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Abstract. Reynolds’ lubrication approximation is used extensively to study flows between
moving machine parts, in narrow channels, and in thin films. The solution of Reynolds’ equation
may be thought of as the zeroth order term in an expansion of the solution of the Stokes equations in
powers of the aspect ratio € of the domain. In this paper, we show how to compute the terms in this
expansion to arbitrary order on a two-dimensional, z-periodic domain and derive rigorous, a-priori
error bounds for the difference between the exact solution and the truncated expansion solution.
Unlike previous studies of this sort, the constants in our error bounds are either independent of the
function h(z) describing the geometry, or depend on h and its derivatives in an explicit, intuitive
way. Specifically, if the expansion is truncated at order 2k, the error is O(¢2*12) and h enters into
the error bound only through its first and third inverse moments fol h(z)~™dz, m = 1,3 and via

the max norms || %hz_lﬁﬁhnoo, 1 < ¢ < 2k+ 2. We validate our estimates by comparing with finite
element solutions and present numerical evidence that suggests that even when h is real analytic and
periodic, the expansion solution forms an asymptotic series rather than a convergent series.
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1. Introduction. Reynolds’ lubrication equation [22; 20, 16, 12] is used exten-
sively in engineering applications to study flows between moving machine parts, e.g.
in journal bearings or computer disk drives. It is also used in micro- and bio-fluid me-
chanics to model creeping flows through narrow channels and in thin films. Although
there is a vast literature (including several textbooks) on viscous flows in thin geome-
tries, the equations are normally derived either directly from physical arguments [16],
or using formal asymptotic arguments [12]. This is acceptable in most circumstances
as the original equations (Stokes or Navier—Stokes) have also been derived from phys-
ical considerations, and by now the lubrication equations have been used frequently
enough that one can draw on experience and intuition to determine whether they will
work well for a given problem.

On the other hand, as soon as the geometry of interest develops (or approaches)
a singularity, or if we wish to compute several terms in the asymptotic expansion of
the solution in powers of the aspect ratio €, we rapidly leave the space of problems for
which we can use experience as a guide; thus, it would be helpful to have a rigorous
proof of convergence to serve as a guide to identify the features of the geometry that
could potentially invalidate the approximation. For example, in [25], the author and
A. E. Hosoi used lubrication theory to study the optimal wave shapes that an animal
such as a gastropod should use as it propagates ripples along its muscular foot to crawl
over a thin layer of viscous fluid. In certain limits of this constrained optimization
problem, the optimal wave shape develops a kink or cusp in the vicinity of the region
closest to the substrate, and there is a competing mechanism controlling the size of
the modeling error (singularity formation vs. nearness to the substrate). We found
that shape optimization within (zeroth order) lubrication theory drives the geometry
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out of the realm of applicability of the lubrication model; however, by computing
higher order corrections and monitoring the errors (using the results of this paper),
we learned that cusp-like singularities are appropriately penalized by the full Stokes
equations, yielding non-singular optimal solutions; see [25] for further details.

1.1. Previous Work. In most of the following papers, the Stokes or Navier-
Stokes equations are solved in a domain {2, bounded below by a flat substrate and
above by a curved boundary y = eh(x) in two dimensions, or z = eh(z,y) in three
dimensions, where ¢ is a small parameter and the function A is fixed. These solutions
are then compared to the solution of Reynolds’ equation (or to a truncated expansion
solution of the Stokes or Navier-Stokes equations), and the error is shown to converge
to zero in the limit as € — 0.

In 1983, Cimatti [8] used a stream function formulation to compare the solution
of Reynolds’ equation to that of the Stokes equation in two dimensions. The key idea
of the proof, which all subsequent studies (including this one) also use, is that the
Poincaré—Friedrichs inequality holds uniformly as € — 0 for the re-scaled biharmonic
equation (where the domain Q = Q._; is held fixed and the equations contain the
small parameter). Cimatti assumes h has four weak derivatives (whereas we only
require A € C11) and shows that for any compact set K C 2,

leuw — |2 o) < Ce, max (||€ps — Pl 2050, [1€%0y |l L2(1)) < CeY2, (1.1

where u is the z-component of velocity, p is the pressure, a bar denotes the solution of
Reynolds’ equation, and C' is independent of € but depends on A in the first inequality,
and on h and K in the second. The scaling here in not standard: he imposes the
boundary condition eu(z,0) = @(z,0) = const, which accounts for the extra factor
of £ in each of the left hand sides of (1.1). There are a few problems with Cimatti’s
analysis, notably the dependence of C' on L (the “arbitrary cutoff” used to make the
unbounded domain bounded) and the fact that some of his arguments seem to require
€ to be small in comparison to C~!; however, his basic approach is interesting and
inspired much of the work that followed in this subject.

In 1986, Bayada and Chambat [3] generalized Cimatti’s work to three dimen-
sions. They analyze the Stokes equations directly rather than using a stream function
formulation, assume less regularity of h (apparently only h € C'), and state their
results in terms of limits (i.e. the quantities uf, ed,us, dyus and p° in the solution of
the Stokes equations converge in L? to the corresponding quantities in the solution of
Reynolds equations as € — 0); hence, they do not give rates of convergence. In a later
paper [4], they also studied the asymptotics of the solution at a junction between a
three dimensional Stokes flow and a thin film flow.

In 1990, Nazarov [18] generalized previous work to the case of the Navier—Stokes
equations, and also showed how to treat higher order corrections in an asymptotic
expansion in the small parameter e. He proved that if h(z,y) is smooth, then there
is a constant C depending on h, N and the boundary conditions such that

[ —u™ g+ [lp = Ve < OV, (1.2)

where (u, p) is the solution of the Navier-Stokes equations, u’¥ and p" are the terms
of the asymptotic expansion truncated at the Nth order (including a boundary layer
expansion near the lateral edges of the thin domain), and the norms are taken on the
thin domain 2. (rather than the re-scaled domain €2). As a corollary, if the expansion
is computed with “superfluous” terms that are afterwards treated as remainders, he
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obtains the optimal estimate
[u = a2 4+ 2|(n5 V) (@ = u¥) |2 + [p— "N |2 < CENFL (1.3)

Nazarov’s paper is concise to the point of being impenetrable at times. We interpret
WT/QV = (O, Oy, £1/29,), but this symbol was not defined and may actually be a vari-
able coeflicient operator that incorporates the boundary conditions in its definition.
We are also unsure of the definition of p and pV as we would have expected p —e2p™
to appear together.

In a later paper [19], Nazarov studies the asymptotics of the solution of the
Stokes equations in a domain in which two smooth surfaces meet at a point. This
problem is also studied in a recent paper of Ciuperca et. al. in [9]. This singular limit is
interesting in that deriving even the first correction to the zeroth order approximation
in the asymptotic expansion remains an open problem.

Assemien, Bayada and Chambat [2] have studied the important question of the
effect of inertia on the asymptotic behavior of a thin film flow, which can in many
cases be significant, requiring that the Navier-Stokes equations be used in place of
the Stokes equations as the underlying model for the asymptotic expansion. We also
mention that there is a large body of literature on the long-time behavior of solutions
of the Navier-Stokes equations on thin domains; see e.g. [21, 17].

In 2000, Duvnjak and Marusié-Paloka [11] showed how to rigorously analyze the
lubrication approximation of the Navier—Stokes equations for a slipper bearing in a
circular geometry. The focus of their paper is on formulating the problem in cylindrical
coordinates and showing how to adapt the zeroth order case of Nazarov’s proof to
handle the change of variables. Elrod’s pioneering 1960 paper [12] is also concerned
with the (formal) relationship between the Navier-Stokes equations and Reynolds’
equation for this geometry.

1.2. Motivation and Summary. None of the studies described above shows
how the constant C' bounding the error depends on the function h(x) describing the
geometry. This is because most theorems of analysis give constants that depend on
the domain 2, which is usually fixed. But in our case, the data h(z) of the problem
actually specifies the domain; therefore, to obtain bounds that are independent of h,
one must avoid or modify standard arguments for flattening the boundary, etc. so as
not to lose track of h(x) in the analysis. Moreover, arguments based on the closed
graph theorem or Rellich’s compactness theorem must be avoided entirely, as these
also depend on the geometry. This forces us to look for new ways to analyze old
problems using tools that furnish explicit constants.

In this paper, we consider only the two-dimensional, periodic Stokes equations
with a specific choice of boundary conditions, but we derive error estimates that
depend on h in an explicit, intuitive way. Our main result is summarized in Theo-
rem 4.11, which may be stated as follows: Let T = [0, 1],, be the periodic unit interval.
If k>0, heC?*LUT) 0 < hyg < h(x) <1forx €T, and e < ry/3 (defined below),
then the error in truncating the expansion of the stream function, velocity, vorticity
and pressure (in appropriate e-weighted Sobolev norms) at order 2k (keeping in mind
that only even powers of ¢ appear in these expansions) is bounded by

c T ENETE
14 Op— ) 2 ( ) : 1.4
e 11] PETE (1.4)

where Vjy and V; are prescribed tangential velocities on the lower and upper boundaries

VI ([Vo| + V)
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of the domain,

= g V) L= [ by md 1.5
k= 1§?%%)l§+2 HE z Hoo ’ m_/o (@) i (1.5)

and pg, 0 are constants independent of h. The bound on pressure has another term
involving hg; see (4.110) below.

The constants in (1.4) have been divided into two types: those that are (1) given
in the problem statement or easily computable from h; or (2) difficult to compute but
universal (independent of h). We show how to compute the constants in the latter
category (pr and 0;) in Section 4; see Table 4.4. The constants in the former category
(re and I,;,) help us understand the competing mechanism of singularity formation
vs. proximity to the substrate: the curvature and higher derivatives are allowed to
diverge as long as the gap size simultaneously approaches zero in such a way that the
homogeneous products 7h‘~19%h remain uniformly bounded. Although the factors

V11 and \/I3/I; in (1.4) also diverge in this limit, the norm of the exact solution
diverges at a similar rate — so the relative error in the expansion solution truncated
at order 2k is O(e?*+2), with ppr;, serving as an effective radius of convergence.

The framework we have chosen for this paper is intended to be general enough
to cover many interesting applications (such as a crawling gastropod [25] or an “un-
wrapped” slipper bearing) but simple enough to obtain explicit detailed estimates
that reveal the dependence of the error on the geometry h(z). We also wanted to
determine whether there might exist geometries for which the asymptotic expansion
yields a convergent series. Although we do not have a rigorous proof, the answer
appears to be negative even for the simplest case of a real analytic function such as
h(z) = % + %Sin 2nx, for which the 7y in (1.5) are bounded away from zero. It is
hoped that this work will serve as a useful first step toward obtaining similar error
estimates for three-dimensional problems that include more general boundary condi-
tions, incorporate end effects near the lateral edges of the domain (which we avoid by
studying the periodic case), and include the effect of inertia or viscoelasticity.

1.3. Outline. In Section 2, we derive Reynolds’ lubrication approximation in its
primitive and stream function formulations. In Section 3, we show how to compute
successive terms in an asymptotic expansion of the stream function. In Section 3.2,
we prove a structure theorem describing the dependence of these terms on h(x) and
its derivatives.

In Section 4, we formulate the problem weakly and analyze the truncation error
equation using weighted Sobolev spaces and a uniform Poincaré-Friedrichs argument.
The first challenge is to find the right weighted norms on the lower and upper bound-
aries (equivalent to H'/?(I'g) and H'/?(T';) for fixed ¢) to yield manageable error
estimates in terms of h when we change variables to straighten out the boundaries.
In Section 4.4, we reduce the problem of bounding the truncation errors to that of
bounding the second and fourth derivatives of the two highest order terms retained
in the asymptotic expansion, namely ||1/)ﬁk)|| o and Hh%/}ﬁ’}f)no. We then use the
structure theorem of Section 3.2 to compute these norms in order to obtain the con-
stants pg and 6y in (1.4) for 0 < k < 25. In Section 4.5, we show how to compute
the error in velocity, vorticity and pressure from that of the stream function. This
requires that we determine how the Babuska—Brezzi inf-sup constant § depends on
h(x); see [24].

