	WASTE SITE RECLASSIFICATION	FORM							
Date Submitted: 12/18/07	Operable Unit(s): 100-FR-1	.	Control Number: 2007-029						
Originator: <u>L. M. Dittmer</u>	Waste Site Code: <u>100-F-26:14</u>	<u> </u>							
Phone: 372-9227	Type of Reclassification Action:								
	Closed Out ☐ Interim Closed Out ☒ No RCRA Postclosure ☐ Rejected ☐ Cons	Action olidated							
Out, No Action, RCRA Postclo if appropriate, for Closed Out at	This form documents agreement among parties listed authorizing classification of the subject unit as Closed Out, Interim Closed Out, No Action, RCRA Postclosure, Rejected, or Consolidated. This form also authorizes backfill of the waste management unit, if appropriate, for Closed Out and Interim Closed Out units. Final removal from the NPL of No Action and Closed Out waste management units will occur at a future date.								
Description of current waste site	condition:								
pipelines on the west side of the Remediation and verification sa established by the <i>Interim Actio</i> 100-HR-1, 100-HR-2, 100-KR-Washington (Remaining Sites Faction involved: (1) evaluating	The 100-F-26:14 waste site includes underground pipelines associated the 116-F-5 Ball Washer Crib and remnants of process pipelines on the west side of the 105-F Building. The site has been remediated and presently exists as an open excavation. Remediation and verification sampling of this site have been performed in accordance with remedial action objectives and goals established by the <i>Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100 DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington (Remaining Sites ROD), U.S. Environmental Protection Agency, Region 10, Seattle, Washington. The selected action involved: (1) evaluating the site using available process information, (2) remediating the site, (3) demonstrating through verification sampling that cleanup goals have been achieved, and (4) proposing the site for reclassification to Interim Closed Out.</i>								
Basis for reclassification:									
The current site conditions achi Remaining Sites ROD. The res future uses (as bounded by the 4.6 m [15 ft] deep). The results Columbia River. Site contamin uncontrolled drilling or excavat	In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses (as bounded by the rural-residential scenario) and allow for unrestricted use of shallow zone soils (i.e., surface to 4.6 m [15 ft] deep). The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River. Site contamination did not extend into the deep-zone soils; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone are not required. The basis for reclassification is described in detail in the Remaining Sites Verification Package for the 100-F-26:14, 116-F5 Influent Pipelines (attached).								
Waste Site Controls: Engineered Controls: Yes If any of the Waste Site Controls: TSD Closure Letter, or other results.	s are checked Yes specify control requirements		If requirements: Yes ☐ No ☒ nce to the Record of Decision,						
S. L. Charboneau DOE Federal Project Director (printed) Signature Char	boneau	1/29/08 Date						
N/A			Det						
Ecology Project Manager (prin	ed) Signature	≥ 2	Date						
R. A. Lobos			2/29/08						
EPA Project Manager (printed)	Signature /		Date						

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-F-26:14, 116-F-5 INFLUENT PIPELINES

Attachment to Waste Site Reclassification Form 2007-029

December 2007

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-F-26:14, 116-F-5 INFLUENT PIPELINES

EXECUTIVE SUMMARY

The 100-F-26 site includes the underground process and sanitary sewer pipelines associated with the 100-F Area pre-reactor cooling water treatment facilities. For the confirmatory sampling effort, the 100-F-26 site was divided into 16 subsites based on the intended use of the pipe (e.g., sanitary sewer or process water), expected sources of contamination, and potential remedial actions. The 100-F-26:14 pipeline subsite consists of underground pipelines associated with the 116-F-5 Ball Washer Crib and remnants of process pipelines on the west side of the 105-F Building.

Portions of these pipelines were previously removed as evidenced by historical documentation as well as their absence during remediation. Confirmatory sampling was not performed because the presence of contamination related to the pipelines was already documented.

Remedial action at the 100-F-26:14 pipeline site was performed from February 1 through April 24, 2007. The site overlapped the footprint of the 118-F-8:4 (Fuel Storage Basin West Side Adjacent and Side Slope Soils) waste site and was remediated in conjunction with the latter. The portions where the two sites overlap have been interim closed out as part of the 118-F-8:4 waste site (WCH 2007a). The contaminants of potential concern for the 100-F-26:14 pipeline site were among the analytes included in the 118-F-8:4 waste site verification sampling.

Remediation of the 100-F-26:14 pipeline site resulted in disposal of approximately 700 bank cubic meters (BCM) (916 bank cubic yards [BCY]) of material to the Environmental Restoration Disposal Facility. Approximately 900 BCM (1,177 BCY) of overburden and layback soil was removed and stockpiled for use as clean backfill.

Verification sampling for the 100-F-26:14 pipeline site was performed in August 2007 (WCH 2007b) to collect data to determine if the remedial action goals had been met. A total of nine samples were collected (four from the excavation plus one duplicate; four from overburden stockpiles). The samples were analyzed by gamma energy analysis and for nickel-63, strontium-90, metals by inductively coupled plasma, mercury and hexavalent chromium. A summary of the cleanup evaluation for the soil results compared against the applicable criteria is presented in Table ES-1. The results of the verification sampling are used to make reclassification decisions for the 100-F-26:14 waste site in accordance with the TPA-MP-14 (DOE-RL 2007) procedure.

In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005b) and the *Interim Action Record of Decision for the 100-BC-1*, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington (EPA 1999). The results of verification sampling show that residual contaminant concentrations do not preclude any future uses (as bounded by the rural-residential scenario) and allow for unrestricted use of

shallow-zone soils (i.e., surface to 4.6 m [15 ft] deep). The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River. Site contamination did not extend into the deep-zone soils; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone are not required.

A comparison against ecological risk screening levels has been made for the site contaminants of potential concern and other constituents. Screening levels were not exceeded, with the exception of antimony, boron, lead, manganese, and vanadium. Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. It is believed that the presence of these constituents does not pose a risk to ecological receptors because concentrations of antimony, manganese, and vanadium are below site background levels, lead is within the range of Hanford Site background levels, and boron concentrations are consistent with those seen elsewhere at the Hanford Site (no established background value is available for boron). A more complete quantitative ecological risk assessment will be presented in the baseline risk assessment for the river corridor portion of the Hanford Site and will be used to support the final closeout decision for this site.

Table ES-1. Summary of Remedial Action Goals for the 100-F-26:14 Waste Site. (2 Pages)

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?
Direct Exposure Radionuclides	Attain 15 mrem/yr dose rate above background over 1,000 years.	The maximum all pathways dose rate calculated by RESRAD is 10.0 and 2.72 mrem/yr at year zero (2007) from the overburden and layback stockpile area and excavation footprint, respectively.	Yes
Direct Exposure Nonradionuclides	Attain individual COC/COPC RAGs.	All individual COC/COPC concentrations are below the direct exposure criteria.	Yes
Risk Requirements Nonradionuclides	Attain a hazard quotient of <1 for all individual noncarcinogens.	All individual hazard quotients are <1.	
	Attain a cumulative hazard quotient of <1 for noncarcinogens.	The cumulative hazard quotient (4.6 x 10 ⁻²) is <1.	Yes
	Attain an excess cancer risk of <1 x 10 ⁻⁶ for individual carcinogens.		
	Attain a total excess cancer risk of <1 x 10 ⁻⁵ for carcinogens.	The total excess cancer risk value (1.8×10^{-7}) is $<1 \times 10^{-5}$.	
Groundwater/River Protection – Radionuclides	Attain single COC/COPC groundwater and river protection RAGs.	None of the radionuclide COC/COPCs are predicted to reach groundwater. All single COC/COPC groundwater and river RAGs have therefore been attained.	Yes
	Attain national primary drinking water regulations: ^a 4 mrem/yr (beta/gamma) dose rate to target receptor/organs.	None of the radionuclide COC/COPCs are predicted to reach groundwater within 1,000 years.	

Table ES-1. Summary of Remedial Action Goals for the 100-F-26:14 Waste Site. (2 Pages)

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?
	Meet drinking water standards for alpha emitters: the more stringent of 15 pCi/L MCL or 1/25th of the derived concentration guide from DOE Order 5400.5.b	None of the radionuclide COC/COPCs are predicted to reach groundwater within 1,000 years.	
	Meet total uranium standard of 21.2 pCi/L.°	The total uranium COC/COPCs (U-235 and U-238) are present at concentrations less than natural background.	
Groundwater/River Protection – Nonradionuclides	Attain individual nonradionuclide groundwater and river cleanup requirements.	Residual concentrations of barium and lead are above the groundwater and/or river protection RAGs. However, RESRAD modeling predicts these constituents will not reach groundwater (and therefore the Columbia River) within 1,000 years.	Yes

^a "National Primary Drinking Water Regulations" (40 Code of Federal Regulations 141).

COC = contaminant of concern RAG = remedial action goal

COPC = contaminant of potential concern RESRAD = RESidual RADioactivity (dose assessment model)

MCL = maximum contaminant level

^b Radiation Protection of the Public and Environment (DOE Order 5400.5).

^c Based on the isotopic distribution of uranium in the 100 Areas, the 30 μg/L MCL corresponds to 21.2 pCi/L. Concentration-to-activity calculations are documented in *Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater* (BHI 2001a).

Based on the 100 Area Analogous Sites RESRAD Calculations (BHI 2005), these constituents are not predicted to migrate more than 3 m (10 ft) vertically in 1,000 years (based on the lowest soil-partitioning coefficient distribution [barium] of 25 mL/g). The vadose zone underlying the remediation footprint is approximately 5 m (16 ft) thick.

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-F-26:14, 116-F-5 INFLUENT PIPELINES

STATEMENT OF PROTECTIVENESS

The 100-F-26:14 (116-F-5 influent pipelines) pipeline site verification sample results demonstrate that the site achieves the remedial action objectives and remedial action goals (RAGs) established in the Remedial Design Report/Remedial Action Work Plan for the 100 Area (RDR/RAWP) (DOE-RL 2005b) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units* (commonly called the Remaining Sites Record of Decision [ROD]) (EPA 1999). These results show that residual soil concentrations support future land uses that can be represented (or bounded) by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations support unrestricted future use of shallow-zone soil (i.e., surface to 4.6 m [15 ft]) and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River. Site contamination did not extend into the deep-zone soils; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone are not required.

