooth over thermodynamic quantities and test if the local velocity
distribution is consistent with an LE one. Another test of the range of validity of the LE
hypothesis is applied to a φ4 field theory and the Fermi-Past-Ulam model by Aoki and
Kusnezov [86, 87, 88].

4.2.6 Extended Irreversible Thermodynamics

To go beyond the LE approach and describe more general short-time, high-frequency phe-
nomena, one must either know the distribution of microstates during the nonequilibrium
process or construct a more robust theory. In the latter approach, equilibrium statistical
mechanics is extended to depend on macroscopic variables capable of characterizing thermal
and spatial inhomogeneities. This extended irreversible thermodynamics (EIT) formalism
constructs an entropy and hence a distribution function that depends on heat flux and other
dissipative fluxes[89, 66] characteristic of the problem being studied in the same manner that
one is free to choose the macroscopic quantities of equilibrium statistical mechanics that de-
fine the ensemble of interest. In another sense, EIT attempts to extend the description of
hydrodynamics (Section 4.2.3) by admitting the fluxes as primary quantities that are no
longer constrained to obey linear and local constitutive laws.

Formally, there is very little difference between equilibrium statistical mechanics and EIT
beyond the generalizations involved in the extended variable set. For instance, if the heat
flux q is the only new variable introduced as a macroscopic paramter, the entropy S is a
function of internal energy U and q

dS =

(
∂S

∂U

)
q

dU +

(
∂S

∂q

)
U

· dq. (4.67)

The equilibrium expressions for the macroscopic quantities become leading terms in expan-
sions depending on the dissipative fluxes. For example, a nonequilibrium temperature is
defined by the reciprocal of the first term on the right hand side above:

T−1(U, (q)) ≡
(
∂S

∂U

)
q

∼ T−1
eq (U) + a(U)q · q, (4.68)
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where Teq is the typical equilibrium definition of temperature [90]. A review and critique
of the EIT approach to temperature is given by Eu and Garćı-Coĺın [91]. Equation 4.67
implies there is an additional thermodynamic quantity conjugate to q and proportional to
the derivative with respect to q, and this term describes the entropy flux’s dependence on
q [66], which is proportional to q · q near the equilibrium state.

Among the appealing results of EIT are that it is able to obtain the Maxwell-Cattaneo tele-
graph equation for thermal conductivity as the evolution equation for q while LE treatments
cannot go beyond Fourier’s Law. However, the procedure used to obtain this heat conduc-
tion equation is subject to the same process of dropping higher-order terms and introducing
linear relationships that occur in LE thermodynamics; the only difference is the extended
parameter space. Without stronger developments in experimental verification or validation
by simulation, EIT has no more fundamental claim to correctness than the more classical
treatments it supplants. Consequently, any attempt to apply statistical-mechanical results to
the problem of atomistic-continuum coupling must ultimately be labelled phenomenological.

4.2.7 Kinetic Theory

When attempting to incorporate nonequilibrium effects into the distribution function and
to go beyond the hydrodynamic limit and handle terms higher than order k2, the more
sophisticated approach of kinetic theory and the Boltzmann transport equation must be
used. The basic tenet of kinetic theory is to treat the particles as occasionally colliding
but otherwise independently distributed. In the independent limit, the distribution function
decomposes into products of 1-particle distribution functions, and the effect of collisions is
seen in their modification of the distribution functions after a collision. In fluids, collisions
are collisions, while in solids, collisions are phonon creation and annihilation processes. Most
decompositions are aimed at treating the fluid case, although some effort has been exerted to
treat solids explicitly. [92] More often solids are treated as a phonon gas, and the results for
the theory applied to fluids carry over more directly. [93] The distribution function for a 1D
phonon gas experiencing a heat flux has been obtained by Camacho. [94] A more in-depth
treatment of the phonon transport and the Boltzmann transport equation is available. [95]

4.3 Relevance to the Coupling Problem

The coupling approach of replacing atomistic regions experiencing only long–wavelength dis-
turbances (i.e. at the continuum limit) with less computationally–expensive finite elements
is relatively well–defined for mechanical equilibrium at zero temperature. For thermal equi-
librium, the continuum limit of an atomic system is approached only in an average sense
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since displacement and velocity fluctuations necessarily have short wavelength components.
For a nonequilibrium system at nonzero temperature, the situation is further complicated
by the possible presence of temperature gradients and flow.

For the thermal equilibrium, spatially uniform system, the timescale for obtaining the con-
tinuum limit in an MD system is much longer than either the MD or FE timestep would
be in practice. If this were not so, there would be no need to simulate the atoms. Con-
sequently, it is an open question what form an appropriate continuum constitutive model
should take for the nonzero temperature coupling problem. Regardless of consitutive mod-
els or timescale effects, the N−1-dependence of fluctuations on particle number has difficult
implications for any attempt to transfer thermodynamically–significant information between
the MD and FE regions. For a typical coupling problem, there may be 102 atoms per finite
element; fluctuations could be considerable. These fluctuations make it difficult to define a
meaningful temperature field. At best, correspondence between a coupled simulation and an
MD simulation of equivalent systems at nonzero temperature can be expected in the case
of thermal equilibrium, and the equivalence is only validated after appropriate averaging is
carried out.

To be more quantitative the dynamics of coarse–grained variables, assumed to be analogous
to the FE degrees of freedom in a coupled simulation, are considered. The coarse grained
displacements ūi, i ∈ {1..NCG}, NCG < N obtained from atomic displacements uα, α ∈
{1..N}

ūi = Piαuα. (4.69)

We adopt the convention that Arabic subscripts label coarse–grained quantities while Greek
subscripts continue to label atomic quantities. As written, the projection operator acts
independently on each component of the atomic displacements. Equivalent notations may
be developed with the operators as matrices acting on the concatenation of all displacment
vectors, [12] or as higher–order tensors like Piαδjβ. To retain only the essential indices, the
most compact notation is preferred here.

This form of coarse graining is compatible with Rudd and Broughton’s CGMD method, [10],
Wagner’s bridging scale method, [12] the quasistatic coupling of Chapter 2, and Hardy’s
formulae for regular meshes. [52] The terminology used below is mainly from the bridging
scale method. The coarse–grained variables can be identified with finite–element nodes and
finite element shape functions interpolating between the nodal displacements can determine
a “coarse scale” portion of each atom’s displacement uα

ūα = ū(Xα) = Nαiūi = Pαβuβ. (4.70)

The N ×NCG matrix Nαi interpolates the displacement field from the nodal values while the
N×N projection matrix Pαβ performs the equivalent operation on the atomic displacements.
Consequently, the projection P is the composition of N and P, P = N · P. The total atomic
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displacements can be written as the sum

uα = ūα + u′α, (4.71)

where the remainder u′α = (δαβ − P)uβ ≡ Qαβuβ is denoted the “fine scale” component.
The exact form of the operator P is determined by the nodal locations and interpolating
functions. [10, 12] The nodal locations, choice of interpolating functions, and atomic reference
configuration completely determines N. The {ūi} are chosen to minimize∑

α

mαu
′
α · u′α, (4.72)

which implies
P = (NTMN)−1NTM, Mαβ = mαδαβ(no sum on α). (4.73)

Finally, there are the useful relationships P2 = P and P · Q = 0. These operators are time
independent, so that coarse scale velocity or momenta are obtained by convolving the atomic
velocities or momenta, respectively, rather than the atomic displacements. In Fourier space,
the projection operators act as low pass filters where the mesh size determines the wavelength
cutoff and determines how the continuum limit is approached as k → 0.

The dynamics of the {ūi} are completely determined when all atomic degrees of freedom
are specified. When they are not, as in a coupled MD–FE simulation, the dynamics must
be treated approximately. The bridging scale method neglects the fine scale completely in
regions without atoms and treats it statistically at the interface between the atoms and the
continuum. This statistical treatment is similar to the GLE but relies on the assumption that
the force is linear in the fine scale degrees of freedom. At nonzero temperature for realistic
atomic systems, this assumption has not been examined. A Cauchy–Born constitutive model
is used for the FE region. CGMD linearizes the interatomic force law using dynamical
matrices (Sect. 4.1.2); this linearization is apparently maintained even if the nodal and
atomic positions coincide. Both CGMD and the bridging scale assume the lacking fine scale
degrees of freedom are distributed canonically and compute the missing energy to be kBT
per missing degree of freedom, but these missing degrees of freedom do not have a direct
effect on the dynamics of the continuum.

Averages (over time or ensemble averages) of the coarse and fine–scale quantities are projec-
tions of the atomic averages:

〈ūα〉 = Pαβ 〈uβ〉 δūα = ūα − 〈ūα〉 = Pαβδuβ. (4.74)

Fluctuations in atomic velocities are related to temperature, and for linear force laws, fluctu-
ations in atomic displacements are similarly related (Sect. 4.1.2). Here, we assume isotropic
response where fluctuations are characterized by〈

δu2
α

〉
= 〈(δuα) · (δuα)〉 . (4.75)
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For equilibrium systems, spatial homogeneity implies that fluctuations in the atomic dis-
placements or velocities are uniform over space and consequently independent of the particle
label 〈

δu2
α

〉
=
〈
δu2

β

〉
≡
〈
δu2
〉
∀α, β. (4.76)

For coarse and fine–scale quantities, the global nature of the L2 projection operator P leads
to spatial correlations appearing in the fluctuation formulae for the coarse–scale atomic
displacements. They are given by〈

δū2
α

〉
= 〈PαβδuβPαγδuγ〉 . (4.77)

A similar relation for the fine–scale displacements gives〈
(δu′α)

2
〉

= 〈QαβδuβQαγδuγ〉 . (4.78)

Finally, the orthogonality of P and Q ensure that〈
δu2

α

〉
=
〈
δū2

α

〉
+
〈
(δu′α)

2
〉

(4.79)

so that there are no cross correlations between the coarse and fine scales

〈δu′αδūα〉 = 0. (4.80)

Similar formulae hold for the nodal displacements, whose fluctuations are given by〈
δū2

i

〉
= 〈PiαδuαPiβδuβ〉 , (4.81)

and a similar formula exists for the velocity fluctuations. With the relation N · P = P, the
atomic coarse scale and nodal fluctuations at thermal equilibrium can be compared. Spatial
homogeneity at thermal equilibrium implies that the nodal fluctuations will be independent
of the node label i. The atomic coarse–scale fluctuations can be written in terms of the
nodal ones 〈

δū2
α

〉
= Nαi

〈
δū2

i

〉
=

(∑
i

Nαi

)〈
δu2

nodal

〉
(4.82)

where 〈δu2
nodal〉 denotes the averaged nodal fluctuation. For typical finite–element shape

functions, the sum is unity, indicating that the two fluctuations will be identical; this is no
surprise since the coarse scale is merely the interpolation of the nodal quantities.

These simple fluctuation formulae have relevance to the coupling problem. First, if one
associates long–time or ensemble averages with a continuum at uniform temperature, one
demands that

〈
(δūα)

2〉→ 0 so that the coarse scale can be associated with a continuum dis-
placement field. In this limit, the fine scale fluctuations equal the atomic fluctuations. This
immediately leads to the conclusion that a coupling method can only neglect anharmonic
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effects in the fine–scale degrees of freedom if they are negligible in the entire MD simulation
region and not just at the MD–FE boundary. Whether or not anharmonicity is indeed negli-
gible is strongly problem—dependent. In a coupled simulation at nonzero temperature, one
only need keep track of

〈
(δūα)

2〉 or its equivalent nodal quantity in order to have an error
estimate for how well the continuum limit is approximated.