In Section 5, we validate our results by comparing to “exact” solutions (computed
using finite elements) for a geometry typical of engineering applications. The result of
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Fig. 2.1: Geometry commonly encountered in lubrication type problems. Left: Phys-
ical coordinate system. Right: Dimensionless coordinate system (A, = 202 + 92).

this comparison is that the effective radius of convergence r py is within a factor of 3 of
optimal for £ = 5, k = 10, and perhaps all k > 5. These calculations also suggest that
even when h(z) is real analytic, the expansion solution is an asymptotic series rather
than a convergent series. This is because the constants py converge to zero as k — co.
Fortunately, py initially increases, and does not become smaller than pg = 0.197 until
2k = 26, which is already outside of the practical range of k. Finally, in Appendix A,
we present our numerical algorithm for computing the expansion solutions, which can
be performed symbolically using a computer algebra system such as Mathematica, or
in floating point arithmetic, e.g. in O+,

2. Reynolds’ Approximation. Consider the Stokes equations on a periodic
domain of width W bounded below by a flat wall moving with constant speed Vj, and
above by an inextensible sheet moving with constant speed V; along a fixed curve
I = {(z,h(x)) : 0 < z < W}; see Figure 2.1. A bar is used to distinguishes
a physical variable from its dimensionless counterpart. We non-dimensionalize the
variables by choosing a characteristic speed U and height H for the problem, and
set T = Wz, §y = Hy, h(z) = Hh(z), V; = UV}, (4,0) = a = (ﬁu,ﬁ%v), and
p= ﬂ%—vgp. The stream function 1, flux @ and vorticity w introduced below satisfy

v =UHy, Q=UHQ andw:%w.

We have in mind a situation where the aspect ratio e = H/W of the physical
domain is small. By scaling the z- and y-axes differently, we map the problem onto
a nicer geometry, which introduces terms in the equations that vanish in the singular
limit ¢ — 0. Specifically, we wish to find z-periodic functions u,v,p defined on the
re-scaled domain

Q={(z,y) : 0<z<1, 0<y<h(z)} (2.1)
such that
Pr = XUy + Uy, Dy = g, + szvyy, Uy = —Uy (in Q) (2.2)
subject to periodic boundary conditions on the left and right sides of 2 and
(va)|po = (90,0), (U»’U)|p1 = (91, hzg1) (2.3)

on the bottom and top boundaries. Here

go(z) = Vo, g1(z) = Vi[1 + 2R/ (z)?]71/2, (2.4)
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i.e. g1(z) = Vj cosf(x), where 0 = arctan(eh,) is the angle of the curve h(Z) relative
to the horizontal. Reynolds’ lubrication approximation is obtained by setting ¢ = 0
in the equations and solving

Py = Uyy, Py=0, v, =—u,, u|FU = (Vo; 0), u‘rl = (1;h)V1.  (2.5)

If we write (2.2) in the form L(u;p) = (0;0;0), where L = L) + 212 4 414 is
given by

02 0 0, -2 0 0 0 0 0
L= 0 0 9|+ 0 =02 0)+e*|0 —82 0], (2.6)
d: 0, O 0 0 0 0 0 0

then (2.5) is just the zeroth order system L(®(u;p) = (0;0;0) with zeroth order
boundary conditions (expanding go and g¢; in (2.3) in powers of €). The equation for
v decouples from the others, and we find that p is independent of y and

2

u(z,y) = (;,2 - h(;)y) pa(x) + <1 —~ hé‘/x)> Vo + %Vl. (2.7)

Integrating from 0 to h and solving for p,, we obtain

6 12
Pz = ﬁ(vo +W) - 3

Q, (2.8)
where Q) = foh u(z,y) dy is the volume flux through any cross section of the fluid.
(Q is constant since V -u = 0 and u is tangent to I'y and I'1). Since p is periodic,
J pe dz =0 and we find that

Vo+ Wi I !
Q= 0; 172, (Im:/o h(x)_mdx>. (2.9)

Substituting (2.9) and (2.8) into (2.7) and using v, = —u,, v(z,0) = 0 we obtain the
solution

_ 6(Vo+14) (1_12>’

Pe 12 Ish
_ I y ¥ y y
u= (Vo + W) (313h 3) (h 5] + (1 E) Vo + EVh (2.10)
I vy y?

The vertical component v of the velocity field is customarily omitted from zeroth
order lubrication theory as © = eUv is O(g) on the thin geometry Q. of Figure 2.1.

We may also derive (2.10) using a stream function formulation of the problem.
Our procedure for computing higher order corrections to the lubrication approxima-
tion and our method for estimating the error of these expansion solutions are both
done in the stream function formulation. Let us define

Ao =22+ 32, u, = (EQL ) . (2.11)
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In our error estimates below, we will need to consider the inhomogeneous problem
L(u;p) = (F1; F3;0) with boundary conditions (2.3), i.e.

_Asue + VP = F,

Vou—o0, u|F0 = (go;0), u|Fl = (g1;hzq1)- (2.12)

Since u is incompressible, there is a stream function v such that
u=Vxy= (1, —), V xu. = v, —uy = —Ap. (2.13)
It follows from (2.12) that 1) satisfies the re-scaled biharmonic equation
A2 = Pyyyy + 26%P0ayy + £ pgae = V X F (2.14)

with periodic boundary conditions in the z-direction and

=0 v =Q
{% = go} m {wm,h@c» :gl} on Iy (215)

where Q = foh(o) u(0,y) dy. Since p is periodic, fol pz(z,0)dz =0, i.e.

1
/ Vyyy(2,0) + Fi(z,0) dx = 0. (2.16)
0

Conversely, suppose we are able to find a flux @ and a classical solution ¢ of (2.14)
and (2.15) such that (2.16) holds. Then we define u = V x % and note that (2.14)
implies V X (Acu. + F) =0, i.e. the integral

. t = unit tangent vector along
p(z,y) = [y(AEuE + F) -t ds, ( path v joining (0,0) to (z,y) ) (2'17)

is independent of the path . A canonical choice for 7 is

x Y
p(z,y) = /0 [52um + uyy + F1](&,0) d€ + /0 [€4vm + EQ’Uyy + Fy](x,n)dn. (2.18)

Condition (2.16) is equivalent to requiring p(1,0) = p(0,0), from which it follows
that p(1,y) = p(0,y) for 0 < y < h(0) since the integrand of the second integral in
(2.18) is periodic in z. By construction, the variables u, p satisfy (2.12), where the
boundary condition on I'; follows from the fact that v, 4+ hz1, = 0 there; hence,
classical solutions of the rescaled biharmonic equation yield classical solutions of the
rescaled Stokes equations and vice-versa. Reynolds’ approximation (2.10) is recovered
if F and ¢ are set to zero in (2.14)—(2.16) when solving for ¢ and @Q; see Section 3.1.

3. Higher Order Corrections. In this section we show how to compute succes-
sive terms in the formal expansion of the solution of the rescaled biharmonic equation
(2.14) in powers of e = H/W. For this purpose, it is convenient to manipulate the
equations assuming they are satisfied classically. Once we obtain formulas for the
higher order approximations, we will show (in Section 4) that they satisfy a weak
formulation of the problem that makes it possible to obtain error estimates. See [15]
for background on perturbation methods in partial differential equations.
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3.1. A Recursive Algorithm. Matching like powers of € in the expansion

[0 + 220202 + * 03[ + 2@ +etp™® 4. ] =0 (3.1)
we obtain the recursion
0 _
wzsy)yy =0,
77Z}yyyy 72¢myy’
Doy = 208N — Y, (k=2,3,4,...). (3:2)

The boundary conditions (2.15) become

By = (0,95, Q) ™), (k=0,1,2,3,...),  (3.3)
where By = (1/}|Fo’wy|ro’w’1‘1’wy|rl) and go(z), g1(x) were defined in (2.4):
(2k) Vo, k=0 (2k) —1/2\ Lok
= h . 4
o) = {0’ o =T re (3.4

Condition (2.16) (with F; = 0) becomes

t/dﬁ@xO(m—O (k=0,1,2,...). (3.5)

If F were non-zero in (2.14) and depended on ¢ in such a way that V x F had an
expansion in even powers of &, we could incorporate these terms into (3.2) and (3.5)
as well; however, we will assume F = 0 except in Section 4, where we consider the
general case only to derive error estimates for the F = 0 case. Let us denote the right
hand side of (3.2) by f®*)(z,y) for k > 0. The terms ¥(?*), Q2*) in (3.2) and (3.3)
may be computed via

(¢%y@%gzc(ﬂ%y%%yﬂ%g, (k=0,1,2,...), (3.6)

where G is defined by Algorithm 3.1 in Figure 3.1. In this algorithm, we solve
Yyyyy = [ Dy integrating four times in the y-direction, and then correct the bound-
ary conditions with a cubic polynomial. The formula for @ in the algorithm may
be derived from the one for ¢ as follows. As 1)g yyy(x,0) = 0, the requirement that

fol VYyyy(z,0)dz =0 is equivalent to the condition

- —2Q + 2¢pg — Yo yh + goh + g1k
0=6 -
0

dz. (3.7)

Solving for @ and using [ h~3 dz = I3 gives the result.
The formulas (u,v) = (Yy, =), w = vy — Uy, Dz = Uyy + E2Uy, and p, =
e2vy, + e%v,, allow us to compute the expansions of u, w and p in terms of

w0 — %521@)’ v(@R) = _y(2h) (k> 0),
w0 — _%%)7 W@ — —%(ka_Q) . wéf,k)7 (k> 1),

PO =) | PR = p2h=2) 4 2k (k21), (35
p¥ =0, pP =yl P =—wlEY -0, (k2>2),

) (2, y) = / PP (€, 0) dé + / P2 () iy, (k> 0).
0 0
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AvcoriTeM 3.1. (¢, Q) = G(f, g0,91):
o = VAf (V = Volterra operator: V f(z,y) = /y f(z,n) dn)
0

1 (1 2g(w,h(x) | —toy (@, h(z)) + g0 + 01()
Q:E/o Wer T hwr

b(w,y) = do(@,y) + (90h(2)) sty
+ (3@ = 30 (@. h(x)) + v, (x, h(2))h(2) — 200h(x) = 91 (@)() ) 57
+ (= 20+ 200(2. (@) — o,y (x, h(z) h(x) + goh(x) + 91 (@)h(x) ) 75
return (¥, Q)

Fig. 3.1: Algorithm to solve 9y, = f, BY = (0, 90, Q, 91), fol Yyyy(2,0) dz = 0.

1(/%) = ypffk) for k > 0; hence, differentiating under

the integral sign in (3.8), we see that pS;Qk) and pl(,%) actually are the partial derivatives
of p%). Finally, our choice of Q(**) ensures fol pfk)(& 0)d¢ = fol ,(,%’Z) (z,0)dz =0
so that p(?*) is periodic.

Using Algorithm 3.1 to evaluate (19, Q) = G(0,Vp, Vi) yields

Vo+Vily
2 I3’

Equation (3.2) implies that d,p

QY = (3.9)

2 3

vO = ()L + (300 — 2% +1A)h) £ + (—2Q + (Vo + Vi)h) 25, (3.10)
which agrees with Reynolds’ approximation (2.10) when u®, p( are computed from
(9. To compute higher order terms in the expansion, we need to study the recursion

(3.6) more closely to determine how h will enter into the formulas for Q%) and (%),

3.2. Algebraic Structure of the Stream Function Expansion. In this sec-
tion, we show how the terms ¢%) and Q%) in the stream function expansion de-
pend on h. The key result of this section is that these higher order corrections have
a structure similar to the zeroth order formulas (3.9) and (3.10), but the coefficient
on each }‘fLL now belongs to a more complicated polynomial algebra in the symbols
Vo, Vi, h, the derivatives of h, and certain weighted averages of the products of h
and its derivatives. We also present a concise representation for the correction terms
using matrices of rational numbers that are independent of any particular choice of
shape function h. By splitting the analysis into one part that holds universally and
another that depends on h in a simple way, we are able to derive useful error estimates
governing the expansion solution truncated at any order in Section 4.

Let P = Q[h, hy, has, - . -] denote the algebra of polynomials in h and its deriva-
tives over the rationals. A typical element of P might be 3 + 2h%h,,h3,,. In P, the
generators h, h,, etc. are treated as symbols rather than functions. Thus, if h(z)
happens to equal 1 identically, the polynomials 1 — h and hS are non-zero in P even
though they are mapped to zero when P is (non-injectively) embedded in C*°(T),

the space of C'* functions on the periodic interval T' = [0, 1],. If & is not smooth,
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ALGORITHM 3.2. (basis generation)

fO’I‘k:O,...,kQ J
(I)k:{tlf}} (ordkzl) 123 4
. 0 |*

forj=2 ... ko LI
fork=3j,... ko o2 le %

<I>k:<1>kutj<1>k_j, (OT‘dedk—l—dk_j) 3le o
return {®g, ..., Dy, } dle o o %

Fig. 3.2: Algorithm to find a canonical basis ®; for each space Hj in the range
0 <k <ko. Here ty < hy, ..., tgy < ;A" 10Fh.

its derivatives can still be manipulated symbolically and various subspaces (involving
terms with few enough derivatives) can still be embedded in actual function spaces
such as C*(T).