A comparison against ecological risk screening levels has been made for the site contaminants of concern and other constituents. Screening levels were not exceeded with the exception of antimony, boron, lead, manganese, and vanadium. Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. It is believed that the presence of these constituents does not pose a risk to ecological receptors because concentrations of antimony, manganese, and vanadium are below site background levels, lead is within the range of Hanford Site background levels, and boron concentrations are consistent with those seen elsewhere at the Hanford Site (no established background value is available for boron). A more complete quantitative ecological risk assessment will be presented in the baseline risk assessment for the river corridor portion of the Hanford Site and will be used to support the final closeout decision for this site.

GENERAL SITE INFORMATION AND BACKGROUND

The 100-F-26 site includes the underground process and sanitary sewer pipelines associated with the 100-F Area reactor cooling water treatment facilities. For the confirmatory sampling effort, the 100-F-26 site was divided into 16 subsites based on the intended use of the pipe (e.g., sanitary sewer or process water), expected sources of contamination, and potential remedial actions. The 16 subsites are as follows:

•	100-F-26:1	North process sewer collection pipelines
0	100-F-26:2	Process water pipelines to the aquatic biology and strontium gardens
0	100-F-26:3	184-F powerhouse pipelines
•	100-F-26:4	South process pipelines
0	100-F-26:5	190-F bypass pipelines
0	100-F-26:6	190-F reservoir pipelines

•	100-F-26:7	Sodium dichromate and sodium silicate pipelines
•	100-F-26:8	1607-F1 sanitary sewer pipelines
•	100-F-26:9	1607-F2 sanitary sewer pipelines
•	100-F-26:10	1607-F3 sanitary sewer pipelines
•	100-F-26:11	1607-F4 sanitary sewer pipelines
•	100-F-26:12	1.8 m (72 in.) main process sewer pipeline
•	100-F-26:13	108-F drain pipelines
•	100-F-26:14	116-F-5 influent pipelines
•	100-F-26:15	Miscellaneous pipelines associated with the 1608-F sump
•	100-F-26:16	Reactor cooling water pipelines.

This remaining sites verification package only addresses areas within the 100-F-26:14 subsite (116-F-5 influent pipelines). The 100-F-26:14 pipeline site is located southwest of the 105-F Building (Figure 1). It includes a 10.2-cm (4-in.) influent pipeline that runs from the 105-F Reactor Building to the 116-F-5 ball washer crib, two process pipelines (30.48-cm [12-in.] and 15.24-cm [6-in.]) that connected to a previously remediated process pipeline (100-F-19:2); and a short 15.24-cm [6-in.] cast-iron pipe (Figure 2).

The 116-F-5 ball washer crib was used to dispose of liquid decontamination wastes from the 105-F Reactor ball washer assembly. It served to clean and decontaminate small, steel-jacketed boron balls used in the Ball 3X safety system (WHC 1993a). The ball washer assembly was located in the transfer basin area of the 105-F Reactor Building. The crib has been remediated and interim closed out. The excavation for remediation of the ball washer crib has been fully backfilled and appears today as an unmarked gravel-covered field (BHI 2001b).

The 30.48-cm (12-in.) process line ran from the 115-F seal pit to the 60.96-cm (24-in.) process sewer south of the fuel storage basin (HEW 1944). The 15.24-cm (6-in.) process line received effluent from the tunnel eductor discharge (GE 1962) and joined with the process line from the 115-F seal pit prior to entering the process sewer. The process sewer was remediated between August 2001 and December 2002 (BHI 2003). The remedial design drawings also show a short 15.24-cm (6-in.) cast-iron pipeline off the end of the ball washer influent line near the 105-F Building (BHI 2000). A possible reference to this pipeline is made on drawing M-1904 F sheet 5 (GE 1954). The pipe is referenced by the notation "6 [inch] V.P. BELOW 12 [inch] V.P." with an arrow pointing to the 30.48-cm (12-in.) process line from the 115-F seal pit. No additional historical information is available regarding this pipe.

CONFIRMATORY SAMPLING ACTIVITIES

Nonintrusive Investigation Results

The project team conducted a site walkdown in August 2004. The objectives of the walkdown were to (1) verify the site location and (2) evaluate field conditions and possible sampling logistics (i.e., identify manholes to excavate and locate the pipelines for sampling). No manholes or junction boxes were observed at the ground surface during the walkdown. A geophysical survey of the 100-F-26:14 underground pipeline subsite was not performed.

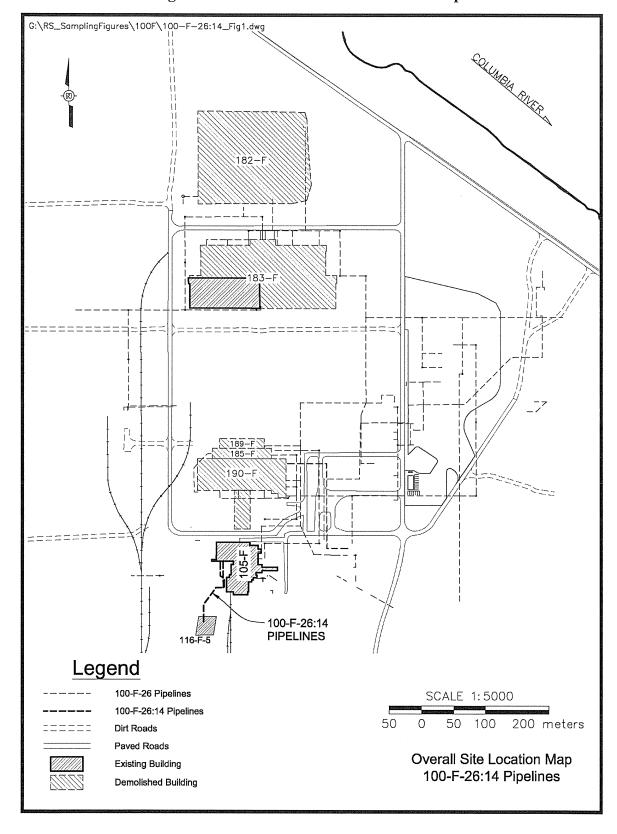


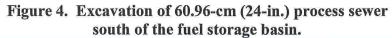
Figure 1. 100-F-26:14 Subsite Location Map.

 $G:\RS_SamplingFigures \\ 100F\\ 100-F-26:14_Fig2.dwg$ Ramp used for remediation of N 147605 E 580407 INV EL. 125.47 EXISTING SURFACE EL. 127.0 fuel storage basin INV EL. N/A EXISTING SURFACE EL. 127.0 ° 105-F INV EL. N/A EXISTING SURFACE EL. 126. N 147580 E 580406 INV EL N/A EXISTING SURFACE EL 126.5 INV EL. N/A EXISTING SURFACE EL. 126.5 INV EL. N/A EXISTING SURFACE EL. 126.0 INV EL N/A EXISTING SURFACE EL 126.0 N 147565 E 580411 INV EL. N/A EXISTING SURFACE EL. 126.5 16-F-5 Legend SCALE 1:1000 100-F-26:14 Pipelines 10 10 20 40 meters Paved Roads **Existing Building** Remediated Site Boundaries 100-F-26:14 Pipelines 105-F Reactor Footprint Note: 1. Coordinate system, Washington State Plane, South Zone 2. Vertical Datum: National Geodetic Survey Datum (NAVD88)

Figure 2. 100-F-26:14 Pipeline Detail.

Contaminants of Potential Concern

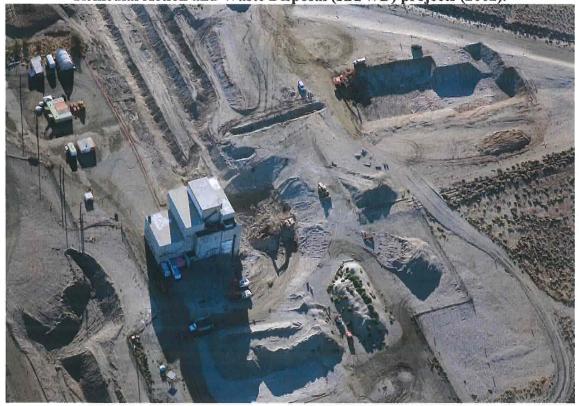
Contaminants of potential concern (COPCs) for the 100-F-26 underground pipeline waste site (including 100-F-26:14) are strontium-90, cesium-137, cobalt-60, europium-152, europium-154, hexavalent chromium, lead and metals (DOE-RL 2005a). Metals, in the context of the 100-F Area, are generally assumed to include arsenic, barium, cadmium, total chromium, mercury, selenium, and silver (in addition to hexavalent chromium and lead). The contaminants of concern (COCs) for the 116-F-5 ball washer crib consisted of cesium-137 and cobalt-60 (BHI 2001b). These COCs have been included in the COPC list for the 100-F-26:14 subsite.


Confirmatory Sampling

The site was sent directly to remediation, without confirmatory sampling, based on process knowledge and historical information (Feist 2005). Specifically, information contained in the cleanup verification package for the ball washer crib indicated that radiological contamination associated with the influent line may be present (BHI 2001b). The ball washer influent line was discovered in 1993 during excavation of the 116-F-4 (105-F Pluto Crib). The contaminated soil and approximately 36.5 m (120 ft) of the influent line was removed (DOE-RL 1996a, WHC 1993b). A portion of the pipeline remained near the southwest corner of the 105-F loading bay.

The disposition of the 100-F-26:14 pipelines was in doubt according to the waste site remove, treat, dispose (RTD) report (Feist 2005). Phase IV of the Interim Safe Storage project and the Remedial Action/Waste Disposal project both involved deep excavations in the area of the pipelines (Figures 3 - 6). The ramp created to facilitate excavation and backfilling of the fuel storage basin (FSB) was dug directly through the area where the 10.2-cm (4 in.) ball washer influent line, 30.48-cm (12 in.) process line and the short 15.24-cm (6 in.) pipeline would have been located. Figure 2 shows the location of the FSB ramp in relation to the pipelines. The RTD report indicated that the presence of the pipelines would be verified during remediation.

Figure 3. Excavation of Fuel Storage Basin (blue area at bottom left); excavators on ramp.



and backim.

Figure 5. Ramp used for access to fuel storage basin during excavation and backfill.

Figure 6. Aerial photo showing areas excavated by Interim Safe Storage (ISS) and Remedial Action and Waste Disposal (RA/WD) projects (2002).