All the above manipulations of fluctuation formulae remain valid when atomic velocities are
used rather than the displacement. The formulae for the velocities imply that there will
be a portion of the atomic temperature measure associated with the coarse–scale degrees of
freedom. Specifically, an instantaneous atomic measure of temperature Tα is given by

Tα ≡
mα

kB
δv2

α =
mα

kB

(
(δv̄α)

2 + (δv′α)
2
)
. (4.83)

At thermal equilibrium, 〈Tα〉 = T by the generalized equipartition theorem (Sec. 4.1.2). Once
again, if the continuum limit is associated with the vanishing of the coarse scale fluctuations,
the fine–scale velocities contain the thermal vibrations of the atoms

Tα ≈
mα

kB
(δv′α)

2
. (4.84)

This observation leads to a nodal measure for temperature. Although the nodal projection
of fine–scale quantities is zero, the nodal projection of the second moments of the fine–scale
quantities is not. Consequently, define the instantaneous nodal temperature Ti at node i as

Ti(t) ≡ PiαTα. (4.85)

A similar relationship defines the time–averaged nodal temperature 〈Ti〉 as the projection of
the time–averaged fine–scale velocity fluctuations. If the interatomic force law is linear or
anharmonicity is neglible, the equipartition theorem can also relate displacement fluctuations
to temperature. Consequently, a similar nodal measure of the second moment of the fine–
scale displacements is defined

(δu′i)
2 ≡ Piα (δu′α)

2
. (4.86)

If this measure varies linearly with temperature, the system can be said to be in a regime
where equipartition is valid, and the constant of proportionality can be used to define an
effective spring constant κeff for the interatomic interactions

kB 〈T 〉 = κeff

〈
(δu′i)

2
〉
. (4.87)

The effective spring constant need not be the equilibrium spring constant for the 0K lattice.

These fluctuation formulae are all for instantaneous averages; the time correlation functions
(Eq. 4.38) of the coarse–grained atomic quantities are also relevant to the coupling problem.
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The correlation functions of the atomic–scale quatities Cūū(t) and Cu′u′(t) are introduced;
the cross correlation Cūu′(t) is 0. They nonzero correlations are subject to the constraint

Cuu(t)
〈
δu2
〉

= Cūū(t)
〈
δū2

α

〉
+ Cu′u′(t)

〈
δ (u′α)

2
〉
, (4.88)

which follows from Eqs. 4.38 and 4.79. At thermal equilibrium, these functions are spatially
uniform, so no particle label α appears above. In practice, they would be calculated from
an equilibrium MD simulation computing over many time origins and averaging over many
atoms to improve the statistics. The time correlation functions are special cases of

Cuu(r, t) =
〈δuα(t) · δuβ〉

〈δu2
α〉

, Xα −Xβ = r (4.89)

with similar relations for the coarse and fine–scale quantities. To examine only temporal
correlations, the C(t) may be appropriate, while the C(r, t) are required to examine spatial
correlations.

If an error measure based on coarse–scale fluctuations is used in a coupled MD–FE simulation,
then it is also appropriate to compare Cu′u′ with Cuu as an error measure. More importantly
for the nonzero–temperature coupling problem, the correlation functions should be the pri-
mary means of obtaining error measures for estimated quantities like a nodal temperature Ti.
If Ti is thought of as something the nodes sample from the atomic data, then the number of
good samples obtained from space and time averages depends on the length and time scales
of the averaging and the length and time scales determined by temperature–temperature
autocorrelation function. The length and time scales determined from the correlation func-
tions are the correlation lengths and times, which are most easily obtained by assuming an
exponential decay and fitting the correlation function to C(t) ∼ e−t/τ or C(R) ∼ e−l/λ to
estimate a correlation time τ or length λ. Sampling intervals less than τ or averaging over
a length smaller than λ does not yield statistically–independent data, so little is gained for
a temperature estimate at scales less than these. Beyond providing an error measure for
how well a quantity like temperature can be estimated from real–time data, which is the
interest of this Chapter, the correlation lengths and times provide indications about how the
coarse–scale quantities should behave. For times or lengths much longer than these scales,
one may hope to speak of continuum dynamics, while for times much shorter, the motion
is almost completely deterministic and may depend strongly on the fine–scale components.
The intermediate range is most likely where nonzero–temperature MD–FE coupling methods
would be needed, and these scales require some combination of continuum dynamics with
some effective way to mimic the effects of the missing fine scale degrees of freedom.

4.3.1 Numerical Examples

To investigate the dynamic behavior of coarse–grained and coarse- and fine–scale kinematic
quantities, MD simulations of FCC Cu (a = 3.63 Å) atoms interacting with the EAM
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Figure 4.1: Schematic of the system used to evaluate the statistics of coarse–grained quan-
tities. The atoms are black points while the finite–element nodes and edges are in blue.
The axes are in units of the lattice constant a, and periodic, stress–free boundary condi-
tions are applied in all three coordinate directions. The actual system dimensions were
8× 8× 8a, a = 3.63 Åwith a varying element size lFE.

potential in a cube of side length 8a with periodic, stress–free boundary conditions on all
faces were performed. The temperature of the system is thermostatted to 300K, and the
system is equilibrated and allowed to expand to a new equilibrium lattice spacing before
any dynamic quantities are computed. To compute nodal quantities, a constant energy
simulation, i.e. the constant–pressure boundary condition is removed, is used with the same
periodic boundary conditions. The reference configuration is taken to be the 0 K lattice.
A single finite element hexahedron of varying side length lFE is placed inside the periodic,
cubic simulation box, and the operator P used to determine the nodal displacements from
the atomic ones. A schematic of the system geometry is shown in Fig. 4.1.

A timestep of t0 ≡ 1fs is used for all simulations, although the atomic data is sampled
only every 200 fs to compute the coarse and fine scale displacements as well as the nodal
quantities. Typically, 250 sampled values, corresponding to a time of 50000 fs, are used to
compute a time–averaged nodal quantity or its fluctuations. This time interval is much larger
than the ratio of FE to MD timesteps is expected to be in a typical coupled simulation, but
such a large sampling is required to minimize statistical errors. This difficulty of such a long
time being required to obtain reasonable thermodynamic information from the MD data is
a fundamental one faced by the coupling problem at nonzero temperature.

Since the reference configuration is the 0K lattice, thermal expansion appears in the time–
averaged nodal displacements as a uniform strain. Thermal vibrations are fluctuations about
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Figure 4.2: The nodal fluctuations δū2
i (t) calculated as averages over the time interval dt.

Although all values of dt shown here reproduce the average 〈δū2
i 〉 acceptably, computing a

nodal quantity over a longer time interval produces a more smoothly varying quantity. To
obtain a nodal quantity that is temporally this smooth, the averaging time is over a minimum
of 1000 MD timesteps—considerably larger than the FE to MD timestep ratio that could be
used in a coupled simulation.

the time–averaged, 300K equilibrium atomic or nodal positions. Running averages of the
second moment of instantaneous fluctuations of the nodal displacements ui over different
time intervals is shown in Fig. 4.2, illustrating the difficulty of obtaining smoothly–varying
nodal quantities at nonzero temperature. The equivalent continuum for this system is a
uniform stress (due to thermal expansion), uniform temperature system. In contrast, the
nodal displacements are uniform only in an average sense over large spatial regions or over
long times. Consequently, the instantaneous coarse–scale velocity is nonzero although the
equivalent continuum does not have a flow velocity. The nonzero second moments of the
nodal velocity are proportional to a coarse–scale temperature that is nonzero unless the
element size is very large. The element size lFE influences the sampling properties of the CG
quantities primarily through the number of sampled atoms in an element, Ns ∼ (lFE/a)

3.
The second moments of the nodal displacement fluctuations plotted against Ns, which is
not a monotonically increasing function of element size, are shown Fig. 4.3. As the element
size increases, the number of atoms within the element remain constant for certain ranges
of lFE as different shells of atoms are included in the element. This fact is reflected in
the graphs plotted against Ns rather than again lFE. The second moment of the coarse
scale velocity decreases with element size, and Fig. 4.4 shows that the fine–scale kinetic
energy is the correct temperature measure for large elements. Analysis of the coarse and
fine scale velocities shows that 〈v̄2

α〉 /
〈
(v′α)

2〉 ∼ l−3.2
FE . Since l3FE ∼ Ns, this indicates that

97



CHAPTER 4. STATISTICAL MECHANICS AND MULTISCALE PROCESSES

0.04 0.08 0.12

0.05

0.1

0.15

0.2

0.25
(<δui  >)   ½  (Å)

(Ns)
-½

2_

Figure 4.3: Time–averaged nodal displacement fluctuations
√
〈δū2

i (t)〉 plotted against
1/
√
Ns. The dotted line shows a linear least–squares fit.
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Figure 4.4: The nodal temperature 〈Ti〉 plotted against element size lFE. For the largest
elements, virtually all of the thermal vibrations are included in the nodal temperature which
approaches the atomic temperature 300K.
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Figure 4.5: The Ns-dependence of the nodal temperature fluctuations
√
〈δT 2

i 〉. The different
values of lFE with the same Ns also illustrate the stronger dependence on lFE at small lFE.

the nodal temperature varies as N−1
s , as it would for independent sampling of the atoms.

The suitably of Ti then is primarily an effect of the increased number of atoms sampled for
node i’s temperature value. The Ns-dependence of the temperature measure is shown in
Fig. 4.5. Similarly, in this system at 300K, the displacement fluctuations can characterize
the temperature, too, indicating that anharmonic effects are not strong at this temperature.

Recently, the projection of the v2
α = v̄2

α+(v′α)
2 to nodal positions was proposed as a temper-

ature measure. [96] This temperature measure has two important flaws. First, there is no
basis for assuming the fine–scale degrees of freedom are the only ones distributed canonically
yet still associating a temperature measure computed from both the coarse and fine scale
components. Second, although v2

α ≈ (v′α)
2 in systems with zero flow as the element size

increases, there is no justification for including atomic contributions to the flow velocity in
a temperature measure. Both of these flaws are incompatible with equilibrium (the canon-
ical ensemble) and local equilibrium (the flow velocities) statistical mechanics. The correct
temperature measure can depend only on the fine–scale velocities.

For a more stringent test of the formalism’s ability, simulations in a long strip of FCC Cu
(Fig. 4.6) are also performed. A constant amount of heat is added at one end and the same
amount removed at the other, creating a constant heat flux and uniform temperature gradient
along the rod after a nonequilibrium steady state has been established (see Sect. 6.6). There
is a trade–off between resolving transient or spatially varying phenomena and obtaining good
enough statistics for a simple constitutive model to reproduce the observed behavior. For a
sampling interval of t0, Figures 4.7 and 4.8 show that smaller element sizes do not reproduce
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Figure 4.6: Schematic geometry for the nonequilbrium system. A uniform temperature
gradient of 100 K is established between the cold end (blue) and the hot end (red). The axes
are in units of a = 3.63 Åwhile the actual system used was 40× 8× 8a. The finite element
connectivity is demonstrated by the colored edges. Cubes of side lFE are placed along the x
direction, and the number of elements in the overlaid finite–element system depends on lFE
since the MD system size is fixed.
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Figure 4.7: The time–averaged nodal temperature 〈Ti〉 for a smaller sampling interval. The
time–averages are computed by sampling every 2 fs for a total time interval of 500 fs—two
orders of magnitude smaller than those in the other plots. This small interval is clearly
inadequate to resolve ∇T . For comparison, the time–averaged temperature 〈Tα〉 computed
from all atoms is also shown.
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Figure 4.8: The fine scale fluctuations 〈δ(u′i)2〉 for a smaller sampling interval.

10 20 30 40 50

200

250

300

x (Å)

<Ti > (K)

<Tα>

lFE = 3.6 Å

lFE = 5.0 Å

lFE = 7.5 Å

Figure 4.9: The time–averaged nodal temperature 〈Ti〉 for a larger sampling interval. Com-
pare to Fig. 4.7. Although the smallest element sizes consistently underestimate the tem-
perature, they do generally get ∇T correct.

