Nuclear Electric Dipole Moment of 3He

PDF Version Also Available for Download.

Description

A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of {sup 3}He and the expected sensitivity of such a measurement to the underlying CP-violating interactions. Assuming that the coupling constants are of comparable magnitude ... continued below

Physical Description

8 p. (0.3 MB)

Creation Information

Stetcu, I; P.Liu, C; Friar, J L; Hayes, A C & Navratil, P April 8, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of {sup 3}He and the expected sensitivity of such a measurement to the underlying CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {pi}-, {rho}-, and {omega}-exchanges, we find that the pion-exchange contribution dominates. Finally, our results suggest that a measurement of the {sup 3}He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

Physical Description

8 p. (0.3 MB)

Notes

PDF-file: 8 pages; size: 0.3 Mbytes

Source

  • Journal Name: Physics Letters B, vol. 665, n/a, June 18, 2008, pp. 168; Journal Volume: 665

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-JRNL-402812
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 945158
  • Archival Resource Key: ark:/67531/metadc900773

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 8, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • April 17, 2017, 1:35 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Stetcu, I; P.Liu, C; Friar, J L; Hayes, A C & Navratil, P. Nuclear Electric Dipole Moment of 3He, article, April 8, 2008; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc900773/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.