REMEDIAL ACTION SUMMARY

Remediation of the 100-F-26:14 pipeline site was performed from February 1 through April 24, 2007. The excavation cut through the middle of the 118-F-8:4 (fuel storage basin west side adjacent and side slope soils) waste site (Figure 7). The area bound by the 118-F-8:4 waste site has been interim closed out (WCH 2007a). The COC/COPCs for 100-F-26:14 were among other COCs sampled for the cleanup verification of the 118-F-8:4 remediation area. The total depth of the 118-F-8:4 (8 m [26 ft] below ground surface) was below the deepest (6 m [20 ft]) segment of the 100-F-26:14 pipeline. The post-excavation survey showing the former location of the pipelines is provided in Figure 8. The 100-F-26:14 pipeline segments within the area bounded by the 118-F-8:4 waste site interim closure is included therein. The boundaries for interim closure of the 100-F-26:14 pipelines are the areas extending outside the boundaries of 118-F-8:4 (Figure 9).

The volume of soil removed by the 100-F-26:14 excavation was approximately 1,600 BCM (2,093 BCY). Of this volume, approximately 700 BCM (916 BCY) of soil were disposed of at the Environmental Restoration Disposal Facility and 900 BCM (1,177 BCY) of overburden and layback soil were stockpiled for use as clean backfill.

The only pipeline discovered during remediation was a 15.24-cm (6-in.) vitrified clay pipe in a location where the 15.24-cm (6-in.) cast-iron pipe was expected. It was encased in concrete its entire length. The other pipelines are presumed to have been removed during previous remedial actions. There were no anomalies or stained soil discovered during remediation. Photographs of the remediation are provided in Appendix A.

Figure 7. 100-F-26:14 Post-Excavation Aerial Photograph (August 2007).

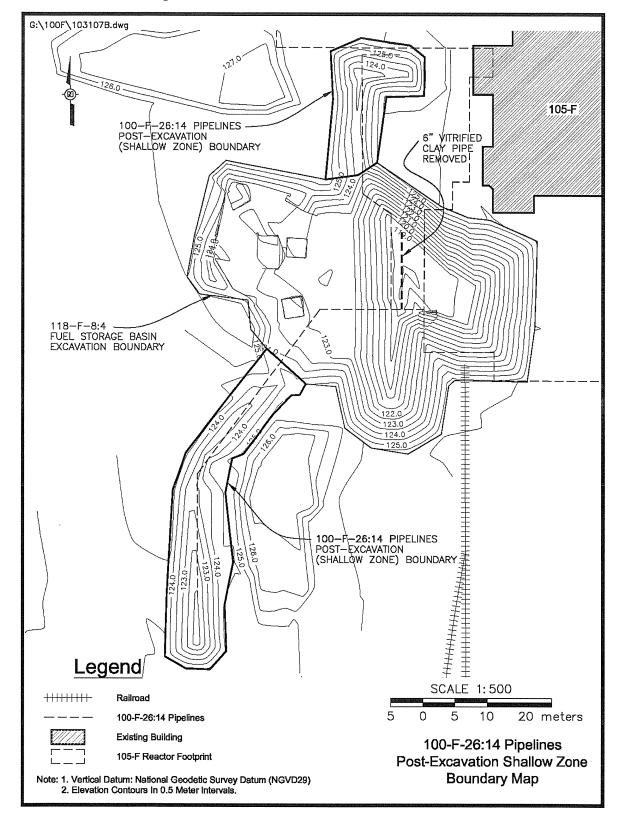


Figure 8. 100-F-26:14 Remediation Boundaries.

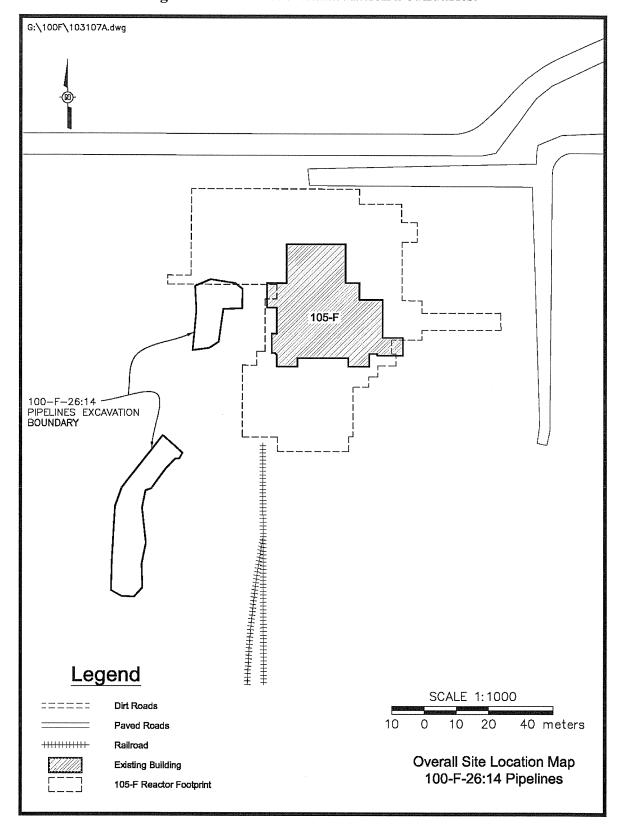


Figure 9. 100-F-26:14 Remediation Boundaries.

FIELD SCREENING

Radiological field screening was conducted during the site remedial actions. Field screening was used to guide the excavation to quickly assess the presence and level of contamination. Field screening at the site included using a radiological data mapping system survey (Global Positioning Environmental Radiological Surveyor [GPERS]) and hand-held sodium iodide (NaI) detectors. The radiological surveys completed in the excavation did not indicate the presence of radioactive contamination following remediation. Surveys of the overburden and layback stockpiles indicated an area of residual radiological activity. Initial verification sampling confirmed the presence of contaminants in excess of RAGs. Additional material was removed from this location, followed by surveys with hand-held instrumentation, which detected no residual radiological activity above background levels. Replacement verification samples were collected and analyzed from the remaining soils, using the same sample design and suite of analyses as previously used. The new data completely replaced the initial data for statistical calculations, comparison against RAGs, and calculation of risk. The results indicated that the remaining soil was suitable for use as backfill. The GPERS radiological surveys for the 100-F-26:14 pipeline site are provided in Appendix B of this document.

VERIFICATION SAMPLING ACTIVITIES

RAGs are the specific numeric goals against which the cleanup verification data are evaluated to demonstrate attainment of the remedial action objectives for the site. Verification sampling for the 100-F-26:14 pipeline site was performed on August 8, 9, and 21, 2007, (WCH 2007b) to collect data to determine if the RAGs had been met. The following subsections provide additional discussion of the information used to develop the verification sampling design. The results of verification sampling are also summarized to support interim closure of the site.

Contaminants of Concern and Contaminants of Potential Concern for Verification Sampling

The COCs/COPCs for verification sampling were identified in the 100-F-26:14 Waste Site RTD Report (Feist 2005) as strontium-90, cesium-137, cobalt-60, europium-152, europium-154, hexavalent chromium, arsenic, barium, cadmium, total chromium, lead, mercury, selenium, and silver. The verification samples were analyzed by gamma energy analysis and for nickel-63, strontium-90, metals by inductively coupled plasma analysis, mercury and hexavalent chromium which included all of the COCs/COPCs listed in the RTD report.

Verification Sampling Design

The sampling design for the 100-F-26:14 pipeline site was developed using the 100 Area Remedial Action Sampling and Analysis Plan (DOE-RL 2005a). The site was divided into decision units (e.g., shallow zone and deep zone). These decision units are broken into smaller subunits based on surface area. The subunits are further broken into equal-sized sampling areas. Variance samples are collected from these sampling areas and analyzed. The results are used to determine the number of verification samples to collect in each decision unit.

The division of the site into decision units is also a function of the applicable RAGs. The direct exposure, groundwater protection, and river protection RAGs are applicable to soils within 4.6 m (15 ft)

of the ground surface. This soil zone is referred to as the shallow zone. The groundwater protection and river protection RAGs are applicable to soils greater than 4.6 m (15 ft) below the ground surface. This soil zone is referred to as the deep zone. There were no deep zones associated with the 100-F-26:14 pipeline site as defined herein.

The 100-F-26:14 pipeline site contains two decision units: (1) excavation footprint and (2) overburden and layback soil stockpiles. The calculation of the number of verification samples to collect in each of the decision units resulted in four composite samples being collected per decision unit for the shallow zone and overburden and layback stockpiles. This calculation, and the sample locations, is located in the sample design calculation in Appendix D. Figure 10 provides an overview of the two sample designs.

Verification Sampling Results

Verification samples were analyzed using U.S. Environmental Protection Agency-approved analytical methods. The laboratory-reported data results for all constituents are stored in the Environmental Remediation System (ENRE) project-specific database prior to submission for archival in the Hanford Environmental Information System (HEIS) site-wide database and are summarized in Appendix C.

Evaluation of the verification data from the two decision units (excavation footprint and overburden and layback stockpiles) was calculated using the 95% upper confidence limit on the true population mean for residual concentrations of COCs/COPCs. The calculations were also performed on other analytes included in the analysis requested for the COCs/COPCs. These calculations are provided in Appendix D. When a nonradionuclide analyte was detected in fewer than 50% of the verification samples collected, the maximum-detected value was used for comparison against the RAGs. If no detections for a given analyte were reported in the data set, then no statistical evaluation or calculations were performed for that analyte.

Comparisons of the statistical results for analytes with the shallow zone RAGs for the two decision units are summarized in Tables 1a and 1b. Both decision units are evaluated using the shallow zone cleanup criteria. Contaminants that were not detected by laboratory analysis are excluded from these tables. Calculated cleanup levels are not presented in the *Cleanup Levels and Risk Calculations Database* (Ecology 2005) under *Washington Administrative Code* (WAC) 173-340-740(3) for aluminum, calcium, iron, magnesium, potassium, silicon, and sodium; therefore, these constituents are not considered site COCs. Potassium-40, radium-226, radium-228, thorium-228, and thorium-232 were detected in samples collected at the site, but are not considered within statistical calculations or the following tables, as these isotopes are not related to the operational history of the site and were detected below background levels (based on an assumption of secular equilibrium, the background activities for radium-228 and thorium-228 are equal to the statistical background activity of 1.32 pCi/g for thorium-232 provided in DOE-RL 1996b).