101



CHAPTER 4. STATISTICAL MECHANICS AND MULTISCALE PROCESSES

10 20 30 40 50

0.025

0.05

0.075

0.1

0.125

0.15

0.175

lFE = 3.6 Å

lFE = 5.0 Å

lFE = 7.5 Å
<δui >

2_
 (Å2)

x (Å)

Figure 4.10: The coarse–scale fluctuations 〈δū2
i 〉 decrease with increasing lFE. Except for

boundary affects attributable to the constant heat flux boundary conditions, they are inde-
pendent of the local temperature along the strip.

the temperature gradient. Variation of element size lFE reveals the number dependence of
the nodal temperature measures (Fig. 4.9). Figs. 4.10 and 4.11 show the nodal coarse and
fine scale fluctuations for different element sizes along the length of the rod. The 〈δū2

i 〉 at
the smallest values of lFE are accompanied by more thermal, vibrational energy appearing in
the coarse scale. For these smaller element sizes, the excess temperature in the coarse scale
is accompanied by the consistent underestimation of the nodal temperatures Ti, as shown in
Figs. 4.9 and 4.11.

Time–averaging is seen to be a crucial ingredient to produce correspondence between atom-
istic and continuum system for these model systems. The time interval required to produce
acceptable error measures, determined here by the averages of the fluctuations of the nodal
quantities, depends on the element size lFE. The dependence of the time interval on lFE is a
reflection that the error measures depend on the number of statistically independent samples
of the nodal dislacements or temperatures. This number of samples is roughly

Ns ∼
lFE
λc

∆Ts
τc

, (4.90)

where the material and problem dependence enters through the correlation length λc and
correlation time τc (Sect. 4.3). The dependence of the nodal fluctuations on the number of
atoms contributing to the value of the nodal quantity reveals that the above arguments based
on statistical independence are correct for this material and this range of temperatures.

For the coupling problem, there are three regions of interest: the one in which the continuum
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Figure 4.11: Nodal projection of the fine scale fluctuations for different element sizes reveals
that they may be used as a temperature measure in this steady–state simulation. This
is essentially a computation of a coarse–grained Debye–Waller factor for the system as a
function of the local temperature along the length of the system.

element size and/or timestep is much larger than the correlation time and/or length, the
one in which these quantities are comparable, and the one in which the element size and
timestep are much smaller, i.e. they are on the order of the lattice spacing and molecular
dynamics timestep. In the first regime, the continuum limit can be said to have been
obtained, although the fluctuations in the continuum quantities may not be representable
at the continuum level. In the third regime, the nodes act just like atoms, although in some
sort of weakly–averaged sense. The middle regime is the least clear of the two, for it is
intermediate between deterministic and stochastic behavior.

4.4 Conclusions

A typical multiscale problem is archetypically mesoscale; it removes degrees of freedom from
the atomic–scale so that some statistical treatment is necessary to correctly describe the
dynamical evolution of the coarse–grained variables at nonzero temperature. Unfortunately,
the degree of coarse–graining and the system sizes simulated are not macroscopic so that
the O(1/N) correctness in the thermodynamic limit leading to smooth hydrodynamics is not
directly applicable, even to coupled systems in thermal equilibrium.

The state of the art in nonequilibrium statistical mechanics is not adequate for describing the
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evolution of the coarse–grained variables, but the Mori–Zwanzig formalism provides at least
a basis for treating the removed degrees of freedom. From a simpler approach, elementary
statements based on fluctuation formulae and correlation functions have strong implications
on how the coarse–grained variables should behave depending on the relative length and
time scales of the FE and MD simulations.

Finally, it is worthwhile to point out that MD simulations have been successful in simulating
both equilibrium and nonequilibrium systems through methods that started out as ad–hoc
methods and only later began to have a formal justification for their correctness. Coupling
algorithms are in a similar state now, so the lack of justification or even correctness for a
method at nonzero temperature does not have to be viewed as an impediment. Meaningful
results can be obtained by ad–hoc methods provided that their correspondence with thermal
equilibrium systems in the appropriate long time and large length scale limits is validated.
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Chapter 5

Models of Heat Transfer

Principle Author: R.E. Jones

5.1 The Physics of Heat Transfer

In classical mechanics, heat is a primitive concept that lacks a basic definition and is expected
to be understood at an axiomatic level. Physically speaking, see e.g. [97, 98], heat is thermal
energy or kinetic energy that does not have a net momentum. Another interpretation is that
heat energy is the energy in excess of the internal energy at equilibrium. There are a variety
of particles that can be heat carriers, e.g. in metals electrons are significant carriers. Since
atomistic models explicitly represent the atom as a single particle, the only heat carriers of
interest are “phonons” or lattice vibrations. Kinetic theory implies that thermal conductivity
k is proportional to cvg`, where c is heat capacity, vg is the group (or mean) phonon velocity
and ` is the mean free path. Based on the mean free path, phonons transport thermal
energy in two basic modes : ballistic, where the mean free path of a phonon is relatively
large compared to the size of the object, and diffusive, where it is relatively short. The
phonon mean free path ` can be estimated using perturbation theory as

`(ω, θ) =
µa3vgωDebye
2kBγ2θω2

,

where ` is a function of phonon frequency ω, temperature θ, lattice constant a, shear modulus
µ , the Debye frequency ωDebye (mean) Gruneisen parameter γ and Boltzmann’s constant
kB. 1 In general, ` decreases with increasing temperature and/or phonon frequency.

In ballistic transport, the mean free path ` is large relative to the lattice spacing and con-
sequently collisions between phonons occur infrequently. In the purely ballistic extreme,

1This formula is in Int. J. Thermophys. 2(1) 55 but cites P.G. Klemens Thermal Conductivity, Vol 1,
Academic Press 1969 pp 1-68.
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the dominant wavelength in the phonon distribution is so long that the mean free path,
which is temperature dependent in general, is limited only by the size of the crystal, there-
fore independent of temperature. These conditions occur below the Debye temperature,
θDebye = h

kB
ωDebye = ~

kB
vg(6π

2η)
1
3 ,2 which is related to the size of the lattice spacing through

the parameter η
1
3 = (N

V
)

1
3 ≈ a. Here ~ is Planck’s constant and N and V represent the parti-

cle count and volume of the system, respectively. In this case, phonon velocity is essentially
constant, so heat conductivity, like heat capacity, is proportional to the cube of the temper-
ature. At this extreme, also known as the Casimir limit, the heat flux q is related to the
temperature difference ∆θ at the boundaries of a slab, ‖q‖ ∝ ∆θ4, and is independent of the
thickness of the slab. So, unlike a macroscopic rod or slab with a mean temperature below
ωDebye, e.g. room temperature, and a temperature difference between the ends, no temper-
ature gradient can be established. Instead, jumps in temperature occur at the boundaries
of a body experiencing ballistic heat transport. A harmonic model of a solid, i.e. particles
connected by linear springs arising from a internal energy quadratic in the (nearest neighbor)
inter-particle distances, exhibits this behavior since it lacks coupling between modes. This
lack of coupling implies that there is no mechanism to model collisions and all heat transfer
must be ballistic in nature. It should be noted that the harmonic solid is also a degenerate
case in that it lacks a mechanism to attain equilibrium, and consequently is only valid for
near-equilibrium states.

On the other hand, at high temperatures on the order of the Debye temperature, or greater,
or at high frequency and large wave vectors, scattering due to geometric defects and col-
lisions dominates heat transfer. It is this scattering process that gives rise to the classical
diffusive behavior. For crystalline solids, (Umklapp) scattering dominates and determines
the behavior observed in macroscopic solids. Under these conditions, the phonon mean free
path ` is inversely proportional to temperature to a power greater than unity and the heat
capacity cv (at constant volume) is given by the Dulong-Petit constant 3ρkB, where ρ is a
number density of phonons. Consequently, thermal conductivity k decreases with increasing
temperature. Umklapp scattering at the heart of this phenomenon is a third order process,
i.e. involving three interacting phonons, where the wave vectors of the incoming phonons
are related to that of the outgoing phonon by a reciprocal lattice vector G,

k1 + k2 = k3 + G .

This process conserves energy but changes the phonon “momentum”, which moves the system
closer to equilibrium. Note that phonon momentum is not the physical momentum associated
with mass transport.

2For silicon θDebye = 625K.
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5.2 Models of Heat Transfer

Various models of heat transfer make different basic assumptions, e.g. kinetic theory as-
sumes local thermodynamic equilibrium in space and time. These models can be roughly
categorized by their applicability to a system of a particular size and duration relative to
the intrinsic length-scale ` and timescale τ , respectively (see [98]). Note that the time and
length-scales related to energy and momentum may be different.

5.2.1 The Boltzmann Transport Equation

The Boltzmann Transport Equation (BTE) is a general transport theorem applicable to
non-equilibrium processes. Its derivation is quite simple and is based on the description of
an ensemble of particles by a statistical distribution f = f(x,p, t), where the variables x, p
are particle position and momentum, respectively, and time t. The total time rate of change
in the distribution is given by

d

dt
f = ∂tf + ∂xf · ẋ + ∂pf · ṗ = ∂tf + ∂xf ·

1

m
p + ∂pf · F , (5.1)

after using Hamilton’s equations, namely ẋ = 1
m
p = v and ṗ = F. As with all transport

equations the time rate of change of a quantity is equal to the amount being generated, in
this case

d

dt
f = sscatter ≈

1

τ(x,p)
(fe − f) . (5.2)

The source term on the right-hand side of (5.2)1 is the mechanism which restores equilibrium.
Without this dissipative term, f would remain unchanged along flow as required by the
Liouville theorem. Physically, this would represent phonons propagating energy through
the lattice undisturbed, as in purely ballistic transport. The relaxation time approximation
(5.2)2 is a linearization that assumes f will approach fe, the equilibrium distribution, in a
characteristic time τ , which is dependent on position and momentum. Roughly speaking,
the relaxation time approximation leads to a linear differential equation ḟ = 1

τ
(fe−f) which

has the exponentially decaying solution f − fe ∝ exp(− t
τ
).

For an isolated system F = 0 and the BTE is simply

∂tf + ∂xf · v ≈
1

τ(x,p)
(fe − f) (5.3)

Furthermore, under quasi-equilibrium conditions, where (a) the system is steady ∂tf ≈ 0,
i.e. t� τ , and (b) large L� ` relative to |f − fe| so that ∂xf ≈ ∂xfe, it is also possible to
solve the approximate BTE (5.3) with

f = fe − τ∂xfe · v (5.4)
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At equilibrium, the distribution f = fe is a function of temperature θ so that

∂xfe =
d

dθ
(fe) ∂xθ .

Consequently, the heat flux defined as the transport of particle energy ε, i.e.

q =

∫
vfε d3p =

∫
vfερε(ε) dε , (5.5)

where ρε(ε) is the density of energy states, reduces to

q = −
∫
τv (v · ∂xθ)

d

dθ
(fe) ερε(ε) dε = −

∫
τv (v · ∂xθ)ερε(ε) dε

d

dθ
(fe) . (5.6)

Note that first term in (5.4) drops out when integrated over momentum space due to a
conservation principle. The definition of the material property heat conductivity as

k =

∫
τv ⊗ v

d

dθ
feερε(ε) dε

assumes that (5.6) is in the form of Fourier’s law i.e. that magnitude of the heat flux q is
proportional to the temperature gradient ∂xθ and in opposite direction. In the large system
limit, k is generally taken to be isotropic k = kl where k =

∫
τv2

g
d
dθ
feερε(ε) dε.

Majumdar’s “Equation of Phonon Radiative Transport” (EPRT) [99] is a reduction of the
BTE based on phonon intensity per solid angle in direction of phonon propagation and
frequency interval around ω

Iω =
∑
p

vpf~ωpρω , (5.7)

where ρω is density of states in ω-space and p refers to the polarization of the phonons. The
BTE for an isolated system can be manipulated to the EPRT, i.e.