For any monomial o = Ch®hi1hi2 ... € P with C # 0, we define its superdegree
to be the number of derivatives present:

sdeg(a) =i1+2i0+3ig+---. (311)

If o € P, we define its superdegree to be the maximal superdegree of any of its terms,
and set sdeg(0) = —oo. Since Q is a field, sdeg(af) = sdeg(«) + sdeg(8) for any
o, € P. We say that « is homogeneous of superdegree k if each of its terms has
superdegree k.

Let H C P denote the subalgebra generated by the set {h*~10%h : k > 1}, i.e.

H = Q[{he, hhow, W*hae, - - . }], (3.12)
and for k > 0, let Hy C H denote the subspace
Hi ={0}U{a € H : « is homogeneous of superdegree k}. (3.13)

Note that Hj is finite dimensional for all £ and Hy = Q is the set of constant poly-
nomials. We will denote the dimension of Hy by

dy, = dim(Hy,). (3.14)

Given an integer ky > 0, we can use Algorithm 3.2 in Figure 3.2 to construct a
canonical basis ¢, = {wgk), . '7%(1?} for each Hj with &k in the range 0 < k < ko.
For notational convenience, let ¢; stand for Lhi~'02h. As the outer loop (on j)
progresses, @ contains a basis for the subspace of Hj, that involves only the symbols
t1, ..., t;. Let us denote these auxiliary sets by

Bpj = {t] - t) i+ 2+ +ji; =k}, (1<) <k). (3.15)
Then &y = {tlf}, P = Py, and (I)kj = (pk,j—l Utjq)k_jJ for 2 < j < k. In other
words, ®j; consists of @ j_1 together with all products of the variables ¢1, ..., t; of
superdegree k that contain at least one power of ¢;. The first several ®; and dj, are
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given by
hh hax h2
(pO = {1}7 (Dl - {h'£}7 (I)Q = {h’ia 2wx}7 (D?) = {hia hh’me7 %}7
®, — {h4 hhZhg, h2h%, h?hghep. h3hxxm,} (3.16)

@9 4 6 U
(do, . ..,dwo) = {1,1,2,3,5,7,11,15,22, 30,42}, doo = 627, dso = 204226.

We have found empirically that the first 75000 terms satisfy % (%ﬁ) <dg < %ﬁ.
In fact, we have recently learned of the Hardy-Ramanujan formula

exp (7n/2k/3)

— = as k— (3.17)

d ~
g 1kV/3
for the number of partitions of the integer k. Thus, rather than 13, the base is in fact

e™V2/3 = 13.001954.

We can now describe the structure of the stream function expansion in terms of
the shape function h. In the following theorem, VyHs is the tensor product of Vi
and Hoy, where

Vi = {0} U{a € Q[Vb, V1] : « is homogeneous of degree 1} (3.18)
is the space of rational linear combinations of Vj and V3. Recall from (2.9) above that
I, = fol h(z)~™ dz.

THEOREM 3.3. The terms QZF) k) in the stream function expansion defined
by the recursion (3.6) and Algorithm 3.1 have the form

k—1 k

I I
(2k) _ 12 (2k) (20)3,(2k—2¢0) (2k) _ 12 (2k) (2¢) p(2k—2¢0)
QUY) = T2alh £ 3T QRN ) = Falh) 37 QEO ),
£=0 £=0
(3.19)
where
2k+3 " 2k+3 "
2k _ 2k 2k _ 2k
oM (z,y) =" af )(x)W, B (@,y) = > PR (x) s (3:20)
n=1 n=1
and
1.
alft) € Tth1H2k7 BER) € Hay. (3.21)
(2k) (2k)
Moreover, a(?F) = i 01 a?},(m)(:) do and b2k — L (1B (@)

213 Jo Th(z)?

REMARK 3.4. In addition to pinning down tghe Way( i)n which h appears in the
formulas for the stream function expansion, this theorem allows us to represent (%)
and Q%) using matrices of rational numbers. Explicitly, (3.20) and (3.21) hold if
and only if there are matrices A?%), B(?¥) with entries in V; and Q, respectively, with
rows indexed from 0 to (2k + 3) and columns indexed from 1 to dai, and containing
only zeros in row 0, such that

I3

0 a,y) = (Van(o )T 4% ( L(0)20(2)).

B (z,y) = (Yoi(z,y))" BEH oy (2),

(3.22)
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N TR (%)2k+3 )T and @y, = (gog%)7 . 991(12k)) are treated as col-
umn vectors. The purpose of the zeroth row is to make it easy to convert to orthogonal
polynomials in y/h if desired. The final statement of the theorem asserts that the
formulas for a(®*) and b(?%) are also encoded in the matrices A% and B@F). If we
adopt Matlab notation and denote row i of A*) by A(*)(4, ;) then

where Ys;, = (1 Y

1 ,
a(?h) = A<2k>( )ES, b<2k>:§B<2k>(3,;)E§2">, (3.23)
where
T 1 [ Dop(x)
(2k) _ 2k) (2k) _ 2k
B9 = (B B, Im/o By (3.24)

Note that Efnlz) is the weighted average of ga( k) with weight function I.,1h~™. For
T
example, EY = (1), EY = (Il 0 hfn dz, 01 ’;Z%,f d:r) , etc.; see (3.16) above.

EXAMPLE 3.5. We can now represent Q(O) and 9(®) in (3.9) and (3.10) by

0 0 0
Vo+Wi 1 0 0

a® — — A© — NEAAEE BO = 3 (3.25)
1 1 —2

The second order terms Q@ and 1 involve these as well as

1 1
2) _ 72 8 (2) 2 6 2\ 2
o =2 Vo (f &)+ - B, 0P =5(-8 -3 B, (3.26)
0 0 0 0 0 0
0 0 0 0 0 0
A — v, —8/15  2/15 W —11/30  7/15 B@ _ 9/5 —2/5
7/15  2/15 19/30 —8/15 |’ —6/5 —2/5
2/3  —2/3 /3 —1/3 -3 2
-3/5 2/5 ~3/5 2/5 12/5 —6/5

For k > 2, A% and B®*) are both (2k + 4) x do matrices with rows 0 and 1
containing only zeros. These matrices are universal: the shape function h enters into
the formulas only through Ys, ®o; and EE® in (3.22) and (3.23). In Appendix A,
we show how to compute A*) and B®*) directly from the lower order matrices A2
and B9 with 0 < ¢ < k.

Proof of Theorem 3.3: We saw in Example 3.5 above that Q(® and ¢(°) have the
desired form. Suppose kg > 1 and the theorem holds for 0 < k < ky. We must show
that it is also true for k = ko. By (3.6),

2ko—2) 2k
(1/](27@0) Q(2/€0)) — ( qu(myoy , 0, g( 0)) kO =1, (3 27)
’ G(—203ly 2 — o, 0, o) ko > 2. '

We will use the second formula for both cases with the understanding that (=2

should be replaced by zero. The first step of Algorithm 3.1 is to compute wéQkO).
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Using the induction hypothesis, we obtain

2% I
0 = 2 (~2viafZhy — viah0) (3.28)
k‘g—l k0—2
+ Z Q20 <—2V45§i’§§,—%_2)) n Z Qo (_V4ﬁ;£:2mkmox 20— 4))
£=0 =0

The upper limit of the last sum can be replaced by ko — 1 since we interpret 5(~2) as
zero. We would like to re-write this in the form

I 2ko+3 ko—1 2ko—20+43
k
v °>=13<Z al?k) (z) hn>+ZQ”< Z B2k0=20 () ) (3.29)

n=4

If we use the induction hypothesis and substitute (3.20) into (3.28), the operator
V48§ annihilates a single power of y and anti-differentiates higher powers of y twice.
Similarly, V* anti-differentiates all powers of y four times. Thus, for k = kg and

4 <n <2k + 3, we should define

2hn32( (2k— 2)h n+2) hn84( (2k— 4)h n+4)

(3.30)
n(n—1) = 1) —2)(n—3)

o) (2) =

with an identical formula for 57(1%) in terms of 57(12_1627 2 and ﬁfff; Y. The second term
should be omitted when k& = 1 or n = 4, and is zero when n = 5. As part of the
induction hypothesis, we may assume that (3.30) and its § version hold for 1 < k < kg
as well, so that each term in the sum over £ in (3.28) also has the form described in
(3.29). Note that for n > 0 and any differentiable function ¢(z),

Ou(h~") = h= "D (hd, — nhy ). (3.31)

By Lemmas 3.6 and 3.7 below, hd, and multiplication by h, both map Hy to Hri1
for all £ > 0. Thus

h" o3 (aff%_%’””) = (3.32)
I
h[hdy— (n — 2)ha|[h0y — (n — 3)hg| (b al297?) € ivth%o

o> (5@’“0 2= n+2) = [h8s — (n — Dy [hds — (n — 2)ha) (B2~ 2>) € Mo,

with similar formulas for A"0} (a({ki%)h_"‘*“*) and h"0} (ﬂfﬁgfﬁl)h_”‘*‘l). We

conclude that a{?® and B*) have the form claimed in (3.21) when k = ko and
4 < n < 2kg+ 3. Finally, we obtain Q%) and 20) from @ZJ(()%O) in (3.29) using
Algorithm 3.1. They satisfy (3.19) and (3.20) if we set k = ko and define ag%) =0,
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£2k) —0,
(2k) Et (2k) —1/2Y, o
= - 3)a" (z) — Vi h?
@) = 3 tn =9l i)
2k+3
(@) =) (=383 (@),
n=4
2k+3 1/9 (3.33)
@) = 3 2= ma(a) + i (7))
n=4
2k+3
2%
@) = 30 2 m)p (@),
n=4
(2k) (2k)
a®) = L ! o (@) dz and bR = L [! 8" (@) dx. As part of the induction

375 Jo Th(z)3 37; Jo Th(z)?
hypothesis, we may assume (3.33) also holds for 1 < k < kg. The factors of n in
(3.33) are due to the terms £, (x, h)h in the formula for )(?*0) in Algorithm 3.1.

The terms 3Q(2k0)}’l—z and 72Q(2k0)z—z in the formula for ¢(?%) are accounted for in
(3.19) by extending the upper limit of the sum over ¢ from ko — 1 to k¢ and noting

that 50 (z,y) = 3%—2 —22—2. Thus, ¥(?%) and Q(%%0) have the desired form and a53’“°),

By(?k”) belong to the appropriate spaces, as claimed. O
To complete this proof, we need two simple lemmas about the spaces Hj (which
also serve as the foundation for our numerical algorithm described in Appendix A):
LEMMA 3.6. If k>0 and ¢ € Hy, then hyp € Hii1.
Proof. This follows easily from the definition of Hj in (3.13). O
LEMMA 3.7. If k>0 and ¢ € Hy, then ho,p € Hi41-
Proof. If k = 0 then h0,p = 0 € Hyy1. Suppose kg > 1 and the result holds for

k < ko. Let ¢ € Hy, be a monomial. Then thereisa k € {1,...,ky} and a monomial
B € Hy,—r such that ¢ = (h*~19kh)3. But then
hOpp = (k — 1)hyo + (WFOFTR) B + (hF 10k h) (RO, 3). (3.34)

Evidently, all three terms belong to Hg,+1, the third due to the induction hypothesis.
This result can now be applied term by term for any polynomial ¢ € Hy. O

4. Error Analysis. To estimate the error of the expansion of ¥ and @) through
order 2k, we show that the truncation error satisfies a weak form of the rescaled bihar-
monic equation (2.14) with data (F, go, g1) of order €272, We also prove a uniform
coercivity result for the family of bilinear forms involved in the weak formulation,
which allows us to bound the truncation error in terms of the data.

Throughout this section, we will treat Q and T' = [0,1], as C* manifolds by
identifying the points

Q: (0,y)~(Ly)  0<y<h(0),

4.1
T: 0~1 (4.1)

and adding a coordinate chart to each that “wraps around”. In particular: a function
in C*(Q) or C*(T) is understood to have k continuous periodic derivatives; 9§ =
[y UTy; 0T = @; the support of a function ¢ € C*(Q) vanishes near Ty and T'y but
not necessarily at z = 0 and = = 1; and the Sobolev spaces H*(2) and HE () are the
completions of C*(Q) and C*(€2) in the || - || norm, and thus contain only z-periodic
functions with appropriate smoothness at x = 0, 1.
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4.1. Weak Formulation of the Rescaled Biharmonic Equation. An inter-
esting difference between the biharmonic equation and the Poisson equation is that
the boundary conditions in the latter are completely specified in the problem state-
ment, whereas one of them (the flux @) in the former problem must be determined
as part of the solution. The integral condition (2.16), which uniquely determines
@, must also be reformulated weakly since it involves more than two derivatives of
1. This can be done [14] by slightly enlarging the space of test functions to include
functions that are constant along I'y (rather than equal to 0 there). To this end, we
define

U={pec HQ) : (¢,ay¢)|ro = (0,0), (¢,8y¢)}rl = (const, 0)}. (4.2)

For ¢, 1 in H?(Q2), we define the bilinear form

a,E('(/@ ¢) = /Q¢yy¢yy + 2€2wwy¢xy + 64¢xm¢xw dA
= a O, ¢) + 2P (¥, ) + aV (v, ¢).