G:\100F\103107C.dwg (10) 14 14 **A3** 2 2 (10) 15 15 (3) (16) (3) 105-F 4 100-F-26:14 PIPELINES SHALLOW ZONE SAMPLE DESIGN BOUNDARY 100-F-26:14 PIPELINES OVERBURDEN SAMPLE DESIGN BOUNDARIES 100-F-26:14 PIPELINES AMPLE DESIGN BOUNDARIES

SCALE 1:500 ♠A2¹³ 100-F-26:14 PIPELINES SHALLOW ZONE SAMPLE (15) DESIGN BOUNDARY 11) 15 **(3)** (9) 3 9 7 11 Legend 3 (12) √4_③ Dirt Roads Paved Roads SCALE 1:500 ++++++++ Railroad 10 20 meters **Existing Building** 105-F Reactor Footprint 100-F-26:14 Pipelines Variance/Verification Sampling Node (5) Sample Design Boundaries Map Variance Sampling Node

Figure 10. Verification Soil Sample Locations at the 100-F-26:14 Pipeline Subsite.

Table 1a. Comparison of Statistical Contaminant Concentrations to Action Levels for the 100-F-26:14 Excavation Footprint Verification Sampling Event. (2 Pages)

		Generic	Site Lookup Valu	ıes ^a (pCi/g)	Does the	
COCs/COPCs	Statistical Result (pCi/g)	Shallow Zone Lookup Value	Groundwater Protection Lookup Value	River Protection Lookup Value	Statistical Result Exceed RAGs?	Does the Result Pass RESRAD Modeling?
Cesium-137	0.206 (<bg)< td=""><td>6.2</td><td>b</td><td>b</td><td>No</td><td></td></bg)<>	6.2	b	b	No	
Cobalt-60	0.073	1.4	b	b	No	
Europium-152	0.370	3.3	b	b	No	
		Reme	dial Action Goals	(mg/kg)	Does the	
COCs/COPCs	Statistical Result (mg/kg)	Direct Exposure	Soil Cleanup Level for Groundwater Protection	Soil Cleanup Level for River Protection	Statistical Result Exceed RAGs?	Does the Result Pass RESRAD Modeling?
Antimony ^c	0.79 (<bg)< td=""><td>32</td><td>5^d .</td><td>5^d</td><td>No</td><td></td></bg)<>	32	5 ^d .	5 ^d	No	
Arsenic	2.8 (<bg)< td=""><td>20</td><td>20</td><td>20</td><td>No</td><td></td></bg)<>	20	20	20	No	
Barium	101 (<bg)< td=""><td>5,600</td><td>132°</td><td>224</td><td>No</td><td></td></bg)<>	5,600	132°	224	No	
Beryllium	0.21 (<bg)< td=""><td>10.4^e</td><td>1.51^d</td><td>1.51^d</td><td>No</td><td></td></bg)<>	10.4 ^e	1.51 ^d	1.51 ^d	No	
Boron ^f	11.0	16,000	320	g	No	
Chromium (total)	9.3 (<bg)< td=""><td>80,000</td><td>18.5^d</td><td>18.5^d</td><td>No</td><td></td></bg)<>	80,000	18.5 ^d	18.5 ^d	No	
Cobalt	6.3 (<bg)< td=""><td>1,600</td><td>32</td><td>g</td><td>No</td><td></td></bg)<>	1,600	32	g	No	
Copper	12.6 (<bg)< td=""><td>2,960</td><td>59.2</td><td>22.0^d</td><td>No</td><td></td></bg)<>	2,960	59.2	22.0 ^d	No	
Hexavalent Chromium	0.38	2.1 ^e	4.8 ^h	2	No	
Lead	5.3 (<bg)< td=""><td>353</td><td>10.2°</td><td>10.2^d</td><td>No</td><td></td></bg)<>	353	10.2°	10.2 ^d	No	
Manganese	272 (<bg)< td=""><td>11,200</td><td>512^d</td><td>512^d</td><td>No</td><td></td></bg)<>	11,200	512 ^d	512 ^d	No	
Mercury	0.02 (<bg)< td=""><td>24</td><td>0.33^d</td><td>0.33^d</td><td>No</td><td></td></bg)<>	24	0.33 ^d	0.33 ^d	No	
Molybdenum ^f	0.51	400	8	g	No	
Nickel	9.9 (<bg)< td=""><td>1,600</td><td>19.1^d</td><td>27.4</td><td>No</td><td></td></bg)<>	1,600	19.1 ^d	27.4	No	

Table 1a. Comparison of Statistical Contaminant Concentrations to Action Levels for the 100-F-26:14 Excavation Footprint Verification Sampling Event. (2 Pages)

		Remed	dial Action Goals	pals ^a (mg/kg) Does the		
COCs/COPCs	Statistical Result (mg/kg)	Direct Exposure	Soil Cleanup Level for Groundwater Protection	Soil Cleanup Level for River Protection	Statistical Result Exceed RAGs?	Does the Result Pass RESRAD Modeling?
Vanadium	39.6 (<bg)< td=""><td>560</td><td>85.1^d</td><td>g</td><td>No</td><td></td></bg)<>	560	85.1 ^d	g	No	
Zinc	35.6 (<bg)< td=""><td>24,000</td><td>480</td><td>67.8^d</td><td>No</td><td></td></bg)<>	24,000	480	67.8 ^d	No	

^a Lookup values and RAGs obtained from the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005b) or calculated per WAC-173-340-720, 173-340-730, and 173-340-740, Method B, 1996, unless otherwise noted.

- ^c Hanford Site-specific background not available. Value is from *Natural Background Soil Metals Concentrations in Washington State* (Ecology 1994).
- Where cleanup levels are less than background, cleanup levels default to background (WAC 173-340-700[4][d], 1996 and DOE-RL 2005b).
- ^e Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3], 1996) and an airborne particulate mass-loading rate of 0.0001 g/m³ (WDOH 1997).
- ^f No Hanford Site-specific or Washington State background value available.
- ^g No cleanup level is available from the *Cleanup Levels and Risk Calculations (CLARC) Database* (Ecology 2005), and no bioconcentration factor or ambient water quality criteria values are available to calculate cleanup levels (WAC 173-340-730(3)(a)(iii), 1996 [Method B for surface waters]).
- h Calculated cleanup level (per WAC 173-340-720(3), 1996 [Method B for groundwater] and WAC 173-340-740(3)(a)(ii)(A), 1996 ["100 times rule"]) presented is lower than that presented in the RDR/RAWP (DOE-RL 2005b), based on updated oral reference dose value (as provided in the Integrated Risk Information System) (EPA 2006).

- = not applicable RAG = remedial action goal

RESRAD = RESidual RADioactivity (dose assessment model)

COC = contaminant of concern WAC = Washington Administrative Code

COPC = contaminant of potential concern

= background

BG

b The 100 Area RDR/RAWP (DOE-RL 2005b) does not provide soil cleanup levels for this contaminant to be protective of groundwater and the Columbia River. Based on the lowest radionuclide soil partitioning distribution coefficient (for cesium-137 and cobalt-60 [50 mL/g]), this contaminant is not predicted to migrate more than 1 m (3.3 ft) vertically in 1,000 years (BHI 2005). The vadose zone underlying this waste site is approximately 7.8 m (25 ft) thick. Therefore, residual concentrations of this contaminant are predicted to be protective of groundwater and the Columbia River.

Table 1b. Comparison of Statistical Contaminant Concentrations to Action Levels for the 100-F-26:14 Overburden and Layback Stockpile Verification Sampling Event. (2 Pages)

COCs/COPCs		Generic	Site Lookup Valu	ıes ^a (pCi/g)	Does the	
	Statistical Result (pCi/g)	Shallow Zone Lookup Value	Groundwater Protection Lookup Value	River Protection Lookup Value	Statistical Result Exceed RAGs?	Does the Result Pass RESRAD Modeling?
Cesium-137	1.43	6.2	b	b	No	
Cobalt-60	0.179	1.4	b	_b	No	
Europium-152	1.07	3.3	b	_b	No	
Nickel-63	7.04	83	b	b	No	
Strontium-90	0.304	4.5	b	b	No	
		Remed	dial Action Goals	(mg/kg)	Does the	
COCs/COPCs	Statistical Result (mg/kg)	Direct Exposure	Soil Cleanup Level for Groundwater Protection	Soil Cleanup Level for River Protection	Statistical Result Exceed RAGs?	t Pass RESRAD d Modeling?
Arsenic	2.9 (<bg)< td=""><td>20</td><td>20</td><td>20</td><td>No</td><td></td></bg)<>	20	20	20	No	
Barium	90.1 (<bg)< td=""><td>5,600</td><td>132°</td><td>224</td><td>No</td><td></td></bg)<>	5,600	132°	224	No	
Beryllium	0.21 (<bg)< td=""><td>10.4^d</td><td>1.51°</td><td>1.51°</td><td>No</td><td></td></bg)<>	10.4 ^d	1.51°	1.51°	No	
Boron ^f	9.2	16,000	320	g	No	
Cadmium ^c	0.17 (<bg)< td=""><td>13.9^d</td><td>0.81^e</td><td>0.81^e</td><td>No</td><td></td></bg)<>	13.9 ^d	0.81 ^e	0.81 ^e	No	
Chromium (total)	9.4 (<bg)< td=""><td>80,000</td><td>18.5°</td><td>18.5^e</td><td>No</td><td></td></bg)<>	80,000	18.5°	18.5 ^e	No	
Cobalt	6.5 (<bg)< td=""><td>1,600</td><td>32</td><td>g</td><td>No</td><td></td></bg)<>	1,600	32	g	No	
Copper	14.7 (<bg)< td=""><td>2,960</td><td>59.2</td><td>22.0^e</td><td>No</td><td></td></bg)<>	2,960	59.2	22.0 ^e	No	
Lead	15.1	353	10.2°	10.2 ^e	Yes	Yes ^h
Manganese	297 (<bg)< td=""><td>11,200</td><td>512^e</td><td>512^e</td><td>No</td><td></td></bg)<>	11,200	512 ^e	512 ^e	No	
Mercury	0.06 (<bg)< td=""><td>24</td><td>0.33^e</td><td>0.33^e</td><td>No</td><td></td></bg)<>	24	0.33 ^e	0.33 ^e	No	
Molybdenum ^f	0.56	400	8	g	No	
Nickel	10.2 (<bg)< td=""><td>1,600</td><td>19.1^e</td><td>27.4</td><td>No</td><td></td></bg)<>	1,600	19.1 ^e	27.4	No	

Table 1b. Comparison of Statistical Contaminant Concentrations to Action Levels for the 100-F-26:14 Overburden and Layback Stockpile Verification Sampling Event. (2 Pages)