1

‖v‖
∂tIω + µ∂tIω =

1

‖v‖τ
(Ie − Iω) ,

where Ie = 1
2

∫ 1

−1
Iω dµ and µ is the cosine of the angle around the propagation direction.

This integro-differential form of the BTE achieves diffusive and ballistic limiting cases while
reducing the complexity of the solution space.

G. Chen developed another reduction of the BTE [100] to overcome its apparent intractabil-
ity. The Ballistic-Diffusive Heat Conduction Equation (BDHCE) is based on an additive
decomposition of the phonon distribution as f = fb + fm, where fb is the distribution of
the ballistic component and fm is the distribution of the remainder associated with diffusive
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transport. Using Majumdar’s intensity variable (5.7), Chen finds a particular solution to a
ballistic transport equation very similar to the EPRT

1

‖v‖
∂tIbω + d∂tIbω = − 1

‖v‖τ
(Ibω)

where d is the direction of phonon propagation. The particular solution is based on the
idea that the ballistic phonons emanate from the boundary of the body and therefore have a
well-defined propagation direction. The diffusive transport is treated as an isotropic process
and through manipulation is shown to be equivalent to

τ∂2
t um + ∂tum = ∂x(

k

c
∂xum)− ∂x · qb

where the internal energy associated with the diffusive transport um is a function of temper-
ature and the heat flux due to the ballistic transport qb is a function of Ib. This relationship,
without the qb term, is essentially the Hyperbolic Heat Equation that will be discussed in
the following section.

5.2.2 The Maxwell-Cattaneo Equation

For the case where time duration is on the order of the timescale T ≈ τ , but the system
length is much greater than the characteristic length-scale L� `, the BTE can be simplified
to the well-known Maxwell-Cattaneo equation (MCE). Multiplying (5.3) by vερε dε , and
integrating over the energy results in

∂tq +

∫
∂xf · v vερε(ε) dε = −

∫
1

τ
fvερε(ε) dε . (5.8)

Now assume (a) relaxation time is constant for all positions, momenta and energies, (b)
quasi-equilibrium conditions, to reduce (5.8)

∂tq +
1

τ
q = −1

τ
k ∂xθ (5.9)

The Maxwell-Cattaneo equation (5.9) together with the balance of energy for a rigid con-
ductor, cv

∂
∂t
θ = −∂xq, leads to the so-called “hyperbolic heat equation”

cvτ∂
2
t θ + cv∂tθ = k∂2

x · θ , (5.10)

which has attenuating wave-like solutions with the possibility of thermal shocks. The speed
of propagation of these waves is typically slower than that of sound so that thermal waves
are sometimes called “second sound”.

Gurtin and Pipkin [101] developed a similar model to the MCE based on an analogy to
viscoelasticity, where a functional is used to model “fading memory”. Interestingly, in this
theory the heat flux is directly related to the free energy.
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5.2.3 Fourier’s Law

Given the same restrictions to the BTE that resulted in the MCE, and now with the con-
straint that the relaxation time τ is very small compared to the time duration of the system
(or the heat flux is essentially steady), the system will follow the classical Fourier’s law

q = −k ∂xθ . (5.11)

Using, again, the balance of energy for a rigid conductor, (5.11) reduces to

cv∂tθ = k ∂2
xθ . (5.12)

Since (5.12) is parabolic in character many authors interpret Fourier’s Law (FL) as having
an infinite speed of propagation, which is rational given the limiting process at which it was
obtained from the MCE. It also follows that the Fourier solution is the steady-state limit of
the MCE.

5.3 Conclusions

With regard to coupling continuum to atomistic representations of a solid, it seems that
the BTE and its approximations (e.g. EPRT and BDHCE) are too complex to be employed
efficiently in the continuum side. In the sense that they statistically represent distributions of
phonons, they are not “natural” to the concept of a classical continuum, whereas the MCE
and FL are commonly employed for modeling heat transfer in continua. This limits the
coupling scheme to (a) problems that would experience primarily diffusive heat transport
i.e. application at or above the Debye temperature, (b) large system sizes and (c) near
equilibrium, which are requirements for reducing the BTE to the MCE and FL.

The idea that phonons are lattice motions that have no net momentum, i.e. they are
vibrations, is key to defining how a continuum will interpret the atomistic region’s kinematics.
This idea is embedded, at least in a local sense, in Hardy’s decomposition of velocities

vα = uα + v̄ ,

where vα is the velocity of an atom α, v̄ is the average velocity in the neighborhood defined
by the radius of the localization function and uα is the velocity attributed to thermal motion.
Other schemes, say based on RKPM or wavelet filtering or simply projection on to FE spaces,
could be devised to separate the vibrations from the bulk motion but Hardy’s idea seems
to have the same basic qualities, easily implemented and therefore a good initial scheme.
Localization functions leading to weighted averages will be needed in both space and time to
“scale-up” the discrete atomistic quantities {xα,vα} to continuum fields, e.g. θ, especially
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if ensemble averages are needed in the process. The sizes of these localization functions
relative to the intrinsic length and time scales, ` and τ , will need to be investigated, keeping
in mind the computational limits imposed by the numerical discretization of the continuum,
e.g. mesh size and stable time-step.

Some model problems that a coupling scheme would need to produce reasonable solutions
are:

• An atomistic region overlapped with a continuum rigid heat conductor. The motions
in the atomistic region would have to be controlled by the boundary conditions so
that there is no net motion to be consistent with the rigidity constraint in the con-
tinuum. Heat should be able to be propagated in both directions in a manner that is
indistinguishable from a completely atomistic region, at least at steady state.

• An atomistic region overlapped with a continuum deformable heat conductor. Here,
the phonons would need to be in the diffusive range of wave vectors and temperatures.
And, for convenience, the net motions should be small i.e. interpreted as infinitesimal
by the continuum and therefore within the range of applicability of a linear model.

To determine if either of the continuum models, e.g. the MCE or FL, is applicable, it
will be necessary to calculate the mean free path ` and a characteristic relaxation time τ
for the generated phonons. A workable atomistic definition of either temperature or heat
flux derived from statistical mechanics would be a prelude to “up-scaling” the atomistic
information in a coupling scheme. A means of controlling the boundary temperature, i.e. a
thermostat, or heat flux on the atomistic side will be the key ingredient in “down-scaling”
the continuum information. Unfortunately, some of the obvious measures of consistency, e.g.
energy conservation for the whole system, will not be applicable on the continuum side.
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Chapter 6

Evaluation of Temperature and Heat
in Atomistic Simulation

Principle Authors: E.B. Webb III and J.A. Zimmerman

Expressions for temperature T and heat flux q in atomistic systems derived from a contin-
uum formalism developed by R.J. Hardy are compared with analogous expressions originat-
ing from statistical mechanics. While the former employ a consistent scheme of distributing
these quantities throughout the system volume, the latter are only strictly defined at explicit
atomic positions. We compare the volume and time averaging of T and q for both methods
of calculation and find that time averaging is required, regardless of calculation method and
analysis volume, in order to realize reasonable convergence on continuum quantities. This
result arises from the inherent dependence of these quantities on collective atomic motion
rather than instantaneous structure and is similar to what was found for an evaluation of
stress at finite temperature (discussed in Chapter 3). Furthermore, for a given analysis
volume, the Hardy descriptions for T and q converge as or more quickly than the corre-
sponding explicit atomic expressions. We propose that the Hardy technique is more robust
because, in a physically sound manner, it removes the discrete nature of atomic motion and
interactions and effectively distributes them throughout the system volume. This provides
a consistent manner of accounting for interactions that span the boundary of a sub-system
analysis volume while also minimizing the influence of fluctuations about the local average.

6.1 Introduction

Atomistic simulation provides insight into material science phenomena at fundamental length
and time scales. In contrast, physical experimentation typically quantifies material properties
at the macroscopic level. A desire for direct relations between atomic phenomena, resultant
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microstructure, and derived macroscopic properties motivates efforts to bridge length and
time scales between the atomistic and the continuum. One benefit of this is a more accurate
understanding of thermo-mechanical deformation processes including failure. To achieve
coupling across length and time scales, it is essential that proper definitions for continuum
variables such as stress, temperature and heat flux exist that can be evaluated within an
atomistic framework.

Connections between continuum variables and microscopic quantities originate from long-
wavelength elasticity theory or long-time, equilibrium ensemble averages giving rise to macro-
scopic balance equations. However, the instantaneous atomic contributions to these averages
do not have the same physical interpretation as the corresponding point-wise continuum
quantities. Although there have been many past efforts to develop definitions for stress and
other variables in a manner consistent with the continuum mechanical balance laws for lin-
ear momentum and energy, one of the most notable has been by R.J. Hardy and co-workers
[52, 53, 55]. Their formalism produces expressions for stress and heat flux that are defined
from atomistic variables but satisfy the continuum mechanical balance laws. In a recent
publication [102], Hardy and colleagues presented an expression for temperature developed
by consideration of the equipartition theorem and the kinetic energy associated with atomic
velocities relative to the velocity of the continuum at a spatial point. It is not rigorously
defined within the context of the same balance laws as was done for stress and heat flux.

In this work, expressions for temperature and heat flux in atomistic systems derived by Hardy
are compared with the expressions commonly used in atomistic simulation. An extension of
Hardy’s technique is presented that includes time averaging for finite temperature systems.
We have performed molecular dynamics (MD) simulations to characterize the consistency of
these expressions with continuum models of heat transport. We have also performed spatial
and time averaging simulation studies to determine the limits at which fluctuations do not
overwhelm the expectation values of continuum properties.

6.2 Hardy’s Formalism Revisited

Hardy’s formalism was presented in section 3.2. As stated in that section, Hardy’s method
enables him to derive expressions for the continuum variables of mechanical stress and heat
flux by defining continuum fields for mass density (ρ), linear momentum density (p) and
internal energy density (e) that are based on atomic properties and using them within the
spatial forms of the balance of mass, linear momentum and energy for a dynamic continuum
[13]. For example, the balance of energy is

∂e

∂t
= ∂x · (σ · v − ev − q) . (6.1)
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where σ is the Cauchy stress tensor, v is the material point velocity and q is the heat
flux vector. Using the density functions shown above within the balance equations, Hardy
developed the following expressions for stress and heat flux at a spatial point,

σ(x, t) = −

1
2

N∑
α=1

N∑
β 6=α

xαβ ⊗ FαβBαβ(x) +
N∑
α=1

mαuα ⊗ uαψ(xα − x)

 (6.2)

q(x, t) = −
N∑
α=1

 N∑
β 6=α

∂φβ

∂xαβ
xαβ ⊗ xαβ

xαβ
Bαβ(x)

 · uα +
N∑
α=1

{
1
2
mα (uα)2 + φα

}
uαψ(xα − x). (6.3)

In this relation, Fαβ is the interatomic force exerted on atom α by atom β, Bαβ(x) is the

bond function defined by the expression Bαβ(x) =
∫ 1

0
ψ
(
λxαβ + xβ − x

)
dλ, and uα ≡ vα−v

where v ≡ p/ρ. Recall that the quantities Bαβ and ψ are defined such that they are non-zero
only within a limited-sized volume centered at the spatial point x, and that both have units
of inverse volume. When ψ is defined as a constant for the entire volume of the atomic
system, equation (6.2) exactly reproduces the virial theorem, while equation (6.3) yields an
analogous expression that has been used for heat flux,

q(t) =
1
V

1
2

N∑
α=1

 N∑
β 6=α

Fαβ ⊗ xαβ

 · uα +
N∑
α=1

{
1
2
mα (uα)2 + φα

}
uα

 . (6.4)

where V denotes the total volume of the atomic system. Note that, while equation (6.3) is
formulated with the notion of evaluating a sub-system volume region within an atomistic en-
semble, equation (6.4) is properly used to analyze the entire system. However, equation (6.4)
is often used to define heat flux within a sub-system volume. We will address implications
of evaluating the atomic heat flux expression in this manner later in this chapter.