To obtain estimates that hold uniformly in e, it will be useful to work with the
weighted norms and seminorms

(4.3)

|w%:AwMA Mﬁzlyauwm%A W2, = ac(, ),

[Dlle = /1018 + [blE e, ¥ll2e = \/||w||% + P17+ Y3

For fixed €, these norms are equivalent to the usual Sobolev norms in which ¢ is set
to 1 in these expressions. We use = to parametrize functions defined on I'g or I'; and
define the weighted boundary norm

(4.4)

o0

1
2%,5 = Z [1+ (2mke)?] ek |, Ck = / g(z)e 2™k g (4.5)
0

k=—o0

g1

We equip the dual spaces ¥’ and H~1(Q)? = [H}(Q)?]’ with the weighted norms

[l-2e= sup [(Lo)l,  [[Fll-1e= sup [(F, (u, v))]. (4.6)

lYllz,e=1 lullf c+llev]? =1

Since [[¢[5. > vyl + llewe |3 o, the linear functional (I,4)) = (F,V x 1) on ¥
satisfies ||I||—2,c < [|F||-1.-

DEFINITION 4.1. (weak solutions) Suppose
heC N (T), FeHYQ)?  goec HY*Ty), g€ HY ). (4.7)

We say that (¢, Q) € H*(Q) x R is a weak solution of (2.14)-(2.16) if

ac(¢,¢) = (F,V x ¢) (4.8)
for all ¢ € ¥ and the boundary conditions
B,(/J = (07907Q7g1) (49)

hold in the trace sense, where By := (’(/J|FO, wy‘ro’ 1/)|F1,wy|rl).
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PROPOSITION 4.2. FEvery classical solution is a weak solution.

Proof. We assume ¢ € C*(Q) and (2.14)—(2.16) hold classically; (this requires
additional regularity for F, go, g1, of course). If we multiply (2.14) by a test function
¢ € C?(Q) NP and use the identity x(V x v) = V x (xv) + (V x x) - v, we obtain

0= / o(—AZ) +V x F)dA

9

- / (v X [p(Acue + F)] + (V x ¢) - [Acu, + F]) dA (4.10)
9

:/ é(Acu. + F) -tds+/ [(v X )e - (V X Acth) + (V % §) F} dA
I'o—T1 Q

— [ 06— AV 61 tds+ [ [~ (Ae)(dev) + (V x ) F]dA,
I'o—T1 Q

where (V x @) = (¢y, —€%¢,) and the curves I'g and I'; are both oriented from left
to right as in Figure 2.1. The conditions

¢|r0 =0, ay¢|ro =0,

4.11
(b’rl = const, ay(b’n =0, ( )

ensure that the boundary terms are zero: the first boundary term is equal to

(@]p,)Ip(1, ~(1)) = p(0, A(0))] = 0 (4.12)

(with p as in (2.17), where it was shown to be periodic), and the second is zero since
V x ¢ =0onI'yand I';. One more integration by parts gives fQ(Asqﬁ)(Asw) dA =
ac(1,¢), so (4.8) holds. Since C?(Q) N ¥ is dense in ¥ and both sides of (4.8) are
bounded linear functionals of ¢ € W, this formula holds for all ¢ € . O

4.2. Uniform Coercivity. The following two theorems are the key to obtaining
error estimates for the expansion solutions of Section 3:

THEOREM 4.3. The bilinear form a.(-,-) is coercive on U (uniformly in €) with
respect to the weighted norm |- ||a,c, i.e. there is a constant a > 0 such that a|[¢|3 . <

ac(Y, ) for alle >0, ¢ € V. B
Proof. Without loss of generality, we may assume the characteristic height H of

the domain was chosen so that 0 < h(x) <1 for 0 < z < 1. We now use a standard
Poincaré-Friedrichs argument [5]. Suppose ¢ € C%(Q) N ¥. Then

h(x)
()2 = | [ oy (x,m) dn|” <y [y (, m)[* dn, (4.13)
0

35 rh(x)
()2 = | X (y — m)byy (2, m) dn|* < %/0 |thyy (2, ) [? dn. (4.14)

Integrating over €2, we obtain

2
}%nax

2

1 B o 1
[repaassih,  plg< 2 [ laa< k..

2
<
(4.15)

Repeating this argument on the derivatives of ¢ yields

1 1 1
e =10y l5 + llevall§ < 5 (gl e + levallc) = S0l = Sac(¥, %) (4.16)
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so that [[¢[|3. < {3a-(¥,1). Since C*(Q) N ¥ is dense in ¥, we conclude that
(12/19)|9]|3.c < ac(v,9) for all ¢ € ¥ as claimed. O
THEOREM 4.4. A weak solution ¥ of the boundary value problem (2.14)—(2.16)

exists and is unique. Moreover, the following estimate holds:

19
‘W”Q,E = 12

1
2 2 4 4 2
72 + 860 (h—1/2 L Y20, )
( < +4€4H%hh$$”io H gOHé,e || gl”;,s

SIFl-1e + (4.17)

In particular, if € < %0 with 75! = max (Hh lloo, |5 hhm||1/2> then

DR 415 (I ol + IRl ) (4a8)

Proof. We begin by constructing a function 1y € H?(Q) that satisfies the bound-
ary conditions (2.15) with @ = 0. First we map the domain ) to the z-periodic unit
square R =T x (0,1) via the transformation

Yo(w,y) = h(@) " *o(a, h(@)y),  (0<w<1,0<y<1), (4.19)

We include h=3/2 here to avoid powers of hO in (4. 27) where hg = mmo<x<1 h(x).

We require g (z,0) = 0, 1/1071,(1: 0) = h(z)~Y2g(x), to(z,1) = 0 and woy(x 1)
h(z)~2gi(x). To construct such a function, we deﬁne ¢ € CYR) via

0 y<-—1 o2f 7 : '
Cly) = y+22 4+ —1<y<0 . )
v = y— 2% + 13 0<y<1 ¥~ slope = 1
0 1<y o 5 :
and st <y - 1)
dolz,y) = Y (c;c <k>y +dy, <Z> ) 2k (4.20)
k=—o00
where
1
(k) = [1 + (2mke)?]"/2, [k, di] :/ [90, 1) (z)h(x) "/ 2e 72 R0 dg. (4.21)
0

The value and slope of ¢ at ¥y = 0 and |y| > 1 ensure that {bvo satisfies the desired
boundary conditions. Assume for the moment that each dj, is zero (i.e. g = 0). Let
S be the strip T x R. We may use (4.20) to define 1;0 on all of S and take its Fourier
transform

(150)/\(16,77) _ /0 /_‘X’ Jo(x,y)e_zﬂi(kw+ny) dy dx = CICCEZ>/2<]€>) (4.22)

Since ¢ is antisymmetric and supported on [—1, 1], we have

2l[¢0l3.c.r = Ioll3e,s < II¥oll3 es + [Wol3cs

- / [1+ (2mke)? + (2mn)?P (o) (k)2 di

= ke [ CrPPI R de = S I gl

(4.23)
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A similar argument works if we assume go = 0 but g; # 0. Thus, on R, we have
Wolla.e <y (I8~ 2golly . + 117 a1l . ) (4.24)
Next we use the formula v (z,y) = h(z)3/? 1/}0( )) to obtain
Yoy = h' oy, Yoy =h 0.y,
Yoo = h3/2¢vo,m - yh_l/zhz{l;o,y + ghlﬂhz{ﬁvm
Yooy = h 0,0y — yh ™ *hatdo yy + %h_l/Qh:p{/}o,y? (4.25)
Yo,z = h?’/zlzo,m + 3h1/2ha:1Z0,z - th_l/thQZO,my + ghlmhm&)
+ 20y — yh T R0y — yh T P heatdo,, + Zh—whi%.

Using Lemma 4.5 below and 0 < h(z) < 1, we find that

/qugdA:/ / Yo(z, h(z *h(z )dxdyf/h4¢odA</wodA

/ W, dA < / Ug, dA, / W, dA = / VR dA, (4.26)
Q R Q R

/52¢§di§2/ 2} dA + 42|12 [/ Jé_ydA+9/ JSdA},

9 ’ R ’ R 4 /g
/252¢§$ydA§2/ 2628, dA + 4€%|[ 12 {2/ ngydA+1/J§ydA],

Q0 ’ R ’ R 2J)g

4 4,2 . ~ ~
/ €0 e AA < 5 [ 03 4 dA+308% 12| oo [ €203 , dA
Q . . .
+3062 | h2 |loo [5 26202 ., dA+ 306|202 ||oo [ D2 dA+ 306 |hi|loo [5 B2, dA

+30*|hllco [ Wi, dA+30e*(|R2h2 oo [ 05, dA+30e |3 ]loo [ P8 dA.

Note that the inverse powers of h in (4.25) are canceled when we change variables
from 2 to R by the factors of h that arise from the substitution y — hy and from the
Jacobian of the transformation. Collecting terms and majorizing, we obtain

1/2 ,, ~
[olla.e < (5/2 + 30| ha ]l + 30e*[[hullls + 30e*(hhuell%) " [Dollae.  (4:27)

Finally, we correct ¢y by a function in ¥ to obtain the weak solution v, which must
satisfy

1/’ - d)o € \Ilv a’E(d) - 1/}0a¢) = <la¢> = <:F7v X ¢> - a8(¢07¢) v QZS ev. (428)

Since [ is a bounded linear functional on ¥, the Lax-Milgram theorem implies existence
and uniqueness of the solution 1 of (4.28), and gives the error bound

_ 19
1 = ollz.e < a7 U2 < 75 UFl-1 + [1¥oll2c). (4.29)

Combining this with (4.24) and (4.27) and using the triangle inequality gives (4.17),

where we note that 2 (12)2 (‘1132) < 72 and 30( ) (‘fgg) < 860. O
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The following Lemma was used to balance the coefficients in the terms of (4.25)
as much as possible:

LEMMA 4.5. For any a1,...,as € R,

(a1 4 as + a3)? < 243 + 4a3 + 4aZ, (4.30)
5 10 40 160

(a1 + - +ag)* < iaf + §a§ + 1543 + gai + 30(az + af + a3) + ?ag.

Proof. In general, given positive real numbers 71, ..., 7, such that Y | fy{l <1,

then for all a € R™ we have (Y} a]—)2 <37 'yja?. This is a consequence of the
Cauchy-Schwarz inequality:

(Z0) = (=, (57) (12)) < (2,07 (Se2) . @a)

Onereadilychecksthat%+i+i:1and (%+"'+%)—3gé§1 o

4.3. Truncation Error Equation. In Section 3, we showed how to construct
successive terms in the stream function expansion by solving the recursion (3.2)—(3.5).
Theorem 3.3 guarantees that derivatives of h higher than 2k do not appear in the
formulas for 1(®), ... (") hence, if h € C?*(T), these functions satisfy (3.2)—(3.5)
in the classical sense (with k replaced by ¢ and running from 0 to k instead of 0 to c0).

Thus, if h € C%F+4, z(z?j;roz = 1/1(0 + €2¢(2 -+ 52]“1#(2’“) satisfies
AZYE = e (292 + %i’;ﬁ) + ey (4.32)
The truncation error wgi’ﬁ) = ¢emct—¢%’;)mx then satisfies Ag’l/)er,« = —Azwappmz with

O(£%+2) boundary data. Since the right hand side of (4.32) and the boundary data

are known in terms of h, we are able to estimate the size of wéﬁ’;) using Theorem 4.4
above. However, to use this theorem, we need to formulate (4.32) weakly.

We begin by showing that the 129 satisfy a weak version of the recursion (3.2).
Suppose k > 0 and h € C**(T). Let ¢ € ¥ and denote the constant value of ¢ on T'y
by g. We multiply both sides of (3.2) by ¢ and integrate by parts using

/¢¢7§2y?y dA = /¢yy¢1§2£)dA+q/ wyyy h(zx)) de,
Q
2 / oY 44 = / G2y 2VdA + ¢ / (629 (2, h(x)) — ¥ (@, h(z))h,] dz,

[ ovehan= [ oo / B (@, h(2)h, da (4.33)
Q
to obtain the recursion

@, 9) =0,
a®(®, ¢) = —a? (), ¢), (4.34)
a® (@9, ¢) = —a® (P2, ¢) —aW (Y, g), (€=2,3,... k).