		Remed	dial Action Goals	(mg/kg)	Does the	
COCs/COPCs	Statistical Result (mg/kg)	Direct Exposure	Soil Cleanup Level for Groundwater Protection	Soil Cleanup Level for River Protection	Statistical Result Exceed RAGs?	Does the Result Pass RESRAD Modeling?
Vanadium	40.3 (<bg)< td=""><td>560</td><td>85.1°</td><td>g</td><td>No</td><td></td></bg)<>	560	85.1°	g	No	
Zinc	38.7 (<bg)< td=""><td>24,000</td><td>480</td><td>67.8^e</td><td>No</td><td></td></bg)<>	24,000	480	67.8 ^e	No	

- ^a Lookup values and RAGs obtained from the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005b) or calculated per WAC-173-340-720, 173-340-730, and 173-340-740, Method B, 1996, unless otherwise noted.
- The 100 Area RDR/RAWP (DOE-RL 2005b) does not provide soil cleanup levels for this contaminant to be protective of groundwater and the Columbia River. Based on the lowest radionuclide soil partitioning distribution coefficient (for strontium-90 [25 mL/g]), this contaminant is not predicted to migrate more than 3 m (10 ft) vertically in 1,000 years (BHI 2005). The vadose zone underlying this waste site is approximately 7.8 m (25 ft) thick. Therefore, residual concentrations of this contaminant are predicted to be protective of groundwater and the Columbia River.
- ^c Hanford Site-specific background not available. Value is from *Natural Background Soil Metals Concentrations in Washington State* (Ecology 1994).
- ^d Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3], 1996) and an airborne particulate mass-loading rate of 0.0001 g/m³ (WDOH 1997).
- Where cleanup levels are less than background, cleanup levels default to background (WAC 173-340-700[4][d], 1996 and DOE-RL 2005b).
- No Hanford Site-specific or Washington State background value available.
- ^g No cleanup level is available from the *Cleanup Levels and Risk Calculations (CLARC) Database* (Ecology 2005), and no bioconcentration factor or ambient water quality criteria values are available to calculate cleanup levels (WAC 173-340-730(3)(a)(iii), 1996 [Method B for surface waters]).
- h Based on the 100 Area Analogous Sites RESRAD Calculations (BHI 2005), residual concentrations are not expected to migrate more than 2 m (6.6 ft) vertically in 1,000 years (based on the lowest soil-partitioning distribution coefficient [lead] of 30 mL/g). The vadose zone underlying the remediation footprint is approximately 7.8 m (25 ft) thick. Therefore, residual concentrations of all contaminants are predicted to be protective of groundwater and the Columbia River.

- = not applicable RAG = remedial action goal

BG = background RESRAD = RESidual RADioactivity (dose assessment model)

COC = contaminant of concern WAC = Washington Administrative Code

COPC = contaminant of potential concern

DATA EVALUATION

Evaluation of the results listed in Tables 1a and 1b indicate that one contaminant (lead) exceeds the soil RAGs for the protection of groundwater and/or the Columbia River in the overburden and layback stockpile decision unit. Data was not collected on the vertical extent of residual contamination, but, given the soil-partitioning coefficient (lead at 30 mL/g), RESRAD modeling (BHI 2005) predicts that it will not migrate more than 2 m (6.6 ft) vertically in 1,000 years. The vadose zone beneath the 100-F-26:14 excavation is approximately 7.8 m (25.6 ft) thick. Therefore, residual concentrations of these contaminants are protective of groundwater. The only pathway for contamination to reach the Columbia River is via groundwater migration, so this contaminant concentration is also protective of river water. All other contaminants for the 100-F-26:14 waste site were either not detected or quantified below RAGs. All of the residual contaminant concentrations were below the direct exposure RAGs.

For radionuclide contaminants, RESRAD modeling (ANL 2005) is used to predict the maximum dose rate, the excess lifetime cancer risk, and the impact on groundwater and the river from residual

radionuclide concentrations (DOE-RL 2005). For the 100-F-26:14 waste site excavation footprint and the overburden and layback stockpile area, the 95% UCL statistical concentrations of individual radionuclides in Table 1a and 1b, respectively, were entered into the RESRAD computer code with the results included in the RESRAD calculations in Appendix D. For the excavation footprint, a maximum dose of 2.72 mrem/yr was predicted to occur in the present year (2007) corresponding to a carcinogenic risk of 2.19 x 10⁻⁵. For the overburden and layback stockpile area, a maximum dose of 10.0 mrem/yr was predicted to occur in the present year (2007) corresponding to a carcinogenic risk of 1.21 x 10⁻⁴. Both dose and risk are predicted to decline over time due to radioactive decay. The RESRAD model predicts that no radionuclide from the 100-F-26:14 waste site will reach groundwater (or the river) within the 1,000 years of the evaluation. Therefore, residual concentrations of radionuclides are protective of groundwater and the river.

When using a statistical sampling approach, a RAG requirement for nonradionuclides is the WAC 173-340-740(7)(e) three-part test. The application of the three-part test for the 100-F-26:14 pipeline site is included in the statistical calculations (Appendix D). All residual COC/COPC concentrations for the 100-F-26:14 pipeline site pass the three-part test, except for barium and lead. As noted above, lead is not predicted to migrate more than 2 m (6.6 ft) vertically in 1,000 years. Barium with a slightly lower soil-partitioning coefficient (25 mL/g) is not predicted to migrate more than 3 m (10 ft) vertically in 1,000 years, Therefore, residual concentrations of barium and lead within these sampling areas are also protective of groundwater and the Columbia River.

Assessment of the risk requirements for the 100-F-26:14 pipeline site is determined by calculation of the hazard quotient and carcinogenic (excess cancer) risk values for nonradionuclides. These calculations are located in Appendix D. The requirements include an individual hazard quotient of less than 1.0, a cumulative hazard quotient of less than 1.0, an individual contaminant carcinogenic risk of less than 1 x 10⁻⁶, and a cumulative excess carcinogenic risk of less than 1 x 10⁻⁵. These risk values were conservatively calculated for the entire waste site using the highest values from each of the decision units. Risk values were not calculated for constituents that were not detected or were detected at concentrations below Hanford Site or Washington State background values. The calculations indicated that all individual hazard quotients for noncarcinogenic constituents are less than 1.0. The cumulative hazard quotient for the 100-F-26:14 waste site is 4.6 x 10⁻². All individual cumulative carcinogenic risk values are less than 1 x 10⁻⁶. The cumulative carcinogenic risk value is 1.8 x 10⁻⁷. Therefore, nonradionuclide risk requirements are met.

DATA QUALITY ASSESSMENT

A data quality assessment (DQA) was performed to compare the verification sampling approach and resulting analytical data with the sampling and data quality requirements specified by the project objectives and performance specifications. The DQA for the 100-F-26:14 pipeline site established that the data are of the right type, quality, and quantity to support site verification decisions within specified error tolerances. All analytical data were found to be acceptable for decision-making purposes. The evaluation verified that the sample design was sufficient for the purpose of clean site verification. The detailed DQA is presented in Appendix E.

SUMMARY FOR INTERIM CLOSURE

The 100-F-26:14 pipeline site has been remediated in accordance with the Remaining Sites ROD (EPA 1999) and the RDR/RAWP (DOE-RL 2005b). The site was remediated by removing approximately 700 BCM (916 BCY) of material for disposal at the Environmental Restoration Disposal Facility. Statistical sampling to verify the completeness of remediation was performed, and analytical results for the decision units (excavation footprint and overburden and layback stockpiles) were shown to meet the cleanup objectives for direct exposure, groundwater protection, and river protection. Accordingly, an interim closure reclassification is supported for the 100-F-26:14 pipeline site. The site does not have a deep zone or residual contaminant concentrations that would require any institutional controls.

REFERENCES

- 40 CFR 141, "National Primary Drinking Water Regulations," *Code of Federal Regulations*, as amended.
- ANL, 2005, *RESRAD for Windows*, Version 6.3, Argonne National Laboratory, Environmental Assessment Division, Argonne, Illinois.
- BHI, 2000, 100 F Area, Group 4 Remedial Design, Near-Reactor Pipe Line Demolition Plan, 0100F-DD-C0032, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2001a, Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater, 0100X-CA-V0038, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2001b, Cleanup Verification Package for the 116-F-5 Ball Washer Crib, CVP-2001-00007, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2003, Cleanup Verification Package for the 100-F-19:2 Reactor Cooling Water Effluent Pipeline, 116-F-11 Cushion Corridor French Drain, UPR-100-F-1 Sewer Line Leak, and 100-F-29 Experimental Animal Farm Process Sewer Pipelines, CVP-2001-00003, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2005, 100 Area Analogous Sites RESRAD Evaluation, Calculation No. 0100X-CA-V0050, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- DOE Order 5400.5, *Radiation Protection of the Public and Environment*, as amended, U.S. Department of Energy, Washington, D.C.
- DOE-RL, 1996a, 100 Area Excavation Treatability Study Report, DOE/RL-94-16, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

- DOE-RL, 1996b, *Hanford Site Background: Part 2, Soil Background for Radionuclides*, DOE/RL-96-12, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005a, 100 Area Remedial Action Sampling and Analysis Plan, DOE/RL-96-22, Rev. 4, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005b, Remedial Design Report/Remedial Action Work Plan for the 100 Area, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2007, *Tri-Party Agreement Handbook Management Procedures*, RL-TPA-90-0001, Rev. 1, Guideline Number TPA-MP-14, "Maintenance of the Waste Information Data System (WIDS)," U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Ecology, 1994, *Natural Background Soil Metals Concentrations in Washington State*, Publication 94-115, Washington State Department of Ecology, Olympia, Washington.
- Ecology, 2005, Cleanup Levels and Risk Calculations (CLARC) Database, Washington State Department of Ecology, Olympia, Washington, https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.
- EPA, 1999, Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington.
- EPA, 2006, *Integrated Risk Information System (IRIS)*, U.S. Environmental Protection Agency, Washington, D.C., available at http://www.epa.gov/iris>
- Feist, E.T., 2005 100-FR-1 Operable Unit Remaining Site for Remediation, CCN 118408, E. T. Feist to R. A. Carlson, Bechtel Hanford, Inc., Richland, Washington.
- GE, 1954, Outside Lines Sewers, 100F Area, Hanford Works, M-1904-F, sheet 5, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Richland, Washington.
- GE, 1962, *Process Effluent Systems Plan & Profile*, H-1-70185, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Richland, Washington.
- HEW, 1944, *Buildings No. 105-F & No. 115-F Plot Plan*, W-73174, Hanford Engineer Works, Wilmington, Delaware.
- WAC 173-340, 1996, "Model Toxics Control Act -- Cleanup," Washington Administrative Code.
- WCH, 2007a, Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils, CVP-2007-0004, Washington Closure Hanford, Richland, Washington.