Hardy and colleagues recently presented [102] an expression for temperature within this same
continuum mechanical framework that was derived by relating continuum temperature to
the kinetic energy density associated with the relative atomic velocities uα. Their expression
is given by

T(x, t) =
1

3kB

∑N
α=1m

α (uα)2 ψ(xα − x)∑N
α=1 ψ(xα − x)

. (6.5)

Again, an analogous expression for temperature utilized in atomistic simulations can be
identified as

T(t) =
1

3NkB

N∑
α=1

mα (uα)2. (6.6)

This expression is also often modified to calculate temperature within a sub-system volume.

115



CHAPTER 6. EVALUATION OF TEMPERATURE AND HEAT IN ATOMISTIC
SIMULATION

6.3 Equilibrium Temperature Simulations

An analysis of spatial and temporal averaging of temperature (T) as determined from the
standard atomic expression, equation (6.6), was performed. This permitted us to establish
minimum limits necessary to converge sub-system averages onto full system expectation
values within an acceptable degree of error (∼ 1%). This analysis was performed for an
NVT ensemble where the volume used was determined by a separate NPT simulation such
that, in the subsequent NVT simulation, the expectation value for pressure was less than 100
bar. A similarly equilibrated simulation cell was also run in an NVE ensemble for comparison
purposes. Temperature in the NVE ensemble was 298 K (as compared to 300 K in the NVT
ensemble). Note that this analysis is performed for systems in which an expectation value
for T is clearly defined, i.e. the system is in thermal equilibrium. This would not be the
case, for example, if temperature gradients existed through the simulation cell. Nonetheless,
it is useful to quantify minimum analysis time and length scales for a given set of materials
as represented by a given set of interatomic potential energy functions. For the simulations
discussed in this and the following sections, we used the embedded atom method potential
for Cu by Foiles, Baskes and Daw [32]. The system analyzed was composed of 4,000 atoms
(10 x 10 x 10 unit cells). Temperature control was accomplished by exerting an atomic drag
force proportional to both the difference between the current temperature and the desired
temperature for the system and the atom’s velocity [56].

Figure 6.1 shows average values of T as a function of analysis volume for a randomly chosen
point in the simulation cell; additionally, data are shown for different averaging times. Similar

4 1210862
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T
 (

K
)
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Figure 6.1: Average atomic temperature for an NVT ensemble as a function of analysis
volume radius. Curves are shown for averaging times of 0.1 ps (dashed), 1 ps (dotted) and
5 ps (solid).

to what was found for stress, it is seen that a tradeoff exists between space and time averaging.
For small analysis volumes, a significant degree of time averaging must be employed; in fact,
for the longest time average shown, 5 ps, a reliable prediction of T is not obtained for
Rc ≤ 8 Å. For analysis volumes Rc ≥ 10 Å, reasonable convergence is obtained within
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a simulation duration of order 1 ps; however, our requirement of ∼ 1% deviation is only
achieved for the 5 ps time average data. Results for the corresponding analysis of stress
in Chapter 3 demonstrated a somewhat less stringent requirement on time averaging. For
instance, 1000 δt (2 ps) was sufficient to give a very reliable prediction of stress even for Rc

as small as 4 Å. This difference is small, however, so, within the error of our calculations, we
conclude that evaluating temperature in a sub-system analysis volume with good accuracy
requires similar statistics to evaluating stress at finite temperature. For the system presented
this is achieved for Rc = 10 Åwith time averaging over a few ps. Similar results were
obtained from the NVE simulation. This is not surprising given that the temperature control
algorithm in the NVT ensemble has little effect on system dynamics since the system was
pre-equilibrated to the set point temperature T = 300 K.

Given the knowledge obtained thus far, we focus on comparing the Hardy and atomistic
expressions for T by using a single analysis volume (Rc = 10 Å) and perform similar time
averaging within the analysis sub-volume. Figure 6.2 shows that the Hardy expression for
temperature as given by equation (6.5), behaves quite similarly to the atomic expression in
equation (6.6). Thus, the Hardy expression gives reliable predictions of local temperature

1 54320
time (ps)

315

285

300

T (K) Hardy

Atomic

Figure 6.2: Hardy (solid curve) and atomic (broken) temperature as a function of sampling
time for an NVT ensemble equilibrated to 300 K. The analysis volume is of size Rc = 10 Å.

within a few picoseconds of simulation. This analysis was repeated for a smaller sub-volume
(Rc = 6 Å), and both Hardy and atomic expressions display greater variation. For both
methods, sampling times greater than 5 ps were needed to converge on reasonable predictions
of the expectation value.

6.4 Transient and Steady-State Heat Flow Simulations

We have investigated the non-uniform behavior of the expression for atomic temperature by
performing MD simulations of steady-state, uni-directional heat flow. Although the concept
of temperature is based in equilibrium theory, non-equilibrium definitions do exist and may
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have physical significance as a measure of either kinetic or internal (kinetic plus potential)
energy density for a sub-region in time and space.

Figures 6.3 and 6.4 show the atomic temperature distribution for an MD simulation config-
ured to produce a constant heat flux. For this and the subsequent simulations, a constant
heat flux algorithm (see Section 6.6) was used to specify heat flux boundary conditions.
This was done within finite-sized cross-sectional slabs, the centers of which were separated
by Lx

2
where Lx is the simulation box length in x (the heat flux direction). The simula-

tion cell dimensions were 146 Å x 29 Å x 29 Å and cross-sectional analysis slabs for spatial
averaging of temperature were approximately 10 Å wide along the long dimension. While
the simulation cell as constructed has a symmetrical temperature gradient, we restrict our
analysis to one half of the system. These simulations show temperatures reaching nearly

340
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0 80604020
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Figure 6.3: Temperature (T) as a function of length along the simulation cell. Data are
shown at 10, 50, and 200 ps into the simulation. A least squares fit to the data at 200 ps is
shown as the black line.
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Figure 6.4: Temperature (T) as a function of time for constant heat flux simulations. The
curves show T in successive analysis regions going from the heat injection region (top) to
the heat extraction region (bottom). Vertical lines correspond to times at which T gradient
data are presented in Figure 6.3
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steady state values within 50 ps. After 200 ps, the temperature data is well fit to a lin-
ear relation. This linearity, although expected from continuum models of heat transport,
is somewhat surprising given the extremely large magnitude of temperature gradient along
with the small length and time scales over which temperature is being evaluated. Fig. 6.3
also displays the non-linear character of the transient regime. We are in the process of com-
paring this transient behavior with time-varying continuum models of heat transport, such
as the Maxwell-Cattaneo equation [103].

We also analyzed the Hardy expressions for both temperature and heat flux for the steady-
state heat flow scenario using a significantly larger system. MD simulations were done
for a rectangular cross-section rod of copper, with dimensions 1453.102 Å x 36.329 Å x
36.326 Å containing 160,000 atoms. The initial temperature of the crystal was approximately
300 K. The cross-sectional slabs used for constant heat flux boundary conditions measured
36.325 Å in the x (long) direction. Figure 6.5 displays the crystal composed of a random
selection of 1600 spatial points, each colored according to its value of temperature. A value
of Rc = 10 Å was chosen and a normalized quartic function was used for ψ. For this figure,
the entire system is shown, exhibiting the symmetry in temperature gradient mentioned
earlier. Figure 6.5 shows a complex transient behavior that evolves to steady-state within

t = 0 ps

t = 50 ps

t = 100 ps

t = 150 ps

t = 200 ps

Figure 6.5: Hardy temperature (in units of K) for a random selection of spatial points.
Frames correspond to the simulation times shown over which the transient heat flow evolves
to steady-state.

∼ 200 picoseconds. Accordingly, the final time frame depicted in Figure 6.5 qualitatively
exhibits nearly linear distribution of temperature between the boundary condition regions.

The transient and steady-state behaviors of Hardy’s temperature and heat flux expressions
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can be better understood by examining their distributions along the long direction of the
crystal. This is done by binning the observed values at the 1600 analysis spatial points along
the x direction. The bin width in x is the same as that used for the thermal control regions,
i.e. 36.325 Å. The results from this analysis are shown in Figures 6.6 and 6.7 for temperature
(T) and heat flux in the x direction (qx), respectively. Each of these figures displays the

Figure 6.6: Distribution of temperature (in units of K) for binned regions along the length
of the crystal shown in Figure 6.5. Each frame is labeled with the corresponding simulation
time, and the black curve denotes the instantaneous distribution while the red curve denotes
a time average of the distribution over a period of the 40 ps leading up to the time shown.

spatial distribution of either temperature or heat flux for several instances in time. For each
time shown, a black curve is used to denote the instantaneous distribution while a red curve
is used to denote the time averaged distribution over a period of 40 picoseconds leading up
to the time displayed. While both the black and red curves in Figure 6.6 show an evolution
to a linear distribution of temperature between the boundary condition regions, the spatial
fluctuations are absent for the time averaged distribution. An estimate of the slope of the
time averaged distribution in the long time limit is found to be 0.179 ± 0.002 K/Å. This
quantity is an average of the absolute values of the slopes “measured” separately for both
halves of the crystal, each of which lies within the uncertainty of the average value.

In Figure 6.7, it is observed that the fluctuations in heat flux greatly overwhelm the ex-
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Figure 6.7: Distribution of heat flux component qx (in units of nW/Å2) for binned regions
along the length of the crystal shown in Figure 6.5. Each frame is labeled with the corre-
sponding simulation time, and the black curve denotes the instantaneous distribution while
the red curve denotes a time average of the distribution over a period of the 40 ps leading
up to the time shown.

pectation value for the instantaneous calculation displayed by the black curves. However,
computation of a time average of this distribution, shown by the red curves, reveals an evo-
lution to a constant heat flux of nearly equal magnitude and opposite sign for the two halves
of the crystal. An estimate of qx after over 800,000 time steps is determined to be 0.20866
± 0.01 nano-Watts/Å2, which is again an average of the magnitudes of qx for the two halves
of the crystal. This value is very close to, and within its uncertainty of, the prescribed heat
flux of 0.20924 nW/Å2. Regarding thermal conductivity of the system, we assume Fourier’s
Law as the long-time behavior of the system. Thermal conductivity is then estimated by
dividing qx by the temperature gradient; this gives a value of 11.65 ± 0.69 W/(m·K), an
uncertainty of approximately 6%.

In our simulations, we also observe the time evolution for the transverse heat flux component,
qy, shown in Figure 6.8. It is seen that while the instantaneous calculation of transverse heat
flux can reach values nearly as large as those observed for qx, the time average of this
distribution quickly converges to much smaller values and deviates around a mean close to
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Figure 6.8: Distribution of heat flux component qy (in units of nW/Å2) for binned regions
along the length of the crystal shown in Figure 6.5. Each frame is labeled with the corre-
sponding simulation time, and the black curve denotes the instantaneous distribution while
the red curve denotes a time average of the distribution over a period of the 40 ps leading
up to the time shown.

zero. The estimate for qy after 800,000 time steps is determined to be -0.00478 nW/Å2.
Similarly, an estimate for qz is determined to be 0.01398 nW/Å2.