By (3.8), the boundary terms in (4.33) combine to form

q/1 (P39 (2, h(z)) + pPO (@, h(@))he ] dz =0,  (0< < k) (4.35)
0
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when substituted into (3.2). Other boundary terms do not arise in (4.33) since ¢ =0
on I'y and ¢, = ¢, = 0 on I'g and T';.
Now suppose h € C?*+1L1(T) i.e. h(z) has 2k + 1 continuous periodic derivatives

and 02k*1h is Lipschitz continuous so that 02%¥2h € L(T). Let (Vezact; Qezact) be
the weak solution of

Azw = 07 BQZ} = (07903 Qagl) (436)
with go, g1 given in (2.4) and define the truncation errors and approximate solutions
¢gﬁ) = wezact - wa2pljo)7"oma wg)];)roz = 1/’(0) + 521/)(2) + e+ 5%1/)(%)7 (4 37)

Qe%]ﬁ) Qewact a2p];)roz7 QELQPI;))Tox = Q(O) + EQQ(Q) +ee €2kQ(2k)-

Since 9, ..., () satisfy (4.34) and (3.3) while ac(Vegact, #) = 0 for every ¢ € ¥,
we may expand a. (wéi’ﬁ ,®) in powers of ¢ to obtain the truncation error equation

ac (Y2, ¢) = e THF),, V x ¢), (€ T)

BUE = (0,0, %y -
where
v = e k2 (91 (91 © 4 ¢ g( Dbt 52’“95%)]) (4.39)
and
oy \\ _ Ja®P @@, ) + 2D (), ¢), k=0
<F’“’ (—o:z) > - {a<2>(¢<2k>, 6) + £2a® ()| ) + a® (P2 @) k> 1.

There are many functionals Fy € H~1(Q)? that have this action on the subspace
V={Vx¢:pec¥}={(uv)e Hy(N?* : uy +v, =0} (4.40)

For example, Fy, = ¢~2k~2 [Vpai];),w (Agu%];,)mz) | satisfies A2wapp,w = P2V xFy,
classically and, using (3.8), may be shown to have following action on Hg ()%

B (ws)) = [ (02, = e20,) = (019 0, A, (k =0),

(%ik))(uy - 52”90) (e 1y Qk))(avy)
(Fi, (u30)) = /Q ( (22 (%) ) dA,  (k>1).

(4.41)

This choice is sub-optimal because the terms E‘lwgk) and 8—2@&%’“’2) diverge as
e — 0. We grouped ¢ with v, and €% with v, due to the definition (4.6) of ||Fy|—1,.
Instead, we will use the following functional, which agrees with (4.41) on V:

(B, (u;0)) = / ($9) 2uy — %0,) dA, (k=0)

(B, (1:0)) = / (B2 Quy — 20,) + WRE D] dA,  (k>1)  (4.42)
~ Ce h(z) — Y u, (T
(b[u](x,y) ::_/ ( 72) dn:/ (77 y) y( 77]) dﬁ-
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Note that if ¢ € ¥ and g = ¢|Fl, then q~5[¢y] = (¢ — q)h=2. The purpose of the

h=2 here is to be able to include an h? with wi’i’;;” in the error estimates below (to
properly consolidate terms). Another alternative to (4.42) that would lead to similar

estimates below is (Fi, (u;v)) = [, [ — 292y, ?Sikw)uy} dA.
4.4. Error Estimates. Let us assume from now on that ¢ < %O with rg =

max (||h loos || 5 hhm||1/2> . Then by (4.38) and Theorem 4.4, we have

19 _
198D a0 < £+ (unmnm + 15 1/%”;,5) . (4.43)

It remains to bound the norms of Fj, and ~; in terms of h. From (4.42), we have

- h(z) Y h(z)
\¢[u](w,y)|2§</ mdn> (/0 Iuy(w»n)lgdn) (4.44)

(h—y)®
3h4

where the first integral is and the second is independent of y. Hence

~ L ph(z) 1
2 2
ol = [ [ 6l dyds < 35 lu, 3 (4.45)
o Jo
From (4.42), we then have

b
B, (o] < (204 ) Tyl + el

4ab b2\ 3 1
5q2 L ) 2 4 2 2, 4.46
( /*12 12 (”qu,a ||€’U||175)2 ( )

where a = Hw(% Ho and b = Hh2¢m2m’§5f Ho‘ Using a’ + %bz, we find that

S
i)
||
ENST

25 7 5 3 19
[Fxl|_,. < T bt < gat2h, EHFkH—l,s < da+b. (4.47)

Finally, by (4.43), we obtain

[ 0820115, < 4 (4Pl + W2y + 150 el ) . (448)

where the fourth derivative term should be omitted when & = 0. In Section 4.5, the
following bound will also prove useful:

920, + 52029y < 242 (][00, + 202y + 15 2],

(4 49)
The truncation error in the flux expansion satisfies
(2k 2% ") i)
Q) =@ h) = [ () =) ST @ (450)
0
for any x € T. Using estimates similar to (4.44) and (4.45), we find that
QU] < oy (4.51)

\waerr ”278'
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Thus, we have reduced the problem of bounding the truncation errors to that of
checking the norms of three quantities that can be computed explicitly in closed
form.

We begin by attacking the boundary term | h
n (4.5) above. Recall that

—1/2%”%,6. This norm was defined

k
—_— (u ey (7)) (s2hi>f> )
14
£=0
where (_5/2) =1and for £ > 1,
-1/2 (—=1/2)(=3/2)--- (—[¢ —1/2]) 13 5 201
= = —1 —_— — s — . —_— 4.
( ¢ ) (1)(2)---(0) (=1) 2 46 20 (4.53)
Taking the logarithm of this product and its inverse, one may show that
1 -1/2 1
< < , =0,1,2,...). 4.54
VA +1 < 14 )‘_\/33—1-1 ( ) (4.54)

Since h € C?**LYT) c CYY(T), we know ~ is at least Lipschitz continuous on T
and so belongs to H(T). As a result,

L—3/2 2
/ [T +52<— hzvk+h_1/2%,w) dx

I, < 71, 2

)
< / h1yE + th Sh2~E + 162}1_17’%’”” dx. (4.55)
0
Since €||hz |l < 1/3 < 1, the binomial expansion of [142h2]~1/2 converges uniformly

onT = [0,1],. As the terms in this expansion alternate in sign, the error in truncating
the series is smaller (pointwise) than the first omitted term. Therefore, for each x € T,

il < | (1) \ (a2 < i (a2 (456)

Since (—2¢) (_1/2) (, 3/2) by differentiating (4.52) we obtain

k-1
Voo = V1 <[1 +e2p2) 732 Z (—52/2) (Eth)e> (—e*hohas) g2k=2, (4.57)

£=0

The terms in the expansion of [1 +£2h2]73/2 also alternate in sign, so
ha(@)] < Vi (“Z/ 2) m(@?’fﬂm(@‘ e e
Combining (4.55), (4.56) and (4.58) and using (’3?2_31 < 1+ %k, we find that
[l < | 35 et s ()
< %hﬁfl'““) PV 2 [ BB + <5+3k) LES]
< v [4 * 21|'|1h/1’!2 (16 ﬂ (mJ)E{(l 1 3 1),(3,2)} Eﬁ’kjﬁ) (4.59)
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where
1 (20)
1
I, = / dr, EUY = _— / “DJ da;. (4.60)
o h(z)™
Recall that ®,) = {(p(%), .. dzzi)} = {hZ~, 1hh2k_2hm, . (%)

basis for the space Hay, defined in (3.13). E(Zk) is the square of the 2-norm (or second

moment) of 4,0( k)( ) with respect to the probablhty measure I, 1h(z)~™ dx, whereas

fjk‘) in (3.24) is the expected value of ga ( ) with respect to this measure. Using

(4. 59) in (4.48) gives a bound on the error caused by failing to satisfy the boundary
conditions in the stream function expansion. It is perhaps surprising that this bound
can be expressed in terms of three simple integrals involving h and its derivatives.

REMARK 4.6. I; and I are dimensionless quantities in (4.59) — if h and z still
carried dimensions of length, an extra length scale (e.g. Amax, which is currently set to
1) would need to be included in the Sobolev norms to allow [[4[|3, |43 . and |[¢[3 to
be added together; this length scale would also appear in (4.59) to non-dimensionalize
I, /I3 in the denominator.

Finally, we estimate Hdz(%) Ho and thz/)nc%fz?pz (4.48) in terms of h. It will be
useful in our analysis to define

o= (e o] 1) (161

so that for (0 </(<k+ 1), (1 <j< dgg) and (m: 1,273) we have

Iy in

P P PN P L DSOS

If & is real analytic as well as periodic, a standard contour integral argument shows
that there is an > 0 such that ||0¥ho < k!77F for all k > 0. Such an r serves as
a common lower bound for 7 in (4.61) for all £ > 0. If h is a constant function, the
results below hold with r, = oo and r,;l = 0 (i.e. the lubrication approximation is
exact).

Our first task will be to bound the growth of the terms Q(2¥) in the expansion of
the flux. By Theorem 3.3 and Remark 3.4, there are rational matrices A(()zk), Ag%),
B®*) with rows indexed from 0 to 2k + 3 and columns indexed from 1 to das such
that

k—1
I
QU = a4 37 QRN (k> 0) (4.63)
=0

where a®? = 11540 (3,:) + 11 APP (3, )] ESY and bR = LBCK) (3 ) EPF). See
Example 3.5 above for a reminder of how this works. We now use (4.62) together
with the fact that [v - w| < ||v]|1]|w]|eo for v,w € R? to conclude that

a0 < (1Valig™ + Walst™) rg, 0] <P 0 <e<h) (460

where

(2k) 1 &k (2k) (2k 1 &k

AP =23 1A B =01, Z\B@’ﬂsy (k> 0).
j=1

(4.65)
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Table 4.1: KJEQk) before and after loop (4.66)

J. WILKENING

k mg%) (before) niQk) (before) ng%) mg%) (after) ng%) (after)
0 5.00x 1070t 5.00 x 10~ 9T 1.00 x 10797 5,00 x 107 °F  5.00 x 10~ 0T
1 3.00 x 107% 5.83x 1079 8.00 x 107°Y  7.00 x 107°Y  9.83 x 107¢
2 5.30x 107 7.05 x 107! 1.73 x 1079°  1.96 x 107°°  2.36 x 1010
3 272 x 1079 3.73 x 101790 6.74 x 1010 8.87 x 1010 1.07 x 1019L
4 1.83 x 100! 3.32 x 107°Y 414 x 101°Y 543 x 10191 7.32 x 1019
5  2.00 x 10192 3.69 x 10792 455 x 10792 528 x 10792 7.30 x 10192
6  3.41 x 1073 6.32 x 10193 722 x 109 8.00 x 10T°%  1.13 x 10704
7 777 x 10104 1.66 x 10795 1.54 x 107%°  1.68 x 101%°  2.63 x 101°°
8  2.69 x 101096 5.23 x 107°¢ 4,69 x 1076 531 x 10796 7.98 x 10196
9  1.26 x 107°8 2.31 x 107°% 1,94 x 101°® 231 x 10t%®  3.40 x 10198
10  6.51 x 101°° 1.45 x 10T1% 9,97 x 107%°  1.18 x 1011 2.00 x 10110

It follows from (4.63) that if we increase x

for k =1,2,3,.

ngk) 2k ) L Z

then
@] < 2

The constants n(%),

for all along with the matrlces A

2 (1ol

(Zk)
Uil

(2) €

(2z) (2k 20)

n |V1|/1§2£)) r;%,

(%) do not depend on h and may be computed once and
) and B®k): see Table 4.1.
Now that the terms Q29 have been bounded, we are ready to estimate Hw(% H

and [|h?$$75,." ||, Recall that

P (z,y) =

I
I3

k

=0

(2k)

(i=0,1)

via the following loop

(k>0,0<0<k).