- WCH, 2007b, 100-F Remedial Sampling, Logbook ELF-1174-3, pp. 37, 40-47, and 60-61, Washington Closure Hanford, Richland, Washington.
- WDOH, 1997, State of Washington Department of Health Interim Regulatory Guidance: Hanford Guidance for Radiological Cleanup, WDOH/320-015, Rev. 1, Washington Department of Health, Richland, Washington.
- WHC, 1993a, 100-F Reactor Site Technical Baseline Report Including Operable Units 100-FR-1 and 100-FR-2, WHC-SD-EN-TI-169, Rev. 0, Westinghouse Hanford Company, Richland, Washington
- WHC, 1993b, Field Logbook: 100-Area Excavation Treatability Test, 116-F-4, 100-FR-1, EFL-1107, Westinghouse Hanford Company, Richland, Washington.

APPENDIX A REMEDIATION PHOTOGRAPHS

Removing overburden at 100-F-26:14 waste site. (Looking northeast; west side of 105-F Bldg. visible.)

Removing overburden at 100-F-26:14/118-F-8:4 waste sites. (Looking east; west side of 105-F Bldg. visible.)

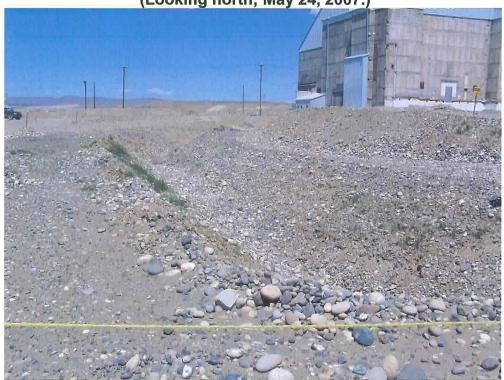
Excavating the 118-F-8:4 waste site. (Looking east; south side of 105-F Bldg. visible.)

Excavating pipe encased in concrete. (Looking southwest; near bottom of 118-F-8:4 waste site.)

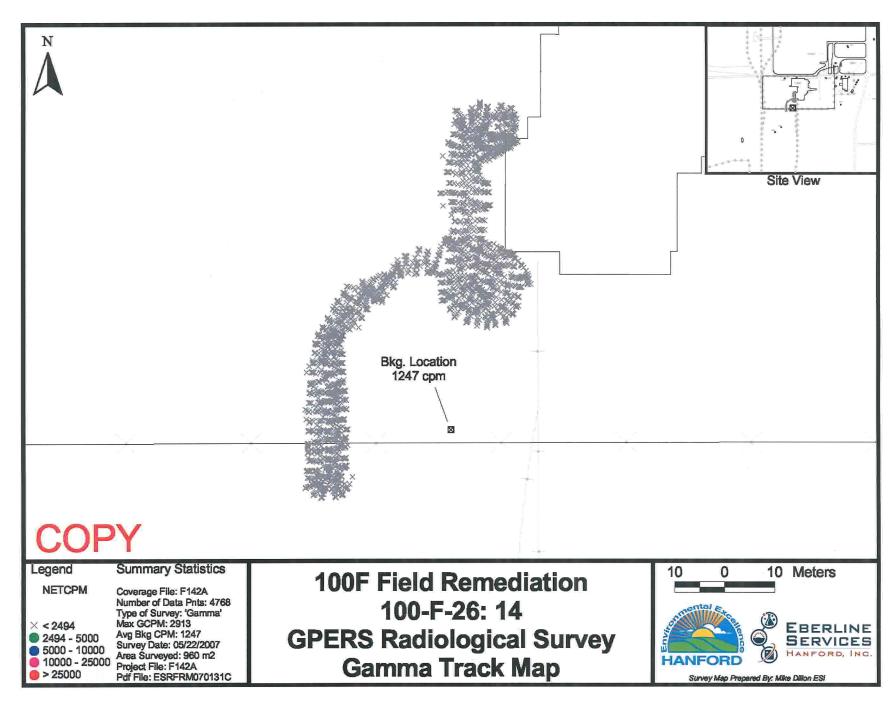
Excavating pipe encased in concrete. (Looking east; near bottom of 118-F-8:4 waste site.)

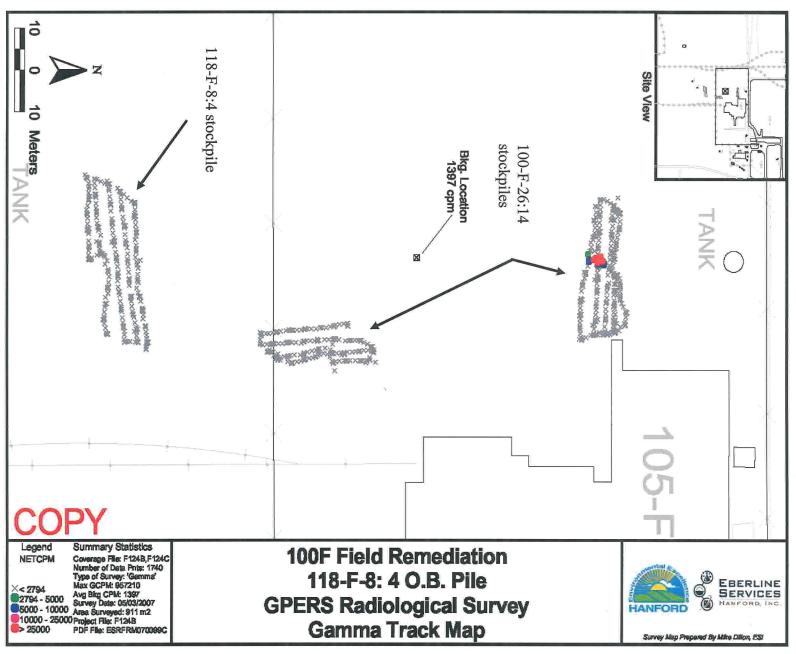
Excavating pipe encased in concrete. (Looking south; former water tower foundation in foreground.)

Excavating pipe encased in concrete.
(Looking south.)


Excavation of pipe encased in concrete. (Looking southeast; former water tower foundation to the right.)

100-F-26:14/118-F-8:4 waste sites. (Looking northeast; May 24, 2007.)


Southern half of 100-F-26:14 waste site. (Looking north; May 24, 2007.)


100-F-26:14 waste site backfill. (Looking southeast; October 16, 2007.)

APPENDIX B POST-REMEDIATION RADIOLOGICAL SURVEYS

Attachment to Waste Site Reclassification Form 2007-029

APPENDIX C

100-F-26:14 PIPELINE SUBSITE VERIFICATION DATA SUMMARY TABLES

Table C-1. 100-F-26:14 Radionuclide Data Results.

Attachment 1. 100-F-26:14 Verification Sampling Results.

Sample	HEIS	Sample	Americ	um-2	41 GEA	Ba	rium	-133	Ces	ium-	137	Co	balt	-60	Euro	pium	-152
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
OB A-1	J15FF4	8/21/07	0.263	U	0.263	0.085	U	0.085	1.96		0.076	0.252	П	0.074	1.36		0.185
OB A-2	J15BV3	8/8/07	0.143	U	0.143	0.029	U	0.029	0.521		0.027	0.043		0.021	0.527		0.058
OB A-3	J15BV4	8/8/07	0.133	U	0.133	0.060	U	0.060	0.410		0.042	0.040	U	0.040	0.576		0.091
OB A-4	J15FF5	8/21/07	0.073	U	0.073	0.082	U	0.082	0.090		0.083	0.087	U	0.087	0.210	U	0.210
SZ A-1	J15BV6	8/9/07	0.277	U	0.277	0.041	U	0.041	0.118		0.035	0.043	U	0.043	0.113		0.086
SZ A-2	J15BV7	8/9/07	0.307	U	0.307	0.044	U	0.044	0.263		0.044	0.055		0.043	0.525		0.105
SZ A-3	J15BV8	8/9/07	0.145	U	0.145	0.029	U	0.029	0.076		0.027	0.022	U	0.022	0.062	U	0.062
SZ A-3 Dup	J15BV9	8/9/07	0.120	U	0.120	0.055	U	0.055	0.085		0.035	0.036	U	0.036	0.102	U	0.102
SZ A-3 Split	J15BW2	8/9/07				-0.004	U	0.014	0.081		0.016	0.008	U	0.016	0.012	U	0.036
SZ A-4	J15BW0	8/9/07	0.043	U	0.043	0.027	U	0.027	0.061		0.030	0.089		0.031	0.058	U	0.058

Sample	HEIS	Sample	Eur	opiun	ı-154	Eur	opiur	n-155	Ni	ckel-	63	Pota	ssiu	m-40	Rad	lium-	226
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
OB A-1	J15FF4	8/21/07	0.247	U	0.247	0.174	U	0.174	9.62		3.19	12.1		0.720	0.405		0.157
OB A-2	J15BV3	8/8/07	0.076	U	0.076	0.082	U	0.082	1.97	U	3.25	13.3		0.234	0.407		0.044
OB A-3	J15BV4	8/8/07	0.132	U	0.132	0.185	U	0.185	1.26	U	3.33	15.0	П	0.264	0.464		0.064
OB A-4	J15FF5	8/21/07	0.242	U	0.242	0.157	U	0.157	2.50	U	3.24	6.34		0.700	0.246		0.150
SZ A-1	J15BV6	8/9/07	0.124	U	0.124	0.103	U	0.103	0.128	U	3.60	14.4	П	0.332	0.413	T	0.074
SZ A-2	J15BV7	8/9/07	0.135	U	0.135	0.117	U	0.117	3.24	U	3.50	13.3	П	0.360	0.433		0.085
SZ A-3	J15BV8	8/9/07	0.075	U	0.075	0.083	U	0.083	-0.310	U	3.73	13.4	П	0.245	0.484		0.043
SZ A-3 Dup	J15BV9	8/9/07	0.127	U	0.127	0.094	U	0.094	-0.286	U	3.44	13.4		0.369	0.416		0.054
SZ A-3 Split	J15BW2	8/9/07	0.010	U	0.052	0.014	U	0.039	-0.293	U	6.28		П				
SZ A-4	J15BW0	8/9/07	0.077	U	0.077	0.064	U	0.064	1.45	U	3.38	14.6		0.199	0.414		0.043