We can compare these results with those obtained using a similar analysis that employs
the atomistic expression for heat flux given by equation (6.4). As discussed earlier, this
expression is typically evaluated for an entire equilibrium ensemble of atoms. Unlike Hardy’s
formalism for heat flux, there is no rule for handling interactions which span the analysis
volume boundaries. They can be omitted from the calculation, included fully, or included
to some degree. This, however, is what Hardy’s formalism handles in a very physically
reasonable sense. That is, the degree of inclusion of the contribution from an interaction that
spans the analysis volume boundary is a weighted function of the percentage of the interaction
distance which is included in the analysis volume. As a comparison, we have selected a single
bin used in the Hardy heat flux averaging above and evaluated using equation (6.4) within
that sub-system volume. This is done after the system has reached a steady-state condition,
starting from t = 700 ps. Presented in Figure 6.9 is the single bin running average for
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Figure 6.9: Heat flux (q) given by the standard atomistic expression as a function of time
for constant heat flux simulations. The curves show q in the x (solid), y (dashed), and z
(dotted) directions within one analysis bin used in Figure 6.7. A horizontal solid line shows
the expectation value for qx for the system.

heat flux in the x, y, and z directions over a simulation duration of 40 ps; this is the same
averaging time used to obtain each bin data point in Figure 6.7. In this duration, the heat
flux in y and z converge to a reasonable estimate of the expectation value (the calculated
values are both -0.02 nW/Å2 whereas the expectation value is zero). However, the value for
heat flux calculated in the x direction, 0.245 nW/Å2, overestimates the expectation value,
approximately 0.209 nw/Å2 as stated previously, by ∼ 17%. By this measure, the Hardy
method appears superior over the standard atomistic expression, an expected result given
the more reasonable way that the Hardy formalism handles interaction inclusion. Assuming
Fourier’s Law as the long-time behavior of the system, we estimate the value of thermal
conductivity to be 11.2 ± 0.038 W/(m·K). Richardson and Clancy [104] previously calculated
a value of 5.66 W/(m·K) for the same interatomic potential we employ herein. The origin
for the discrepancy of the factor of 2 is unclear as details of how heat flux was quantified
in those simulations are unknown. However, it is reassuring that the atomic and Hardy
values of thermal conductivity are very similar, and that the heat flux is equally similar
between the different expressions and the expectation value. In addition, our values come
very close to a calculation of 9.6 W/(m·K) done by Heino and Ristolainen [105] using an
alternative EAM-type potential. Of course, since classical potentials have been used that
ignore electronic degrees of freedom, only phonon modes of heat transfer are included. As
such, the calculated values of thermal conductivity are orders of magnitude less than the
experimentally measured value for Cu, approximately 385 W/(m·K) [104]1.

We are currently performing further analysis of the Hardy expressions for q and T in order

1In [104], the experimental value for thermal conductivity is misprinted. The surrounding text within the
article was used to determine its correct value.
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to compare their behavior with established continuum models of transient heat transport
such as the Maxwell-Cattaneo equation.

6.5 Conclusions

We performed simulations examining the expression for atomic temperature and Hardy’s
expressions for both temperature and heat flux. The results from these simulations further
supports the conclusion that Hardy’s expressions accurately represent continuum-scale be-
havior once appropriate spatial and time-averaging has been performed. Future work will
involve using these expressions to correlate continuum models of heat transport, such as the
Maxwell-Cattaneo equation, with spatial and time averaged behavior in atomistic systems.

6.6 Appendix: Constant Heat Flux Algorithm

This section reviews the derivation of a velocity scaling algorithm for adding a constant
amount of kinetic energy, per time step, to an atomistic region while not altering the total
linear momentum of that same set of atoms. This derivation appears in an article by Ikeshoji
and Hafskjold [106], however, those authors make some simplifying assumptions that actually
make the derivation messier than it needs to be. The method was used by Lukes et al. [107]
to prescribe a constant heat flux for a 3-D MD simulation of a rectangular region with a
“hot” region at one end, where a constant amount of kinetic energy is added per time step,
and a “cold” region at the other, where that same amount of kinetic energy is subtracted
per time step. The derivation of this scaling method is as follows:

Suppose we select a sub-region of an atomistic system for which, at every time step, each
atom’s velocity will be scaled by some amount R and a constant velocity vsub is subtracted:

vα → (vα)′ = Rvα − vsub α ∈ N (6.7)

In the equation above, N denotes the set of atoms within this controlled sub-region. The
quantities of R and vsub can be determined by 2 conditions:

1. The total kinetic energy of the sub-region N , Ek = 1
2

∑
α∈N m

α (vα)2, changes by a
prescribed amount ∆Ek. Thus, E ′

k = Ek + ∆Ek.

2. The total linear momentum of the sub-region, P =
∑

α∈N m
αvα does not change.

Thus, P′ =
∑

α∈N m
α (vα)′ = P.
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If we enforce condition 2. and use the expression in equation (6.7),

P′ = P∑
α∈N

mα (vα)′ = P∑
α∈N

mα (Rvα − vsub) = P

R
∑
α∈N

mαvα − vsub

∑
α∈N

mα = P

RP−Mvsub = P.

Thus,

vsub =
(R− 1)P

M
=

(R− 1)
∑

α∈N m
αvα∑

α∈N m
α

. (6.8)

We now enforce condition 1. and use the expressions in both equations (6.7) and (6.8):

E ′
k =

1

2

∑
α∈N

mα (vα)′ · (vα)′

=
1

2

∑
α∈N

mα

(
Rvα − (R− 1)P

M

)
·
(
Rvα − (R− 1)P

M

)
=

1

2

∑
α∈N

mα

(
R2vα · vα − 2R

(R− 1)

M
P · vα + (R− 1)2 P ·P

M2

)
= R2Ek −R (R− 1)

P2

M
+

1

2
(R− 1)2 P2

M

= R2Ek −
1

2

(
2R2 − 2R−R2 + 2R− 1

) P2

M

= R2Ek −
1

2

(
R2 − 1

) P2

M
,

where P2 = P ·P. We can re-arrange this equation to isolate the R-terms,

E ′
k −

1

2

P2

M
= R2

(
Ek −

1

2

P2

M

)
,

and then solve for R,

R2 =

(
E ′
k − 1

2
P2

M

)
(
Ek − 1

2
P2

M

) .
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Thus,

R =

√
E ′
k − 1

2
P2

M

Ek − 1
2

P2

M

=

√
Ek + ∆Ek − 1

2
P2

M

Ek − 1
2

P2

M

. (6.9)

This end result makes perfect sense. We are simply doing a velocity scaling by multiplying
each velocity times the square-root of the ratio of desired kinetic energy to original kinetic
energy. However, since we are not guaranteed that the sub-region being scaled has net zero
linear momentum, we must subtract the “macroscopic kinetic energy” from both terms in the
ratio R, and subtract a small amount of velocity, vsub, from each atom to ensure conservation
of momentum. In the limit that the sub-region has net zero momentum, vsub = 0 and
R =

√
E ′
k/Ek, the “normal” velocity scaling method. It is also obvious that for the addition

of kinetic energy (∆Ek > 0), R > 1 and vsub · P > 0, while for the subtraction of kinetic
energy (∆Ek < 0), R < 1 and vsub ·P < 0.

Both references listed above apply this method to a long, rectangular box for which a few
atomic layers on one end is deemed “hot” and has a constant ∆Ek = ∆H > 0 for every
time step while at the other end, a few atomic layers are deemed “cold” and ∆Ek = ∆C =
−∆H < 0. Once the system attains a steady-state, the 1-dimensional heat flux is quantified
as

q =
∆H

2A∆t
, (6.10)

where A is the cross-sectional area of the box perpendicular to the long direction and ∆t is
the time step.
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Chapter 7

Thermo-mechanical Coupling of
Atomistic and Continuum Systems

Principle Authors: R.E. Jones, C.J. Kimmer and G.J. Wagner

7.1 The Continuum Initial-Boundary Value Problem

The motion x = χ(X, t) and (absolute) temperature θ = Θ(X, t) fields of a continuum body
are functions of positions X in a reference state and time t. They need to satisfy balances
of mass, linear momentum, angular momentum and energy of the form:

d

dt

∫
Ω

φρ dv = Bφ + Sφ , (7.1)

which states that the time rate of change of the quantity φ in any material region Ω is equal
to the external body sources Bφ and surface sources Sφ. In the generic balance equation
(7.1), ρ is the mass density. For instance, the balance of energy

d

dt

∫
Ω

(ε+
1

2
ẋ · ẋ)ρ dv =

∫
Ω

(b · ẋ + r)ρ dv +

∫
dΩ

t · ẋ− q · n da , (7.2)

relates the time rate of change of the internal energy ε and kinetic energy to the work done
by mechanical sources, b being the external body force and t the surface traction, and the
heat supplied by external generation r and flux q. The outward unit normal to dΩ is denoted
by n.

For a classical continuum that has no external couples and satisfies mass continuity, the four
balances reduce to a local balance of linear momentum

ρẍ = ∂x ·T + ρb , (7.3)

127



CHAPTER 7. THERMO-MECHANICAL COUPLING OF ATOMISTIC AND
CONTINUUM SYSTEMS

where T is the (symmetric) Cauchy stress and b is a body force, and a local balance of
energy

ρε̇ = T · L + ρr − ∂x · q , (7.4)

where ε is internal energy, L = ∂xẋ is the velocity gradient, r is external heat supply, and q
is heat flux. When referred back to the reference configuration these local balances become

ρ0ẍ = ∂X ·P + ρ0b , (7.5)

and

ρ0ε̇ = P · Ḟ + ρ0r − ∂X · h , (7.6)

where F = ∂Xχ is the deformation gradient, ρ0 = det(F)ρ is the reference mass density,
and the referential heat flux h is given by h = det(F)F−Tq. The relationship between the
Cauchy stress T, the first Piola-Kirchoff stress P and second Piola-Kirchoff stress S is

det(F)T = PFT = FSFT . (7.7)

Note that the stress power term P · Ḟ in (7.6) is equivalent to S · Ė, where E = 1
2
(FTF− I)

is the Lagrange strain.

The usual boundary conditions for the deformation-heat flux problem are prescribed fields
or fluxes (in this case, in the current configuration){

x = x̄(t)

t = t̄(t)
and

{
θ = θ̄(t)

q = q̄(t)
on dΩ (7.8)

and the initial conditions are given by functions x(X, t = 0) = x0(X), ẋ(X, t = 0) = v0(X)
and θ(X, t = 0) = θ0(X) over the entire domain Ω.

Solution of equations (7.3) and (7.4) requires additional constitutive relations between the
kinematic and kinetic variables. The constitutive response of the body is determined by stress
and heat flux behavior and typically requires a certain degree of smoothness from {χ,Θ}.
Commonly, stress is given by a phenomenological based function of kinematic quantities
derived from {χ,Θ}. In certain cases, stress is derivable from the free energy Ψ via

S = ρ0 ∂EΨ|θ . (7.9)

The (Helmholtz) free energy Ψ(E, θ) 1 is a Legendre transform of the internal energy ε(E, η)

Ψ = Ψ(E, θ) = ε− θη (7.10)

1The assumption that Ψ is solely dependent on E and θ is tantamount to assuming thermoelastic behavior,
as will be shown in subsequent developments.
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where θ = ∂ηε|E, and is interpreted as the amount of energy available for work at constant
temperature. So given an internal energy ε a prescription for determining entropy η is
necessary to determine stress in this fashion.

The Clausius integral, which measures the influx of heat over temperature,

C =

∫ ∫
Ω

r

θ
dv −

∫
dΩ

h ·N da dt =

∫ ∫
Ω

r

θ
− 1

ρ0

∂X ·
h

θ
dv dt (7.11)

is key to the concept of entropy and the second law of thermodynamics (here N is the
outward unit normal to the reference configuration). A version of the second law states that
for a cyclic processes

C ≤ 0. (7.12)

For a reversible cyclic process the value of C must not decrease regardless of the sense of the
cycle, so C must be zero and therefore the integrand of (7.11) is a function of the (initial)
state. For processes that maintain zero heat flux,2 the Clausius integral is path independent
in {E, θ}-space. Consequently, it provides a means of constructing a state function, entropy
η,

η − η0 = C|h=0 =

∫
r

θ
dt =

∫
1

θ
(ε̇− 1

ρ0

S · Ė) dt . (7.13)

For the same processes, the balance of energy (7.6) and the definitions (7.10) and (7.13)
gives

(ρ0∂EΨ− S) · Ė + ρ0(∂θΨ + η) · θ̇ = 0 , (7.14)

from which the Gibb’s relations

S = ρ0 ∂EΨ|θ and η = − ∂θΨ|E (7.15)

can be deduced by arguing that the rates Ė and θ̇ are arbitrary and the quantities in
parenthesis do not depend on Ė and θ̇. Two other processes that are clearly reversible,
although more trivial, are: a) processes that are adiabatic and isentropic and b) isothermal
processes with reversible heat transfer. For an adiabatic and isentropic process, the definition
ε = ε(E, η) and the balance of energy gives

ρ0ε̇(E, η) = ρ0∂Eε · Ė + ρ0∂ηε η̇ (7.16)

= S · Ė + ρ0r − ∂X · h .