2o (z,y) + > QIR (3,y),

where a(?#)(z,y) and S¥)(x,y) have the matrix representations (3.22).

modification of the proof of Theorem 3.3 shows that there are also matrices Ay
Ag%), B2k and A(()Qk), A(l%), B®®) of dimension (2k+4) X dogy2 and (2k+4) X dog 44,

respectively, such that

I

a2
7, %o (@

Y

)=
BER (2,y) =
202, (@) =

13 IIIZL’

BER) (x,y) =

T,y

where Yor, = (1, o

polynomials. Let

hw) ™ Yau(e, o))" [VoAG™ + VAP @arpala),
h() 2 (Yar(,y))" BH 0oy s (),
h

2) 7 Var(r )" oA + VIAPD | B (a),

h(z)

~ (Yaw(z,y) " BEH Doy ia(2),

7 (h)2k+3)T

||w Ho and thwmmz) Ho by expressing the dependence of ¥ on y using orthogonal

Fom () (). P ()

We can achieve significantly sharper estimates of
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be the vector of shifted Legendre polynomials [1], which satisfy

/01 Pp(2) Py (z) dz = O ) (m,n > 0). (4.71)

The first several are
Py=1, P =2x—1, Py=6a>—6z+1, P3=20z"—302>+12z—1. (4.72)
The well-known recurrence [1]

Po(x) = 2"1; L 2w = 1) By () — s LB o@), (22 (4.73)

can be used to construct a nested family of lower triangular matrices Roj of dimension
(2k + 4) x (2k + 4) with indices starting at zero such that

Yo = Ry Yor, Yo = You Ry - (4.74)

For example,

1 0 0 0 1 1/2 1/3 1/4

-1 2 o0 o _r [0 172 1/2 9/20
Fo=1| 1 _g 6 o] T 0 0 1/6 1/4 (4.75)

-1 12 =30 20 0 0 0 1/20

The entries of R, kT are non-negative and have unit column sums for all £ > 0. Next
we renormalize the shifted Legendre polynomials and define

P, (z,y) = h(z)"Y*V2n + 1P, (y/h(z)) (4.76)
) . ) T -
Yor = (Po, ce P2k+3) = h™ /2Dy Yor, Doy, = diag(V1,V3,...,Vdk +7)
so that (4.69) becomes
) Dyl Ryl [VOA(%) +VA(2k} ( (z )_1/2¢>2k+2(w)),
) DRy B () 200 n(@))
I T _ _
el = (Y% 2.9)) DplRg! [VASY + AP (h(@) 2 @ona(a) )
3.

n2OEE, = (m 2.y)) Dyl Ryl B (h<x>*3/2<1>2k+4<x>) : (4.77)

Vot Vi I
©_Y+tVil
Q 5 I
Vi [ —4h2 + 2hhay 18h2 — 6hhyy
V) = [(V +3) (h ) +Q© ( = )] = (4.78)

6h2 — 2hh —24R2 +6hh v
+[(V0+V1) (’” , 9‘”‘)+Q()< ”ﬂ 5
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0O 0 0 O 0 0

(0) ;i(0) (0) 0O 0 0 O 0 0

Ao ’A B } ! 41 -2 2 18 —12 (4.79)
6 —4 6 —4|-24 12
and the form described in (4.68) and (4.77) with
s s |8 w0 %
7 2 17 -8 | 18 -6
DRy T [A(()O)7A§O),B(()O) _ wix/ﬁ w;\f 1015 10\f 1_0\1/83 10(;/5 ’

5 Gf 6vV5 65
2 3 —12 6
10v/7 107 | 10v7 10ﬁ 107 10V/7

where we recall that ®3(x) = (h2, $hha,)T. The matrices Aéo), Ago), B representing
wémm are each 4 x 5 matrices while ®4(x) was given in (3.16).

To compute ||1/Jmk)||0 and Hh2¢mm2)||0, we note that each of the expressions
in (4.77) is of the form ZiIHOBP (z,y)wn(x), where w(x) = Sz(x), S is a constant
matrix, 2(x) = h™% ®opi2i(z), j = 1 or 2, and m = 1 or 3. For fixed z, we have

fh(”P (2,y) o (2, y) dy = Gymn. It follows that

/ /h(x) Z P, (x y)wn(x))z dydx = /01 >, wn(z)? dz. (4.80)

Moreover, 3, wa(2)? = |lw(2)|3 < [|S|[%]|2(2)]3, where || - || and || - ||z are the
Frobenius and 2 norms of a matrix and vector, respectively. Integrating, we have
Jyllz@)|3de = Ly ||ES"|,. Since |ER||, < daeri™ for 0 < € < k+1, we
define
K®Y = \/dois|| D3 Ry APV (i=0,1, k>0)
2k)
Ké =V d2k+2HD2k1R B(Qk)H (k > 0) (4.81)
K = MI|D%1R%TA%)||W (=01, k=0)
~ (2K)
K = \fdora|| D3t RyTBED |, (k> 0)
so that
1
| 2a0lo < VI (IIES? +VIKE) i 72 (0 <0<k,
3
1820y < VI KO, O<t<b. o
I .
|7 el:ll, < Vi (IVOIES? + IR ) 2=, (0 <e<k-1),
Hh?gggxno < I KPr 24, 0<t<k—1).

From the bound (4.67) on |Q®%| and the formula (4.68) for 1/(**) in terms of (2%

and BF=20  we see that after increasing Kézk), K{zk), f(ézk), f({zk) via

Ki(2k) _ 2k +Ze . (22)K§2k72€), (i=0,1, k>0),

- (4.83)
Kl(2k) (2k: + Ze o (2Z)K§2k:72£), (’L _ 0, 17 k Z 0)’
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we have

[, < VI (IBIEE™ + A[KED) 22, (k>0),

B . (4.84)
P22, < VI (VIRS ™ + IR ) 2, (k> 0).

In each term Q29 3(2k=20) ' we have used I3/I,13 < 1 (which follows from the Cauchy-
Schwarz inequality) to majorize Is/+/T5 by /I;. The constants Ki(%), Ki(zk) do not
depend on h and may be computed once and for all along with the constants KE%)

and the matrices Ag%) and B(*); see Tables 4.2 and 4.3.
Finally, we combine the boundary estimate (4.59) with the interior estimate (4.84)
to bound the truncation error via (4.48). In terms of 7, (4.59) gives

T o
1€<V1|\/H[ rk,/l‘j ],ﬁ’”, (k>0).  (4.85)

We now define

|5

1
[max <5K(2k)7 5K(2k) + &)} 2k+2 ’ k=0
Pk = 1
[max <5K(()2k) +K[()2k 2) 5K(2k) +K(2k 2) 4 2’ /’122];)} 2k+27 k> 1
(4.86)

so that (4.49), (4.84) and (4.85) imply

I; [85 20 2kt (4.87)
P21 22y Tl (£ .
VL V16" 37|

To simplify this expression, we define

[ e + 2 w5l

< VI (|Vol + W)

8 20
Oy = 15p75+2 T3k (4.88)

and summarize the main result of this section as a theorem:
THEOREM 4.8. Suppose k >0, h € C***LHT), 0 < h(z) <1 for0<x <1, and

e <ro/3. Then the truncation errors ¢§§’2) and Q(ezrlﬁ) in (4.37) satisfy the bound

e N e e -

2k+2 4.89
< VI (|Vo| + W) 1+0k— L”]( 5) , (459

I kT

where I, 1, pr and Oy were defined in (2.9), (4.61), (4.86) and (4.88).

REMARK 4.9. The constants in this estimate have been organized to be either
(1) given in the problem statement or easily computable from h; or (2) difficult to
compute but universal (independent of h). The first 26 constants in the latter category
(pr and ) are given in Table 4.4. We have therefore identified the features of h that
are most likely to affect the validity of the lubrication approximation. In particular,
higher derivatives are allowed to be large in regions where h is small (since r depends
on the uniform norms of the products ;h*~'9%h rather than on 0%h alone).
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Table 4.2: Ki(%) before and after loop (4.83)

k Kéyc) before K§2k) before K§2k) Ké%) after Kizk) after
0 9.95x 10777 217 x10T%7 299 x 10799 249 x 10T%0  3.67 x 1070
1 233x1019% 470 x 1079°  7.99 x 107°°0  8.41 x 107°°  1.16 x 107°!
2 7.42x10T%° 158 x 10T°Y 2,51 x 10T%1  3.14 x 10t9r  4.32 x 101!
3 429 x 1091 862 x 107" 1.19 x 107°%2  1.62 x 107°%  2.21 x 10102
4 458 x101°2 871 x107°2  1.03 x 107%%  1.34 x 107°%  1.87 x 10193
5  7.21 x 10T%% 1,52 x 10T%%  1.62 x 10T%*  1.85 x 101%% 2,77 x 101%4
6 1.87 x 10T%%  3.54 x 107%% 3,51 x 107%5  4.06 x 107°°  5.90 x 1079®
7 6.57x10T%  1.25 x 107°7  1.08 x 10T°7  1.28 x 10197 1.92 x 10107
8  2.74x10T°®  6.17x 10T°®  4.64 x 10T°® 531 x 101%®  8.87 x 1018
9 1.75x 10t 328 x 10710 252 x 10710 312 x 10710  4.70 x 10110
10 1.32x 10712 240 x 107!2  1.69 x 10712 2.22 x 10712 3.34 x 10112
7 (2k)
Table 4.3: K;*" before and after loop (4.83)
k I?ézk) before I~(£2k) before I?é%) I~(é%) after I~{§2k> after
0 1.23x 10792 208 x 10792 4.84 x 10792 3.65 x 10702 4.50 x 10702
1 7.81x1017°2 150 x 107°%  3.35 x 107%% 2,79 x 107°%  3.65 x 101°3
2 355 x 109 774 x 101 156 x 1017°*  1.47 x 107%* 2,00 x 101%4
3 1.73x 10T%* 388 x101T%*  6.63 x 10794 722 x107°*  1.00 x 101°°
4 1.85x 1079 376 x 107%% 438 x 107%®  5.37 x 101°®  7.68 x 10170°
5 3.97x 1019 859 x 101 812 x 107°¢  9.04 x 107°¢  1.40 x 1017
6 1.45x 101T%® 266 x 107°% 246 x 10T°®  2.81 x 107°®  4.08 x 101%®
7 6.62x 10199 126 x 107  1.00 x 1071 1.19 x 1071°  1.81 x 10110
8 3.50 x 10T 8.00 x 10T 550 x 10t 6.36 x 107t 1.09 x 10112
9 281x10T3 5.24x10t® 381 x10t¥ 476 x 10712 7.22 x 10H13
10 2,59 x 10715 470 x 10715 3.12 x 10715 418 x 1075 6.31 x 1011
Table 4.4: py and 0y, p;' and log, 6, versus k
e R 9 110
0 0.197 1.34x 10790 o
1 0210 1.01x 10" 8 *ee., o0
2 0252 1.67 x 10792 Ce, .
3 0288 3.58 x 10703 7 S, o 1-10
4 0313 7.73x107% - 1 ., o <,
5 0.319 1.03x 10-% < 61 p . | 1-20 5
. —06 k o ° Og10 ek g
6 0.305 5.96 x 10 Y R o 9
7 028 2.15x 10-%7 5t . . »L 1-30
8 0.266 5.10 x 10799 o %
9 0248 9.15x 107! 47 o . % 1-40
10 0.232  1.43 x 107 *2 LI °
11 0.218 1.69 x 10~ 14 3 e —50
12 0.204 1.58 x 10716 0 5 10 15 20 25
13 0.193  1.42 x 10718 k
—20
1? gziig ;:gg ;( 18_23 F1g1. 4.1: Plot of p, ! and log;o 0k versus k. Note that
16 0.164 3.46 x 10725 p,  initially decreases but eventually grows almost
170157 175 x 107 linearly, indicating that the lubrication expansion is
18  0.149 6.86 x 10730 . .
19 0143 272 x 1032 probably an asymptotic series rather than a conver-
20 0.137  1.02 x 1073 gent series. The term involving 6y in (4.89) is only
21 0131 2.94x 1072; important when & is small since 8;, converges rapidly
22 0.126 8.36 x 10
23 0.122  2.41 x 10~42 to zero as k — oo.
24 0.117 5.40 x 10™4°
25 0.113  1.15 x 10747




ERROR ESTIMATES FOR REYNOLDS’ LUBRICATION APPROXIMATION 29
REMARK 4.10. The term p,;flf in the definition of p; ensures that pik“ is a
non-increasing function of k. This assumption is useful in the following section when
deriving a bound on the truncation error of the pressure. Note that py, itself is allowed
to increase as long as pi]”z does not. It is probably not necessary to include this term
in the definition of pj since it is not the argmax for 1 < k < 25, and by that point 0

(and hence pik”) appears to be decreasing rapidly without it; see Figure 4.1.