Sample	HEIS	Sample	Rac	dium-	228	Silver-1	08 m	etastable	Thoriu	m-22	8 GEA	Thoriu	m-2	32 GEA	Stro	ntiun	n-90
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
OB A-1	J15FF4	8/21/07	0.980	U	0.980	0.063	U	0.063	0.325		0.145	0.980	Ū	0.980	0.373		0.214
OB A-2	J15BV3	8/8/07	0.594		0.098	0.018	U	0.018	0.625		0.032	0.594		0.098	0.153	U	0.246
OB A-3	J15BV4	8/8/07	0.832		0.160	0.031	U	0.031	0.942		0.084	0.832		0.160	0.186		0.179
OB A-4	J15FF5	8/21/07	0.292		0.266	0.056	U	0.056	0.431		0.101	0.292		0.266	0.006	U	0.226
SZ A-1	J15BV6	8/9/07	0.753		0.146	0.026	U	0.026	0.619		0.046	0.753		0.146	-0.005	U	0.200
SZ A-2	J15BV7	8/9/07	0.590		0.176	0.030	U	0.030	0.645		0.054	0.590		0.176	0.148	U	0.263
SZ A-3	J15BV8	8/9/07	0.609		0.108	0.017	U	0.017	0.599		0.034	0.609		0.108	-0.097	U	0.302
SZ A-3 Dup	J15BV9	8/9/07	0.660		0.128	0.027	U	0.027	0.779		0.056	0.660		0.128	0.019	U	0.220
SZ A-3 Split	J15BW2	8/9/07				-0.003	U	0.011							-0.021	U	0.154
SZ A-4	J15BW0	8/9/07	0.708		0.092	0.018	U	0.018	0.646		0.028	0.708		0.092	0.006	U	0.269

Sample	HEIS	Sample	Uraniı	ım-23	5 GEA	Urani	ım-2	38 GEA
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA
OB A-1	J15FF4	8/21/07	0.270	U	0.270	9.43	U	9.43
OB A-2	J15BV3	8/8/07	0.109	U	0.109	2.83	U	2.83
OB A-3	J15BV4	8/8/07	0.186	U	0.186	4.66	U	4.66
OB A-4	J15FF5	8/21/07	0.270	U	0.270	9.14	U	9.14
SZ A-1	J15BV6	8/9/07	0.149	U	0.149	4.01	U	4.01
SZ A-2	J15BV7	8/9/07	0.169	U	0.169	4.53	U	4.53
SZ A-3	J15BV8	8/9/07	0.162	U	0.162	2.80	U	2.80
SZ A-3 Dup	J15BV9	8/9/07	0.148	U	0.148	4.36	U	4.36
SZ A-3 Split	J15BW2	8/9/07						
SZ A-4	J15BW0	8/9/07	0.105	U	0.105	2.90	U	2.90

Note: Data qualified with B, C, D and/or J, are considered acceptable values.

GEA = gamma energy analysis PQL = practical quantitation limit

HEIS = Hanford Environmental Information System Q = qualifierMDA = minimum detectable activity U = undetected

Table C-2. 100-F-26:14 Inorganic Data Results. (2 Pages)

Attachment 1. 100-F-26:14 Verification Sampling Results.

Sample	HEIS	Sample	Al	umin	ım	A	ntim	ony	2	Arseni	С	В	ariu	m	Be	rylliu	ım
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
OB A-1	J15FF4	8/21/07	5460	С	4.9	0.65	U	0.65	3.1		1.2	56.5	C	0.06	0.03	U	0.03
OB A-2	J15BV3	8/8/07	4960		4.8	0.63	U	0.63	2.5		1.2	61.7	C	0.06	0.03	U	0.03
OB A-3	J15BV4	8/8/07	6100		5.0	0.66	U	0.66	2.6		1.2	63.5	С	0.06	0.03	U	0.03
OB A-4	J15FF5	8/21/07	6750	С	4.9	0.65	U	0.65	2.5		1.2	105	C	0.06	0.21	С	0.03
SZ A-1	J15BV6	8/9/07	5740	С	4.9	0.65	UJ	0.65	2.0		1.2	55.8	С	0.06	0.20		0.03
SZ A-2	J15BV7	8/9/07	5850	С	4.8	0.69	J	0.63	3.1		1.2	58.5	С	0.06	0.20		0.03
SZ A-3	J15BV8	8/9/07	6920	С	5.0	0.83	J	0.66	1.8		1.2	216	C	0.06	0.33		0.03
SZ A-3 Dup	J15BV9	8/9/07	2430	С	4.8	0.79	J	0.64	1.2	U	1.2	32.6	C	0.06	0.08		0.03
SZ A-3 Split	J15BW2	8/9/07	6510		5.1	1.4	В	1.0	1.8	В	0.5	67.9		0.46	0.25	В	0.14
SZ A-4	J15BW0	8/9/07	4310	С	4.8	0.63	UJ	0.63	2.4		1.2	49.0	C	0.06	0.16		0.03

Sample	HEIS	Sample		Boror	1	C	admi	um		Calciur	n	Chrom	ium	(total)	Hexavale	nt Ch	romium
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
OB A-1	J15FF4	8/21/07	1.2	С	1.1	0.15	U	0.15	5250		2.1	7.6	C	0.29	0.21	U	0.20
OB A-2	J15BV3	8/8/07	1.0	U	1.0	0.16		0.14	4060	С	2.0	7.5	C	0.29	0.20	U	0.20
OB A-3	J15BV4	8/8/07	1.1	U	1.1	0.19		0.15	5620	С	2.1	9.2	C	0.30	0.20	U	0.20
OB A-4	J15FF5	8/21/07	13.5	С	1.1	0.15	U	0.15	6200		2.1	9.7	С	0.30	0.20	U	0.20
SZ A-1	J15BV6	8/9/07	1.1	П	1.1	0.15	U	0.15	6260	С	2.1	9.1	C	0.30	0.32		0.20
SZ A-2	J15BV7	8/9/07	1.6		1.0	0.14	U	0.14	4230	С	2.0	9.5	С	0.29	0.25		0.20
SZ A-3	J15BV8	8/9/07	31.6		1.1	0.15	U	0.15	7630	С	2.1	8.0	С	0.30	0.28		0.20
SZ A-3 Dup	J15BV9	8/9/07	1.0	U	1.0	0.14	U	0.14	1690	С	2.1	4.2	C	0.29	0.50		0.20
SZ A-3 Split	J15BW2	8/9/07	13.6	В	3.0	0.12	U	0.12	4970		60.2	9.4		0.45	0.35	U	0.35
SZ A-4	J15BW0	8/9/07	1.3		1.0	0.14	U	0.14	3000	С	2.0	6.9	C	0.29	0.36		0.20

Sample	HEIS	Sample	(Cobal	t	(Сорр	er		Iron]	Lead	i	Ma	gnesi	um
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
OB A-1	J15FF4	8/21/07	5.6		0.24	12.2		0.26	14100	C	7.0	3.7		0.97	3440	С	2.4
OB A-2	J15BV3	8/8/07	6.2		0.23	12.6	С	0.26	15900	С	6.9	4.2		0.95	3410	С	2.3
OB A-3	J15BV4	8/8/07	6.8		0.24	13.9	С	0.27	18100	С	7.1	20.4		0.98	4030	С	2.4
OB A-4	J15FF5	8/21/07	5.7		0.24	15.3		0.27	14400	С	7.1	5.9		0.98	3660	C	2.4
SZ A-1	J15BV6	8/9/07	6.0	C	0.24	12.5		0.27	15400	С	7.1	5.9		0.98	3670	С	2.4
SZ A-2	J15BV7	8/9/07	6.6	С	0.23	12.5		0.26	16700	С	6.8	4.8		0.95	3820	С	2.3
SZ A-3	J15BV8	8/9/07	6.0	С	0.24	13.2		0.27	13000	С	7.1	4.1		0.98	3820	С	2.4
SZ A-3 Dup	J15BV9	8/9/07	2.7	С	0.23	5.4		0.26	6500	С	6.9	1.9		0.95	1720	С	2.3
SZ A-3 Split	J15BW2	8/9/07	7.4	В	0.46	11.3		0.80	15600		7.5	5.8	П	0.60	3760		18
SZ A-4	J15BW0	8/9/07	5.0	С	0.23	11.1		0.26	11000	С	6.8	2.6		0.94	3000	С	2.3

Sample	HEIS	Sample	Ma	ngan	ese	N	1ercı	ıry	Mo	lybder	num	N	lick	el	Po	tassiı	ım
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
OB A-1	J15FF4	8/21/07	266	С	0.21	0.07		0.01	0.56	C	0.47	9.3	С	0.79	997	C	9.4
OB A-2	J15BV3	8/8/07	297		0.20	0.03		0.01	0.46	U	0.46	9.1		0.77	974	С	9.2
OB A-3	J15BV4	8/8/07	298		0.21	0.05		0.01	0.48	U	0.48	10.1		0.81	1120	С	9.5
OB A-4	J15FF5	8/21/07	270	С	0.21	0.03		0.02	0.47	U	0.47	10.4	С	0.80	1090	С	9.5
SZ A-1	J15BV6	8/9/07	251		0.21	0.02		0.02	0.47	U	0.47	9.8		0.80	912	C	9.5
SZ A-2	J15BV7	8/9/07	291		0.20	0.01	IJ	0.01	0.46	U	0.46	10.0		0.77	1060	С	9.2
SZ A-3	J15BV8	8/9/07	228		0.21	0.01	U	0.01	0.51		0.48	9.5		0.81	815	C	9.5
SZ A-3 Dup	J15BV9	8/9/07	118		0.20	0.01	U	0.01	0.46	U	0.46	4.2		0.78	364	С	9.3
SZ A-3 Split	J15BW2	8/9/07	246		0.08	0.01	U	0.01	1.8	U	1.80	9.0		2.30	1090		151
SZ A-4	J15BW0	8/9/07	200		0.20	0.01	U	0.01	0.46	U	0.46	8.1		0.77	700	C	9.2

Table C-2. 100-F-26:14 Inorganic Data Results. (2 Pages)

Attachment 1. 100-F-26:14 Verification Sampling Results.