Since the process is adiabatic ρ0r − ∂X · h = 0, which also implies η̇ = 0, so, in this case,
S = ∂Eε = dEε|η and ε is the potential for stress at constant entropy. For an isothermal
process with reversible heat transfer

ρ0Ψ̇ = ρ0∂EΨ · Ė− ρ0∂θΨθ̇ (7.17)

= S · Ė + ρ0r − ∂X · h− (ρ0η̇θ + ρ0ηθ̇) .

2For certain materials, non-trivial processes that satisfy these conditions may require complex r fields.
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A process being isothermal gives θ̇ = 0 and reversible heat transfer implies that

η̇ =
1

θ
(r − 1

ρ0

∂X · h), (7.18)

so Ψ is the potential for stress at constant temperature, as was shown in (7.15).3

Due to second law considerations, the heat flux depends on the temperature gradient ∂xΘ,
as well as deformation and temperature,

q = q(F, θ, ∂xθ) , (7.19)

where q(F, θ, ∂xθ = 0) = 0 on physical grounds. The process {χ,Θ} is not only governed
by (7.3) and (7.4) but by the second law, which in (local) Clausius-Duhem form is

ρ0θη̇ ≥ ρ0r − ∂X · h +
1

θ
h · ∂Xθ. (7.20)

A direct consequence of (7.20) is simply h · ∂Xθ ≤ 0. This result is clearly seen after use in
(7.20) of the (local) balance of energy in the form

ρ0θη̇ = ρ0r − ∂X · h , (7.21)

which results from (7.15), (7.10) and (7.6).

7.1.1 Examples

For the specific example of the thermoelastic fluid called an ‘ideal’ gas, the Cauchy stress is
given by

T = T(F, θ) = R̄ρθI , (7.22)

where R̄ is a constant, ρ = ρ0 det−1(F), and ε = ε(θ) is not a function of F since the gas
particles do not interact. Applying (7.13) results in

η − η0 =

∫
ε̇(θ)

θ
dt−

∫
R̄
ρ̇

ρ
dt = cv ln

θ

θ0

− R̄ ln
ρ

ρ0

, (7.23)

which is clearly integrable for the special case where cv = ∂θε is constant. The free energy Ψ
consistent with this entropy gives the interesting result that stress for an ideal gas P = −θ∂Fη

3There is a slight but important inconsistency between (7.18) and the definitions (7.11) and (7.12) in
the case of non-uniform temperature distributions. It stems from the continuum interpretation of

∫
dQ
θ ,

where Q is the heat added at temperature θ. Some interpretations bring the heat flux into the volume
integral then divide by temperature and others do the reverse. These statements are not equivalent, i.e.
1
ρ0
∂X · h

θ 6=
1

ρ0θ∂X · h, unless the region is homothermal, ∂Xθ = 0. The definition (7.13) side-steps this issue
by eliminating the surface heat flux h.

130



7.1. THE CONTINUUM INITIAL-BOUNDARY VALUE PROBLEM

is directly related to entropy change (and not dependent on internal energy as it would be
in an elastic solid). To pose the full thermodynamic problem a heat flux relation would need
to be given.

On the other hand, starting with a quadratic free energy4

Ψ =
1

2
ε · Cε− ε ·Mϑ− 1

2

c

θ0

ϑ2 (7.24)

in terms of the small strain measure ε (the linearization of E about a strain-free reference
configuration) and the relative temperature ϑ = θ− θ0 (θ0 being the reference temperature),
the equations of linear thermoelasticity

ρẍ = ∂x · (Cε−Mϑ) (7.25)
c

θ0

ϑ̇ = ∂x(
1

θ0

K∂xϑ)−M · ∂xẋ (7.26)

result from (7.3), (7.21), (7.15) and Fourier’s Law q = −K∂xΘ . 5 Note that the free
energy determines the stress and the entropy but only the Clausius-Duhem inequality puts
any constraints on what the heat flux can be. In (7.24), the elasticity tensor C = ∂2

EΨ(0, θ0),
the thermo-mechanical coupling tensor M, and the conductivity tensor K are constants.
For an isotropic body, the constants reduce to well-known quantities: C = λI ⊗ I + 2µI
where λ and µ are Lamé constants, K = kI where k is the usual heat conductivity, and
M = 3(λ+ 2

3
µ)αI where α is the coefficient of linear thermal expansion.

A third example, the Maxwell-Cattaneo rigid heat conductor, does not quite fall into the
thermoelastic class of materials since its behavior depends on {E = 0, θ,h} not {E, θ, ∂Xθ}.
From its constitutive relations for heat flow

Cḣ + h = K∂Xθ , (7.27)

where K is positive definite and Z = K−1C is symmetric, and internal energy

ε = ε(θ,h) = e0(θ)−
1

2
h · θ2 d

dθ

( 1

θ2
Z(θ)

)
h , (7.28)

and the balance of energy (7.6) with Ė = 0, an entropy

η = η0(θ)−
1

2
h · d

dθ

(1

θ
Z(θ)

)
h (7.29)

4This quadratic form of the free energy leads to an internal energy ε = 1
2ε ·Cε+

1
2

c
θ0
ϑ2, and both energies

are consistent with the idea that the “strain energy” for an isothermal, infinitesimally deforming solid should
be convex.

5Fourier’s law can be seen as the analogue to linear elasticity for heat conduction, i.e. a first order
constitutive relation. It also leads to the concept of temperature being the potential for heat flow.
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and a free energy

Ψ = e0(θ)− θη0(θ) +
1

2
h · 1

θ
Z(θ)h (7.30)

can be derived. The constitutive relations and the balance of energy need to be solved
simultaneous,

Cḣ = K∂Xθ − h (7.31)

ρ0

( d
dθ
e0(θ)−

d

dθ

(1
2
h · θ2 d

dθ
(

1

θ2
Z)
)
h
)
θ̇ = ρ0r − ∂X · h + ρ0

1

2
h · d

dθ

( 1

θ2
Z
)
C−1

(
K∂Xθ − h

)
and are considerably more complex than (7.26) with ε = 0, even when reduced to their
simplest form

ḣ =
k

c
∂Xθ −

1

c
h , (7.32)

θ̇ =
1

eθ − c
k
h · h

(
− 1

ρ0

∂X · h−
1

θ3
h ·
(
∂Xθ −

1

k
h
))

,

where K = kI, C = cI, e0 = e
2
θ2 and r = 0. Also, this system of equations does not have

the clearly parabolic character of the classical heat equation. This ‘relaxation’ model of heat
conduction gives a finite speed of propagation to a heat pulse, as opposed to the infinite
propagation speed modeled by the heat equation based on Fourier’s law.

7.2 The Atomistic Initial-Boundary Value Problem

The atomistic system of particles α = 1..N is governed solely by Newton’s law

mαẍα = fα (7.33)

where mα is the particle mass, xα is the particle position and fα is the external force on the
particle. Typically the force fα on the particles is derived from a (global) potential energy
Φ(xα) via

fα = ∂xαΦ , (7.34)

and, in this case, the system is conservative with a Hamiltonian or total energy H

H =
∑
α

(1

2
mαẋα · ẋα

)
+ Φ(xα) . (7.35)

The constitutive behavior of the system is directly related to the form of Φ(xα) since it relates
deformation to internal forces. The solution xα = χα(t) to (7.33) , subject to appropriate
initial and boundary conditions , is assumed to be C2.
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From the solution χα(t) it is possible to compute a posteriori thermodynamic measures for
sets of particles using concepts from statistical mechanics. For instance, a kinetic definition
of temperature is

θS =
(3
2
kB
∑
α∈S

mα
)−1〈1

2

∑
α∈S

mαẋα · ẋα
〉
, (7.36)

where < • > represents a long time or ensemble average and kB is Boltzmann’s constant.

7.3 Coupling Molecular Dynamics with Continuum Fi-

nite Elements

Fundamental to the coupling problem is the fact that the motion of the atoms χα is inter-
preted as motion of mass χ and temperature Θ by the continuum. Naively, the continuum
motion is related to long wavelength elastic waves in the atomic crystal and the temperature
comprises the remaining short wavelength atomic motion. The heat-bulk motion transition

k

continuum FE

atomistic MD
sample size limit

mesh based cutoff

lattice based cutoff

Figure 7.1: Generic dispersion curves for MD and FE

length-scale maybe on the order of the lattice parameter. There are other length-scales to
consider which result from the dispersion curves illustrated in Figure 7.1. The small wave-
length limit for an atomistic simulation is on the order of the lattice parameter. While there
is theoretically no large wavelength limit, the use of numerical simulation methods result
in an upper wavelength limit determined by the size of the sample in the simulation. The
finite element method of representing a linear elastic medium has a similar dispersion curve
artificially induced by the algorithm and dependent on the mesh size. Clearly, a finite el-
ement representation of a continuum is opaque to shorter wavelengths than the mesh size.
So inevitably the mesh size of the finite element representation will determine the smallest
wave that is interpreted as bulk motion and this lower limit must be greater than the highest
wavelength that can be represented in the atomistic region to have non-trivial coupling.

The concept of thermodynamic equilibrium, which is assumed by classical continuum me-
chanics, leads to the idea that the atomistic and continuum simulations run at different
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timescales. A thermometer is a good illustration of why there are different timescales to
the two models. A thermometer takes an ensemble average (or time average if ergodicity
is assumed) of the kinetic energy of the fluid’s atoms near the thermometer. The mean-
time between impacts of atoms is a measure of the atomistic timescale which is extremely
small when compared to the response time of the thermometer measuring the continuum
temperature.6

So there is a need to bring atomistic kinematic quantities up to the continuum length and
time scales. Hardy’s method [52] for spatial homogenization can be extended to temporal
homogenization. The kinetic fields need a similar treatment. It is not clear whether it is
more convenient to use energy or energy duals to primary fields e.g. stress is the dual to
strain and entropy is the dual to temperature. The energy approach is attractive since it
allows for different sources of energy, e.g. particle kinetic energy versus continuum thermal
energy, to be accounted for without bothering with the details. It does not, however, provide
a means of deriving the form of the continuum heat flux, as noted previously. Also, total
energy, kinetic plus potential, is natural to atomistic systems and for small motions, with
no change in association, atomistic systems are conservative. Whereas, in a continuum, the
free energy is usually the basis for thermoelastic materials since free energy is minimized
at equilibrium.7 Unfortunately, free energy can only be derived from atomistic simulations
by complex post-processing based on statistical mechanics. Another issue to consider is
what domains in the simulation need atomistic representation and what domains can be
represented by continuum and where do they interact: on an interface, over an overlap of
finite size or should one region be a (proper) subset the other.

7.4 A Model Problem

To begin with, a model problem should be as simple as possible. A one-dimensional geometry
reduces the complexity of the waves that are possible and simplifies the boundary to a point.
(There are some costs for this choice, not the least of which is the potential for behavior
that is not typical of larger three-dimensional systems [108]). To study the flow of heat, an
atomistic representation coupled to a continuum rigid conductor is ideal since the motion-
temperature split becomes unambiguous. In order to maintain the validity of this pairing,
the atomistic region needs to be limited to small wavelength ‘thermal’ motions.