4.5. Velocity, Vorticity and Pressure. We now show how to use the error
bound we have obtained for the stream function to bound the error in the velocity,
vorticity and pressure. We define ©(?%), v(%) (%) and p¥) in terms of (2% as in
(3.8) and define, e.g.,

(2k)
werr

(2k) WER) 00 | 20(2) 4y 2Rk (4.90)

= Wezact — Wapprozs approx

From (3.8), we then have

(29, 00) = Vg0, Wl = A - E o)
a:c 52wemac 3 k= 0,
ot =, o= {MCd V0 am
which immediately gives bounds on the error in velocity and vorticity:
1/2

(IR + o207, ) " < e, <t 620,

oty < W& e + ™20l < ), (k2 0),
(4.93)

where (x) is the right hand side of (4.89). Obtaining a bound on the error in the
pressure is somewhat more difficult as it relies on the fact that the gradient is an
isomorphism from Liﬁ (©) (the space of square integrable functions with zero mean)
onto the polar set

VY= {fec H YQ)? : (f,u) = 0 whenever u € V}, (4.94)

where V = {u € H}(Q)? : V-u=0}. Given f € V° there is a unique p € Lf#(Q)
such that Vp = f; moreover, p satisfies

|(p,V - u)|

lollo < B71F)-1, B = inf sup . (4.95)
pu lpllouly
Here we use a standard (unweighted) Sobolev norm for f. More precisely, as || - ||1
and |- |1 are equivalent on H}(2), the negative norms
fl= s (Bl Ifli= s [(E(wo)  (4.96)

[ulf+lvli=1 lullf+lol3=1

are equivalent on H~1(Q)2. Since |u|; < ||ulj; for all u € H}(Q), we have |[f||_; <
|f|_1 for all f € H~1(Q2)2.

Explicit estimates [7, 23, 10] for the LBB constant [ in (4.95) have been obtained
for rectangular domains (with no periodicity), e.g.

1sinz<6< r
A O NETA

= Lz)’ Q=(0,L1) x(0,L2).  (497)

0= (7 -2
max I, I,
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The lower bound here also works for an z-periodic rectangle as the condition that
u|z—o = 0 and u|,—r, = 0 is more restrictive than u|,—o = u|y=r,. Explicit estimates
are also known for domains that are star-shaped with respect to each point in a ball
of radius R contained inside €; see [13, 23]. Our interest in the present work is in
a-periodic domains with the upper boundary given by a function h(z). Such domains
are not in general star-shaped, so the previously known results do not apply. In
[24], we improve the estimate for the lower bound on § in (4.97) for an z-periodic
rectangle by a factor of about 3.5 and show how to avoid invoking Rellich’s theorem
in the change of variables to the case that ) is xz-periodic with the upper boundary
given by h(z). It is shown that

(14+71572) <Zl>1/2 max ( L hl) ho = ming<a<r h(2),
0

%\@

st

"ho ho hi = maxo<q<r, h(z),

1
where 7o = max (||h lloos |5 hhm||1/2> and L is the period of h(z). In the current

case, the length scales H and W were chosen so that L = 1 and hy < 1 in the
dimensionless problem. Thus, solving Vp = f yields

oo < 57 F1, 470 < max (952, D05 %) (145 ?). (4.98)
The dependence on gap thickness hg occurs because p can change rapidly in the gap
without a large penalty from u. In [24], an example is given to show that the factor
of ha?’/z in the formula (4.98) for 3=! cannot be improved.
We have reduced the problem of bounding p(ezrlﬁ) to that of bounding the functional
on the right hand side of Vpgjﬁ) = f}, in (4.92), namely

fQ w(e% Uy — 52wezact vz dA, k=0,

4.99
fgwglf)uy 2wy, dA, k> 1. (4.99)

(fr, (u;v)) = {
First we Check that f;, belongs to V0. If u,v € H}(Q) and u, + v, = 0, the function
fo x,n) dn satisfies ¢, = u, ¢, = —v and so belongs to ¥. As a result,

(fo, (u;v)) = / _w(0)¢yy + Wezact(Pyy + 52@6:5) dA
(4.100)

/ ¢(0)¢yy Ewexact)(Aadj) dA = 07

and for k > 1,

0
—_——

(i, (usv)) = (Foer, (ws0)) + / W, — P26, dA
Q

/ ) by + 00y + O bae + PE V0 dA= 0.
——— ——

omit if k=1
Next we bound the norm of f. From (4.99), we see that

[fol—1 < [, + | + ||

|1 < Hw(%)

err HO (k Z 1)
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Denoting the right hand side of (4.89) by (x), we claim that

g2 g2 _
ngwezactHO < (%), (k=0), p”wgﬁlﬁ Mo < (+), (k=>1). (4.101)
0 i

Once this is shown to be true, we will have the following bound on |fx]_;:
il < A +rR)(),  (k=0). (4.102)

Together with (4.98) and the fact that ry < rg for & > 0, this will give
_ 9 _ _1\2
||p(jlﬁ) ||0 < max (Qho 12 Zho 3/2) (ri +11) (%) (4.103)

Note that there is at least a power of r,;z in () to prevent this bound from diverging
as rp — 0o0. It may be possible to improve the bound in this regime by replacing
lle2wezactllo in (4.101) by [|e20,wezact||—1, but this seems very difficult. At any rate,
if 7, = oo, then (x) = 0, h(z) is a constant function, the exact and approximate
vorticity are constants, fi is the zero functional, and pegacr = pg«,]f) = 0. Let us now
prove (4.101). For k > 1, this follows from

2k 2
ok € Is /85 20 € €
15 JEA o (k-1 =
[pkl + re—1 V 11 16 + 3 ( ) Th—1 Tk
s /85 20 e\ k2
o | o2y s [Is [85 20,1 (e
= [pk TV T3 - :

which holds because pik“ and 7y, are non-increasing functions of k; see Remark 4.10

and the definition of rj in (4.61). For k = 0, we use Theorem 4.4 to conclude that

(4.104)

lwenaetllo < Iellze <15 (I 2golly o + IR 2qully. ), (4.105)

where go(z) = Vo and g1 () = (1 + £2h,(2)?)~ /2. Now,

1
||h71/290||2%75 < V02||h71/2||i£ _ V02/ Bl i(Ehx)foB da
0

s (4.106)
S %2 |:Il+4(r0> IS:|
and
2} < VR (4107

2 ! -1 -1 1 -3 — — — ?
:Vl/(h ) +{‘2h P(eha) ()72 = (W) hohes | da
0

1
1
< vf/ Wt 4 SR (eha)? + 8h 73 (eha)? (€ Woa )? iy

0
< V2 {11 n (% n 8‘;;) (:0)213} . (4.108)
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Since we have assumed that ¢ < ro/3, we conclude that

1 8\ e [I] €2
1 1 —+ — | —/ = . 4.1
e P E

Comparing this to (4.87) with £ = 0 and noting from Table 4.4 that paz > 15, we
obtain (4.101) as claimed. Thus, we have proved the following theorem:

THEOREM 4.11. Suppose k > 0, h € C?kTLYT), 0 < hg < h(z) <1 forz €T,
and € < ro/3. Then the truncation errors of the stream function, flux, velocity,
vorticity and pressure satisfy the bounds

2

3

ﬁ”wezact”O S V Il(|VO| + ‘V1|)
0

() 1/2
620, < 0, 1@< R (ISR, + e 5) " < )
o2l 0 [, < mas (905" ) ), 4110

where T = [0,1], is the periodic unit interval,

-[3 c 2k+2
) = /L (Vo + Vi 1+9— 3 , 4.111
(+) \/710 ol +1 1|) 4 111 (Pk?‘k) ( )

= 1}%*1&% VAN I, = lh —mq 4.112
Tk =\ 12 HE z ’oo ’ ™/ (@) s (4.112)

and py, 0y are constants independent of h that can be computed once and for all as
described in Section 4.4 and listed in Table 4.4.

5. Finite Element Validation. In this section, to test the error bounds of The-
orem 4.11, we compute u(frfi), vg’ﬁ), pg’ﬁ), w.(frff) numerically for the simple geometry

described by

l1+a 1-a case 1: a=1/5,
h(z) = sin(27x), 5.1
(z) 2 + in(2n) case 2: a =1/100 (5.1)
with boundary conditions Vy = —0.5, V; = 1. We do this by comparing u%l;)mm,
(2K) (2K) (2k)

Vapproz, Dapprozs Wapproz i1l (4.90) to finite element solutions of the Stokes equations
on appropriately re-scaled geometries.

The results are summarized in Figures 5.1-5.5. For 21 values of ¢ spaced expo-
nentially between g9 = 0.04 and €99 = 0.3, we set up a logically rectangular, M x N
finite element mesh on the domain

Q. ={(z,y) : 0<z <1, 0<y<eh(z)}. (5.2)

The mesh points are aligned vertically with equal spacing Ay = h(z)/N while the
grid spacing in the x-direction is chosen to keep the aspect ratios of the grid cells as
close to 1 as possible; we do this by solving an ODE to enforce Az & h(z)/N, which
also determines M. For a = 1/5, we use N = 96 with M ranging from 768 to 5376
as ¢ ranges from 0.3 to 0.04; for a = 1/100, we use N = 64 with M ranging from
1600 to 10368. Four-by-four blocks of neighboring grid cells are merged and cut into
two 15 node triangles. Interior nodes of the triangles are adjusted to keep the edges
straight except on the top boundary, where we use quartic isoparametric elements.
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Actual errors

. + o
1 u P @ o 9 @ SO
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10 2k=o,s\opes,=2'90§1fg$87 j@ Q9 Q% 8
M-Q}":Q-"-Q 2 ' pass
. 107 b
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o
ks ] i
g 0
o
c
10 E
10 @*Q'@ ¥ 2ke20, slopes=22.2, 21.4, 207 1
FE error o
0.04 0.05 0.07 0.1 0.2 0.3
€
Error bounds from Theorem 4.11
10' .
2k=0
-1 N
10 z\zéb‘ "1, ]
N .
Y%
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S v
5 107} .
107°} 1
107} 1
0.04 0.05 0.07 0.1 0.2 0.3

€

Fig. 5.1: Top: plot of ||u(e%«lﬁ)||1,‘S = (Hu(ealﬁ)Hie—i-Havgff)Hie)lm, (e%"]f") o and ng“f)Ho

for a = 1/5, 0.04 < e < 0.3 and 2k € {0,2,4,10,20}. The slopes of the lines were
computed via linear regression using the smallest 10 values of ¢ for which the finite
element solution is trusted (¢ > 0.066 for 2k = 10 and ¢ > 0.09 for 2k = 20). As
expected, for fixed k the error is O(¢2*%2). Bottom: plot of the error bound (x) in
(4.111), using Vo = —.5, V1 = 1, I} = 2.236, I3 = 24.60, and 7, = 0.3559 for k > 0, as
appropriate for h(z) in (5.1) with a = 1/5.
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Fig. 5.2: Contour plots of wezqet, wgg)r, w&i‘«%, wg«g) and wéi‘ﬁ) for h(z) in (5.1) with

a=1/5Vo=-0.5,V; =1.0, and £ = 0.099. Each of these plots corresponds to one
of the markers in Figure 5.1.
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-0.00012
-0.00015
-0.00018

pl0
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Fig. 5.3: Contour plots of pegact, pﬁ,?)r, pE;%?r, p(e}«(,)«) and pﬁ? for h(x) in (5.1) with

a = 1/5 and £ = 0.099. The “exact” solution was computed using a least squares
finite element method with 15 node quartic triangular elements on a 2208 x 96 grid.
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Error bounds and actual errors
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a—priori estimates
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Fig. 5.5: Plots of Wegact, Pesacts wory and pee’ with a = 1/100, N = 64, M = 4800.
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We solve the Stokes equations on this mesh using a least squares finite element method
similar to [6], but using quartic elements to model the velocity components u and v,
the pressure p, the vorticity w = v; — uy, and two strain rates 7 = uy + v, and
v = vy — Uy. We use multigrid to solve the resulting system of equations, which takes
from 3 to 15 minutes minutes on a 2.4 GHz desktop machine with 16 GB RAM.
Once the finite element solution is known at the grid points, we normalize the
velocity, pressure and vorticity as described in Section 2 and re-scale the domain from
Q. to Q. We then use the method described in Appendix A to compute 1(?), ()
..., 129 and their derivatives through order 3 at the grid points. Next, we use
the formulas in (3.8) to obtain u®*) v(¥) (k) and p*) for k = 0,...,10. For

pressure, we use 20 point Gaussian quadrature to integrate pf’“) along the z-axis to
determine p(%)(:c, 0) at the mesh nodes. The integration of pé%) in the y-direction is

done analytically. With the expansion coefficients in hand, we evaluate

’U/(Qk) =Uu

err exact

2k 2k 0 2, (2 2k, (2k
_ uslpp)my “Szpp)mz =0 4 2@ 4y g2k, (2R) (5.3)
etc. at the grid nodes, where we use the finite element solution for wegqc:- We then
run through the triangles and sum up the local contributions to the errors

[ulD12 .+ |lev@3,, (P20, (w2 (5.4)

by interpolating the values at the grid nodes and integrating the resulting polynomials
on the triangle; this step is very similar to the assembly of the stiffness matrix.
Finally, we store the results in a file for visualization (see Figures 5.2, 5.3 and 5.5)
and record the norms of the truncation errors for comparison with the error bounds
of Theorem 4.11.

The results of this comparison are shown in Figures 5.1 and 5.4. As expected,
for fixed k, the actual errors decay as O(c2**2). The a-priori error bounds eventually
decrease like O(c2%%2) as well, but the term involving 6y in (4.111) is significant over
this range of € in some of the cases, causing the slopes to be larger:

o [T | k=0|k=1|k=2|k=5] k=10
;ﬁ 13 =< a=1/5 | 125 | 094 | 0.16 |.00096 | 1.3 x 10-1
R a=1/100| 257 | 19.3 | 3.2 | 0.020 | 2.7 x 10710

This effect much more pronounced when a = 1/100 in (5.1) due to

\/IT,: 13T s {3.327 a=1/5, 55)
L 2V2 a 2a? 614 a=1/100.

The deviation from linearity in the plots of “actual error” for small ¢ and large k is
due to error in the finite element solutions, which are accurate to about 9 digits. This
occurs sooner when a = 1/100 since the pressure and vorticity of the exact solution in
the vicinity of the narrow gap increases as a decreases, and also because we were forced
to use a coarser mesh with a = 1/100 to avoid running out of computer memory in the

finite element simulations. The data points with € = 0.099 in Figure 5.1 correspond

to the contour plots in Figures 5.2 and 5.3, where we plot wegzact, wgf-), Pezact and
p(eaff) for 2k = 0,4, 10,20. The data points with € = 0.099 in Figure 5.4 correspond to
the contour plots in Figure 5.5. We remark that the apparently large value of p(;?) in

the narrow gap in Figure 5.5 is due to smoothing in the least-squares finite element
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solver; the expansion solution is more accurate than the finite element solution in this
region of the domain. The error patterns that emerge in all these cases are rather
interesting, indicating that the spaces Har in Theorem 3.3 (the structure theorem)
can be quite complicated even for simple curves h(z).

Although our estimates for the error in pressure include an additional factor of

hy 3/2 (re + r,;l)2, all our numerical experiments (including complicated geometries in

which the inf-sup constant 3~! does exhibit h, 3/2 behavior) indicate that ||pg«1;) llo is
comparable to Hw(ﬁﬁ) llo- In fact, for large k, pressure seems to be the most accurately
computed variable; see Figures 5.1 and 5.4. We do not know how to explain this as
the pressure is determined by solving (4.92), which involves inverting the operator
AVA: Li(Q) — H~Y(Q)2. For some reason, in lubrication type problems, the right
hand side f; belongs to a subspace of H~1(Q)? that is not amplified by (V)~! when
solving Vp(fm’f) = f;.

The following table shows the minimum ratio of the a-priori error estimate to the

actual error ||u(jlf)||15 for the data points in Figures 5.1 and 5.4 that were used to
compute the slopes of the best-fit lines:

k| 0 [ 1]2]5]10
Ve 117050 28] 23
34 |86(55(30] —

(min ratio, a = 1/5)
(min ratio, a = 1/100)1/(2k+2)

For example, in the 10 calculations (with e ranging from 0.04 < & < 0.099) that
were used to determine the slope of the 2k = 4 line in Figure 5.1, the ratios of the
a-priori errors to the exact errors ranged between 1.608 x 10* and 1.617 x 10%, so we
recorded v/1.608 x 104 ~ 5.0. This table gives information on how far the values py
in Table 4.4 are from their optimal values. For example, if we increased ps by more
than a factor of 2.8 while holding 65 fixed, the estimate (4.110) would fail to hold
for this geometry. Since 7“k_1 in (4.61) is used as a convenient upper bound on all the

integrals |E7(3€]) 1/2¢ and ’57(3@]) 1/4¢ that arise in the definition of Q). and also in

the bounds for Hl/)ka) H 0 and Hh%/}lefc;z)’ o it is remarkable that the values of p; we
computed are within a factor of 3 of optimal for £ = 5, £ = 10, and perhaps all £ > 5.

6. Discussion. Although we are able to estimate the effective radius of conver-
gence piry quite closely, our estimates of ||w£§,’f)||275, ||wg~7’f)||0, etc. are likely to be
several orders of magnitude too large. One shouldn’t expect an a-priori bound that
holds for all geometries alike to provide an exceptionally sharp bound for any spe-
cific geometry. Instead, our analysis provides a clear picture of the features of h(x)
that cause the effective radii of curvature r;pi to become small, namely large values
of W*~19%h. No previous study has ever described how the constant hidden in the
O(£2k%2) depends on h; instead, h has always been fixed at the outset and only the
limit as € — 0 has been considered.

Another feature of this analysis is that it separates the constants into two types:
those that are (1) given in the problem statement or easily computable from h; or
(2) difficult to compute but universal (independent of h). We listed the first several
constants in the latter category (pr and 6j) in Table 4.4. Tt is interesting that py
actually increases until 2k = 10, and doesn’t get as bad as py again until 2k = 26.
However, at that point it seems to be decreasing steadily like 1/k, indicating that
the effective radius of curvature in our a-priori error bound will shrink to zero as
k — oo. The reason for this is that the recurrences (A.3) and (A.4) relating the
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Approximation of velocity at a point
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Fig. 6.1: Comparison of u%];)mz (solid lines) t0 uegzqaer (dots) at the point (x,y) =

(2,3h) for 2k = 0,2,4,6,10,16,20,30,50. Here h(z) = 2 + Zsin(27z), Vo = —0.5
and V4 = 1. This function h(zx) is real analytic and periodic, yet the expansion

solution appears to be an asymptotic series rather than a convergent series.

matrices Ag%) and B(®%) to their lower order counterparts cause the norms of these
matrices to grow like k!. Thus, although pj involves kth roots of these constants,
these kth roots still grow linearly in k. On the other hand, If A is real analytic as well
as periodic, a standard contour integral argument shows that there is an r > 0 such
that ||8’3§h||OQ < E!'r~F for all k > 0; thus the constants r will remain bounded away
from zero. For example, if h(x) is of the form (5.1), one may show that if a € (0,2/3]
then the largest value of H%hf—laﬁhnzf occurs when ¢ = 2, so all the 7, are equal
to 79 = (m/1 —a)~!. It is conceivable that when h is real analytic, the norms of the
functions ¥(®%) grow slowly enough that the stream function expansion converges in
spite of the fact that the matrices Ag%) and B(®*) in their representation (3.22) blow
up like k!. This would simply mean that we chose a bad basis in terms of which to
represent . We used orthogonal polynomials in (4.77) to improve this basis, but there
may be other improvements. Figure 6.1 shows that this is not the case. Even when h
varies sinusoidally, the expansion solution appears to be an asymptotic series rather
than a convergent series: all the variables, including the flux terms Q(*¥), appear to
grow like k! as k becomes large.

Nevertheless, the expansion solutions can be extremely accurate (almost exact) as
long as they are used for a geometry that falls within the effective radius of convergence
of the truncated series. It is hoped that the estimates in this paper will help to identify
these cases and provide practical a-priori (as well as a-posteriori) error estimates for
many interesting problems.

Appendix A. Implementation.
We have developed two methods for computing the higher order corrections de-
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scribed in Section 3.2 using a computer. In the first, we use Mathematica to evaluate
the derivatives and anti-derivatives in recursion (3.6) and Algorithm 3.1 symbolically.
With this approach, the main challenge occurs at the step where Q(2%0) is defined as
a definite integral. We do this through pattern matching and symbol replacement.
At the stage where the definite integral is to be evaluated, we replace all instances of
d7h in the integrand by j!¢;/h’~1. Each term in the result (call it R) will contain
a factor of h™3 or h~2 with no other dependence on h. For each k = kg,...,0 and
j=1,...,dog, we find the terms in R that contain <p;2k) (left in the form tlf . tézk’“
described in Algorithm 3.2) as a factor. These terms are removed from R while their

symbolic integrals (with <p§-2k) /h™ replaced by ImET(ffcj)) are divided by 273 and added
to the desired flux Q(**¢). By running through the gog%) in decreasing k order, we con-
vert higher order products (e.g. t3t5/h3) into symbols (e.g. IdE§42)) before one of their

lower order factors can be converted incorrectly (e.g. into IgEé?l) to). This approach is
effective through 6th or 8th order, but becomes rather slow as the complexity of the
expansion increases.

The second approach is much faster and can be implemented in any modern pro-
gramming language. We have written a version in C*+ and a version in Mathematica.
Instead of representing the basis functions ¢§-k) for Hj, using a computer algebra sys-
tem, we represent them as (k + 1)-tuples of integers. For example, the functions 1,
hz, %h2h§’:hwm, and 4—18h4hgchmhmmC in Ho, Hi, He and Hr are represented by (0),
(0,1), (2,3,0,1,0,0,0), and (4,1,1,0,1,0,0,0). A tuple (ig,-..,%x) represents a basis
function for Hy, iff

i1+ 269 + -+ - + ki = k, i0:i2+213+-~'+(k5—1)ik. (Al)

We begin by constructing the basis sets @ for 0 < k < 2k and storing them as
(k + 1) x dj, integer matrices with columns corresponding to the g0§-k). This is done
using Algorithm 3.2, which returns the columns sorted lexicographically from the last
slot to the first slot (e.g. (3,0,3,0)T < (2,3,0,1)7 < (3,1,1,1)T). Sorted columns
allow us to find the column index corresponding to a given tuple in log, dj time.
Next, for 0 < k < 2kg — 1, we compute the operators hd, and h,- from Hy to

Hi41 and store them as sparse integer matrices of dimension djy1 X dg. If column J

of @, contains the tuple (ig, ..., i), we define ix11 = 0 and compute
hz' . (io, N ,ik) = (’io,il + 1,i2, N ,ik+1), (AQ)
hoy < (o, ik) = Y i+ Do+ 1, ir = Lingr + 1, k),
{r:i,#0}

where the omitted indices are unmodified and the +1 and —1 cancel in the first slot
when r = 0 in the sum. The factor of (r+1) is due to the factorials in the definition of
the <p§-k). The column index [ of each (k + 2)-tuple in the result is found in @4 and
the corresponding coefficient (1 or 4,.(r + 1)) is added to the Ith row and Jth column
of the sparse matrix representing hd, or h,-. The entries of these sparse matrices
are positive and the column sums (i.e. 1 norms) are all equal to 1 for h,- and to
o+ 2i1 +---+ (k + 1)ik = 2k for ho, (by (Al))

Once the operators hd, and h,- are known, we use them to recursively compute
the matrices A®M = V5AP" + 13AP% and B@R in (3.22). We start by setting

AP = (0,1,-2,1)T, A” = (0,0,-1,1) and B© = (0,0,3,—2)7 as in Example 3.5.
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For 1 < k < ko, we mimic the proof of Theorem 3.3 to build up A®*) and B®*) row
by row. For 4 < n <2k + 3 and ¢ = 0, 1, we use sparse matrix—vector multiplication
to define the rows

4D (g — (220 = (1= DhelhD, = (0= 347 ()] '
n(n —1) (A3)
_ —(n— .  — (n— . (2k72)n,:T T
B(2k)(n,:)< 2[h0; — (n — Dh Hhi(n_(l) 2)h.](B (n,:) ])

If K > 2, then for 6 < n < 2k + 3 we add the following vectors to Az(-%)(n, :) and
B(F)(n, ), respectively:

T

<—[har—(n—Q)hz][ham—(n—3)hz][haz—(n—4)hm][haz—(n—5)hm][A§2’“‘4>(n,:)T}>
n(n—1)(n—2)(n—3 )

(n—D(n-2(n-3) A4

( —[h0s—(n—1)hy ][R —(n—2)h, ] [hOs — (Nn—3)ha|[ROr — (n—4) hy ] [BZF =Y (n,:)T] ) T
n(n—1)(n—2)(n—3) :

Next we zero out rows 0 and 1 of AE)%), A(lzk), Bk and set

AP 2 = 2230 - 3)AP (n,:), AP (3 = 222 - n) AP (n,),

n=4
B (2, = Y230 — 3)BCR (n,:),  BEM(3,:) = Y232 — n) BRI (n, 1),

(A.5)
Finally, we subtract (7}/?) from AP (2,1) and add it to A**)(3,1) to account for
the boundary data, where we recall that the rows and columns are indexed starting at
0 and 1, respectively. Using this approach, our C** code can compute these matrices
through order 2k = 50 using floating point arithmetic in a few seconds, while our
Mathematica code can compute through order 2k = 30 in exact rational arithmetic
in about an hour. This allows us to explore the properties of the stream function
expansion and test our error estimates to quite a high order.
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