The first test to validate the method should be a verification of basic consistency between a
homogenized version of the atomistic system and the continuum, i.e. does the kinetic tem-

6Whether the (local) equilibrium assumed by continuum mechanics is equivalent to requiring reversible
thermodynamics is too involved to discuss here.

7Also, Gibbs variational principle states that entropy is maximized at equilibrium subject to the constraint
of constant energy.
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perature calculated from molecular dynamics look like the empirical temperature calculated
by finite elements for a corresponding initial-boundary value problem. As Figure 7.2 shows,
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Figure 7.2: Empirical Temperature versus Kinetic Temperature

the empirical temperature calculated by the classical heat equation based on Fourier’s law
and constant end temperature does not correlate well with the kinetic temperature derived
from a molecular dynamics simulation of atoms interacting with a linear force relation and
input of a constant frequency wave. The main difference between the parabolic heat equa-
tion’s solution and the post-processed hyperbolic solution to the atomistic simulation is the
infinite versus finite speed of propagation. The instant after the initiation time, the far end
of the classical conductor experiences a rise in temperature. In the atomistic system the
heat wave takes a finite amount of time to transverse the domain and this energy travels at
the group velocity of the displacement waves. Clearly, to make a correspondence between
the parameters of the two systems is futile and a rigid-heat conductor with a finite propaga-
tion speed, such as the Maxwell-Cattaneo conductor, would be more appropriate for these
conditions.

A second test consists of seamlessly passing information from the atomistic region to the
continuum and vice versa. In this case, it would mean atomistic waves passing into the
continuum as heat and heat passing into the atomistic region as small wavelength energy.
A simple means of coupling a one-dimensional molecular dynamics simulation to a one-
dimensional finite element representation of a heat conductor was tried with limited success.
The interface between the two regions was taken to be a single point and the kinetic tem-
perature

θk =
1

KN∆tMD

∑
t∈(ti,ti+N∆tMD)

mαvα · vα

was applied to the finite element region. Here ∆tMD is the time-step of the molecular
dynamics simulation and ∆tMD = N∆tMD is the time-step of the finite element simulation
(N is a natural number). To provide coupling of the dynamics of the boundary atoms to
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the conditions in the finite element region the (average) energy lost through conduction was
applied to the atomistic region via

fα · vαN∆tMD = q∆tFEM .

It is interesting to note that despite the boundary condition being an energy balance it is
more convenient to phrase in terms of energetic duals e.g. fα and vα. A number of difficulties
were encountered: a) to solve for fα involves dividing by vα which is undefined in some cases
and ill-conditioned in others b) if an implicit integration scheme is used in the atomistic
region, simultaneous satisfaction of the two boundary conditions is not trivial.

7.5 Coarse-graining and fine-scale energy

One of the first tasks in designing an atom-continuum coupling scheme is extracting con-
tinuum behavior from atomistic simulation. The basic premise is that physical events occur
on two scales so that the displacement, for instance, can be decomposed into the sum of a
coarse and a fine scale :

u = ū + u′

Let the characteristic length-scales be denoted `f and `c and the time-scales be τf and τc.
With the exception of linear systems, the time and length-scales are coupled through a
dispersion relationship, i.e. waves with high frequency will typically have short wavelengths
and small group velocities. Following the notation in [12]:

SYMBOL DEFINITION

d nodal displacements, dimd = 3nc
q atomic displacements, dimq = 3nf
N coarse-scale interpolants, N : R3nc 7→ R3na

MA atomic mass matrix MA = diagα(mα)

where the number of spatial dimensions is assumed to be three. Note that the coarse scale
interpolants can also be interpreted as mapping continuous functions onto discrete atomic
displacments.

In order to coarse-grain atomistic information where the single primary unknown is a discrete
set of particle trajectories, a coarse-scale mass matrix is defined as:

M = NTMAN .
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This is a projection, which has other special properties if the interpolants are a partition of
unity. In the limit of nc → na with nodes located at atoms, M is identical to MA. In order
to get ū from u, construct a fine-to-coarse (spatial) projection P is such that

P : R3na 7→ R3na

and PP = P. For instance, the L2 projection used in [12]

P = N(NTMAN)−1NTMA

where typically, MA = mI so P = N(NTN)−1NT . With this P a fine-scale displacement
can be defined

u′ = (I−P)q = Qq

where Q = I−P is the complementary projection. This implies Nd = Pq and ultimately

d = (NTMAN)−1NTMAq .

(If the interpolants used in N have the Kronecker delta property, then d = Pq at the
nodes.) Note that it is possible, via a change of basis, to put the projection in the form:
P =

∑nc

I=1 eI ⊗ eI .

The kinetic energy for the system has the usual quadratic form

K =
1

2
u̇MAu̇ =

1

2
(Nḋ)TMA(Nḋ) +

1

2
(Qq̇)TMA(Qq̇) + (Nḋ)TMA(Qq̇)

If the orthogonality condition NTMA(I−P) = 0 holds, then the coarse and fine-scale kinetic
energies decouple K = Kf +Kc and the evolution of the two scales with time is given by

Md̈ = ∂dU = NT∂uU (7.37)

Mq̈ = ∂qU = QT∂uU (7.38)

(7.39)

where a fine-scale mass matrix can be defined as

M = QTMAQ

and U is the total potential energy or strain energy which couples the evolution of the two
scales together. The ensemble average of the kinetic energy

〈K〉 =

∫ ∫
K(ḋ, q̇) exp

(
1
κbT

(1
2
(Nḋ)TMA(Nḋ) + 1

2
(Qq̇)TMA(Qq̇)

)
dq dq̇∫ ∫

exp
(

1
κbT

(1
2
(Nḋ)TMA(Nḋ) + 1

2
(Qq̇)TMA(Qq̇)

)
dq dq̇

=
1

2
ḋTMḋ +

1

2
κbT rankQ
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where κb is Boltzmann’s constant and rankQ = 3(na − nc). So clearly the (equilibrium,
kinetic) temperature T depends on the rank of the coarse scale i.e. the larger the dimen-
sionality of the coarse scale, the larger the portion of the kinetic energy attributed to the
coarse scale and the lower the temperature. There is some question whether the coarse scale
is physically motivated or merely a numerical artifice. If there is a continuum limit with
mesh and time window size then the split can be considered physically motivated, but for
non-uniform systems this can be hard to establish.

With a coarse-scale projection in hand, a fine-scale kinetic energy for each atom can be
defined as

kf =
1

2
MA(Qq̇)2 ,

where (Qq̇)2 is a vector of squares of the fine-scale velocity components, such that Kf =∑
α(kf )α. The projection Pkf is interpreted as the fine-scale kinetic energy representable

on the coarse grid and is related to a continuum temperature(-like) field Θ(X, t) via

Θ =
2

κb
Pkf .

A nodal temperature can be defined in much the same way as d,

θ = (NTMAN)−1NTMAΘ ,

through the relation Θ = Nθ. Obviously, some of the kinetic energy cannot be represented
on the coarse-scale grid which provides the spatial scale `.

In addition to the spatial filtering, temporal coarse-graining is used in the sense of a causal
(backwards-looking) time filter

θ̄(t) =

∫ t

−∞
Gτ (s− t) θ(s) ds

to approximate the ensemble average. The filter kernel must be of the form Gτ (s) = 1
τ
g( t

τ
)

where g(s) ≥ 0,
∫ 0

−∞ g(s) ds = 1, g(0) = 1 and τ is the filter width and the time scale. As in

[109], two obvious choices for Gτ (s) are : (a) the Heaviside function Gτ (s) = 1
τ
H(t+ τ) and

(b) the exponential Gτ (s) = 1
τ

exp( t
τ
) lead to the two smoothed versions of θ

θ̄(t) =
1

τ

∫ t

t−τ
θ(s) ds

and

θ̄(t) =
1

τ

∫ t

−∞
exp(

s− t

τ
)θ(s) ds
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respectively. To avoid having to store the history of the previous configurations, Pruett et al.
[109] employed the differential form of the integral equation representing the time filtering.
Applying this idea to the Heaviside filter results in

∂tθ̄(t) =
1

τ

(
θ(t)− θ(t− τ)

)
and for the exponential filter

∂tθ̄(t) =
1

τ

(
θ(t)− θ̄(t)

)
which can easily be integrated with standard quadrature rules. Although the atoms’ tra-
jectories are continuous in time, they are integrated with a time-step which is given by a
stability condition. This must be taken into account when choosing the width of the filter,
τ .

With an algorithmic temperature (θ̄), it is possible to identify components of the total energy
in the atomistic representation

H = U +Kf +Kc

with those on the continuum side.
H = ε+ κ

First of all, the coarse-scale kinetic energy Kf is identified with the continuum kinetic energy
κ. This leaves the continuum internal energy ε = ε(∂Xū, θ) to be correlated with the potential
and fine-scale kinetic energies U +Kf of the atomistic domain. As noted earlier, not all of
this energy is representable on the coarse-scale grid employed for the continuum simulation.
Furthermore, on the continuum domain, an energy balance in a local form

ρε̇ = T · ∂xẋ + ρr − ∂x · h

or an integral form

d

dt

∫
Ω

(ε+
1

2
ẋ · ẋ)ρ dv =

∫
Ω

(b · ẋ + r)ρ dv +

∫
dΩ

t · ẋ− q · n da , (7.40)

needs to be solve simultaneously with the momentum balance. For example, the equations
of linear thermoelasticity

ρẍ = ∂x · (C∂Xu−Mϑ)
c

θ0

ϑ̇ = ∂X(
1

θ0

K∂Xϑ)−M · ∂Xu̇

(see [110] for computational implementation)

There are many further questions to be answered, which range from the numerical, e.g. how
should the the gradients of the atomistic quantities be calculated, to the physical, e.g. what
are appropriate constitutive models for the stress and heat flux? How to pass information
between the two computational representations is still a work in progress.
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Chapter 8

Publications

The following publications have been produced as a result of the work for this project, and
have either been published or are awaiting publication:

“Continuum Definitions for Stress in Atomistic Simulations”, J.A. Zimmerman, R.E. Jones,
P.A. Klein, D.J. Bammann, E.B. Webb III and J.J. Hoyt, Technical Report -
SAND2002-8608, December, 2002.

“Evaluation of continuum stress in atomistic simulation”, J.A. Zimmerman, E.B. Webb III,
J.J. Hoyt, R.E. Jones, P.A. Klein and D.J. Bammann, Computational Fluid and Solid
Mechanics 2003, Proceedings of the Second MIT Conference on Computational Fluid
and Solid Mechanics, pp. 804-807, 2003.

“Formulation for Quasi-Static, Coupled, Atomistic-Continuum Simulation”, P.A. Klein and
J.A. Zimmerman, Multiscaling in Applied Science and Emerging Technology:
Fundamentals and Applications in Mesomechanics, Proceedings of the Sixth
International Conference for Mesomechanics, pp. 514-521, 2004.

“Evaluating Thermo-Mechanical Continuum Variables in Atomistic Simulation”,
J.A. Zimmerman and E.B. Webb III, Multiscaling in Applied Science and Emerging
Technology: Fundamentals and Applications in Mesomechanics, Proceedings of
the Sixth International Conference for Mesomechanics, pp. 530-537, 2004.

“Calculation of stress in atomistic simulation”, J.A. Zimmerman, E.B. Webb III, J.J. Hoyt,
R.E. Jones, P.A. Klein and D.J. Bammann, Modelling and Simulation in Materials Science
and Engineering, 12, pp. S319-S332, 2004.

“Coupled Atomistic-Continuum Simulation using Arbitrary Overlapping Domains”,
P.A. Klein and J.A. Zimmerman, In review, 2004.
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“Coupled Atomistic-Continuum Analysis of Nanowires and Nanofilms”, J.A. Zimmerman
and P.A. Klein, To be presented at the 11th International Conference on Fracture in Turin,
Italy in March of 2005.
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