Sample	HEIS	Sample	S	eleniu	m		Silico	n		Silver		Se	odiu	m	Va	nadiı	ım
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
OB A-1	J15FF4	8/21/07	1.3	U	1.3	3710		2.5	0.26	U	0.26	224	C	2.1	34.6		0.24
OB A-2	J15BV3	8/8/07	1.2	U	1.2	1190	С	2.5	0.26	U	0.26	126	С	2.0	36.9		0.23
OB A-3	J15BV4	8/8/07	1.3	U	1.3	824	С	2.6	0.27	U	0.27	155	С	2.1	42.4		0.24
OB A-4	J15FF5	8/21/07	1.3	U	1.3	2490		2.5	0.27	U	0.27	227	С	2.1	36.1		0.24
SZ A-1	J15BV6	8/9/07	1.3	U	1.3	578	CJ	2.5	0.27	U	0.27	211	С	2.1	39.7	CJ	0.24
SZ A-2	J15BV7	8/9/07	1.2	U	1.2	880	CJ	2.5	0.26	U	0.26	170	C	2.0	40.2	CJ	0.23
SZ A-3	J15BV8	8/9/07	1.3	U	1.3	1610	CJ	2.6	0.27	U	0.27	481	C	2.1	34.2	CJ	0.24
SZ A-3 Dup	J15BV9	8/9/07	1.2	U	1.2	923	CJ	2.5	0.26	U	0.26	90.6	C	2.0	15.8	CJ	0.23
SZ A-3 Split	J15BW2	8/9/07	0.9	U	0.9	412		18.1	0.73	U	0.73	157		12.0	37.1		1.10
SZ A-4	J15BW0	8/9/07	1.2	U	1.2	932	CJ	2.5	0.26	U	0.26	130	C	2.0	25.1	CJ	0.23

Sample	HEIS	Sample		Zinc	
Location	Number	Date	mg/kg	Q	PQL
OB A-1	J15FF4	8/21/07	38.9	С	0.12
OB A-2	J15BV3	8/8/07	33.3	С	0.11
OB A-3	J15BV4	8/8/07	38.2	С	0.12
OB A-4	J15FF5	8/21/07	36.0	С	0.12
SZ A-1	J15BV6	8/9/07	35.3	С	0.12
SZ A-2	J15BV7	8/9/07	35.9	С	0.11
SZ A-3	J15BV8	8/9/07	29.1	С	0.12
SZ A-3 Dup	J15BV9	8/9/07	16.6	С	0.12
SZ A-3 Split	J15BW2	8/9/07	37.5		3.00
SZ A-4	J15BW0	8/9/07	27.7	С	0.11

Note: Data qualified with B, C, D and/or J, are considered acceptable values.

B = estimated result MDA = minimum detectable activity C = blank contamination PQL = practical quantitation limit

GEA = gamma energy analysis Q = qualifier HEIS = Hanford Environmental Information System U = undetected

APPENDIX D

CALCULATION BRIEFS

APPENDIX D

CALCULATION BRIEFS

The calculations in this appendix are kept in the active Washington Closure Hanford project files and are available upon request. When the project is completed, the file will be stored in a U.S. Department of Energy, Richland Operations Office repository. These calculations have been prepared in accordance with ENG-1, *Engineering Services*, ENG-1-4.5, "Project Calculation," Washington Closure Hanford, Richland, Washington. The following calculations are provided in this appendix:

100-F-26:14 Shallow Zone and Overburden Sampling Plan, Calculation No. 0100F-CA-V0309, Rev. 0.

100-F-26:14 Pipeline Shallow Zone Variance Calculation, Calculation No. 0100F-CA-V0297, Rev. 0.

100-F-26:14 Pipeline BCL Stockpile Variance Calculation, Calculation No. 0100F-CA-V0298, Rev. 0.

100-F-26:14 Pipelines Cleanup Verification 95% UCL Calculation, Calculation No. 0100F-CA-V0305, Rev. 1

100-F-26:14 Pipelines Hazard Quotient and Carcinogenic Risk Calculations, Calculation No. 0100F-CA-V0311, Rev. 0.

100-F-26:14 116-F5 Influent Pipelines Cleanup Verification RESRAD Calculation Brief, Calculation No. 0100F-CA-V0312, Rev. 0.

DISCLAIMER FOR CALCULATIONS

The calculation that is provided in this appendix has been generated to document compliance with established cleanup levels. This calculation should be used in conjunction with other relevant documents in the administrative record.

Acrobat 8.0

CALCULATION COVER SHEET

Project '	Title: 100-F-26:14	Pipeline Sample	e Design		Job No.	14655
Area:	100-F					
Disciplin	e: Environmenta	I Engineering	*Calo	culation No: _010	00F-CA-V0309	
Subject:	Shallow Zone a	and Overburden S	Sampling Plan	····		
Compute		cel, Autodesk Wo d Autodesk Land ap		Excel 20 No: 2004	03, World R2, an	d Land Map
The	attached calculations ha should be	ave been generated to used in conjunction v	o document complian with other relevant do	ce with established cl cuments in the admin	eanup levels. These istrative record.	calculations
	ed Calculation		eliminary 🗌	Superseded	☐ Vo	ided 🗌
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date
0	Total = 7 Shts	9-26-07	C.A. Bentz 9/27/07	N/A	S.W. Callison	10-2-07
***************************************						•
		SUMN	MARY OF R	EVISION		
			W110 F A 444			
				······································		···

WCH-DE-018 (05/08/2007)

*Obtain Calc. No. from Document Control and Form from Intranet

Washingto	on Closur	e Hanford	•	CALCULATIO	N SHEET				
	1 //								
Originator	G. Cruz		Date	9/26/2007 mple Design burden Sampling Plan	Calc. No.	0100F-C	A-V0309	Rev. No.	0
Project	100-F-26	:14 Pipeli	ine Sa	mple Design	Job No.	14655	Checked	all	Date 9/27/0-
Subject	Shallow	Zone and	d Over	burden Sampling Plan			•	Sheet No.	- <i>) j - 2 j O j</i> - 1 of 2
•								. Onect No.	1012
									
Problem:				sampling nodes in concurren	ce with 100 A	rea			
2	SAP DOE	RL-96-22 R	ev. 4 fo	r verification and closure.					
Given:	SAD (DOI	=/DI 06 22	Pov. 4	and IG (0100X-IG-G0001 Rev.	5)	<u></u>			
Given.	-Shallow S	ampling Are	22 (Surf	ace area of each zone determi	. 5) requireme	ents	Man	<u></u>	<u> </u>
3	Attachmen	t 3 Sht 1 of	2 CAL) file 1F:092707A, 100-F-26:14	Pineline Sha	llow Zone S	wap program	1,	
,			2, 0, 12	1110 11 10027077, 100-1-20.14	i ipeline one	IIIOW ZONE S	amping Flai		
3	-Overburde	en Sampling	Area (S	Surface area of each zone dete	ermined from	Autodesk I	and Map proc	ıram	
9	Attachmen	t 3, Sht 2 of	2, CAD) file 1F:092707B, 100-F-26:14	Pipeline Ove	rburden Sa	mpling Plan)		
							[
2	<u> </u>	L							
Sample Desi			L	<u> </u>					
Snallow Zone				grid for the sampling area	1	<u> </u>			
				letermine which six of the sixte up verification samples	en will be sar	npled			
,	to conect v	anance and	Clean	p vernication samples					
Overburden:	-Develop a	16 node sa	mplina	grid for the sampling area	 				<u> </u>
				letermine which six of the sixte	en will be sar	npled			
	to collect v	ariance and	clean u	p verification samples	T	1			
1									
Deep Zone:				grid for the sampling area					
3	-Use appe	ndix A of the	IG to d	letermine which four of the sixt	een will be sa	ampled			
1	to collect v	ariance/veri	fication	samples					
Determination	n of Challe	Zono So		Cald					
Determination	on Shane	JW Zone Sa	mpiing	Gria:					
Shallow Zone	Sampling	Grid Area de	etermine	ed from Table 5-1, IG		ļ			
Attachment 2	. Number o	f Decision S	Subunits	Based on Area (Converted to	Sa Meters)				
Total Area:						655.06	m ²		
Area of Decis	ion Subunit	is (total area	1 subu	init)		655.06			
3				1		1			
Decision Sub	unit divided	into 4 Sam	pling Ar	eas:		163.76	m²		
5									
Sampling Are	as divided i	into a 16 no	de grid ((node numbers 1-16):		10.23	m ²		
7									
Nodes to be S	Sampled (a	s determine	d from A	Attachment 1, Table A-1, Samp	ole Grid Point	Lookup Tal	ole)		
·				100-F-26:14 Pipeline Shallow	Zone Samplir	ng Plan,			
	tor Sample	Location Ta	able						
					-				
1					 				
L		<u> </u>		I		L			1

E	Washington Closure Hanford				CALCULATION SHEET						
		<i>) [</i>									
	Originator			Date	9/26/2007	_Calc. No.	0100F-C	A-V0309	Rev. No.	0	
	Project	100-F-26	:14 Pipel	ine Sar	nple Design ourden Sampling Plan	Job No.	14655	Checked	COR	Date	9/27/07
	Subject	Shallow	Zone and	l Overb	ourden Sampling Plan				Sheet No.	2 of 2	
									•		
1											T
3		n of Overh	urdon Com	nlina C	u!.d.						
4											
5	Overburden S	Sampling Gr	id Area dete	ermined	from Table 5-1, IG						-
6 7	Attachment 2	, Number of	Decision S	ubunits	Based on Area (Converted to	Sq Meters)					
	Total Area:						788.82	m ²			
9		ion Subunit	s (total area	1 subur	l		788.82				
10						<u> </u>	700.02	111			
11	Decision Sub	units divided	d into 4 San	npling Ar	eas:		197.21	m ²			
12			-1 10					3			
13 14	Sampling Are	as divided i	nto a 16 no	de grid (i	node numbers 1-16):		12.33	m ⁴			
15	Nodes to be S	Sampled (as	determine	d from A	ttachment 1, Table A-1, Samp	le Grid Point	Lookup Tal	ole)			
16		See Attach	ment 3, Sht	t 2 of 2,	100-F-26:14 Pipeline Overburd	len Sampling	Plan,				
17 18		for Sample	Location T	able			ļ	****			
19											-
20											+
21											
22	ļ										
24											-
25											
26											
27 28											
29											
30											
31 32											
33											
34											
35											
36 37								*****			
38											
39											
40 41											
41											
43								***************************************			
44								***************************************			
45 46											
47											

Washington Closure Hanford

Originator

G. Cruz Date

Calc. No. 0100F-CA-V0309 Rev. No. 0

Project

100-F-26:14 Pipeline Sample Design

Job No. 14655 Checked OB Date 9/27

Subject

Shallow Zone and Overburden Sampling Plan

9/26/2007

1 ATTACHMENT 1

3 Sample Grid Point Lookup Table.

4	
5	
۲,	

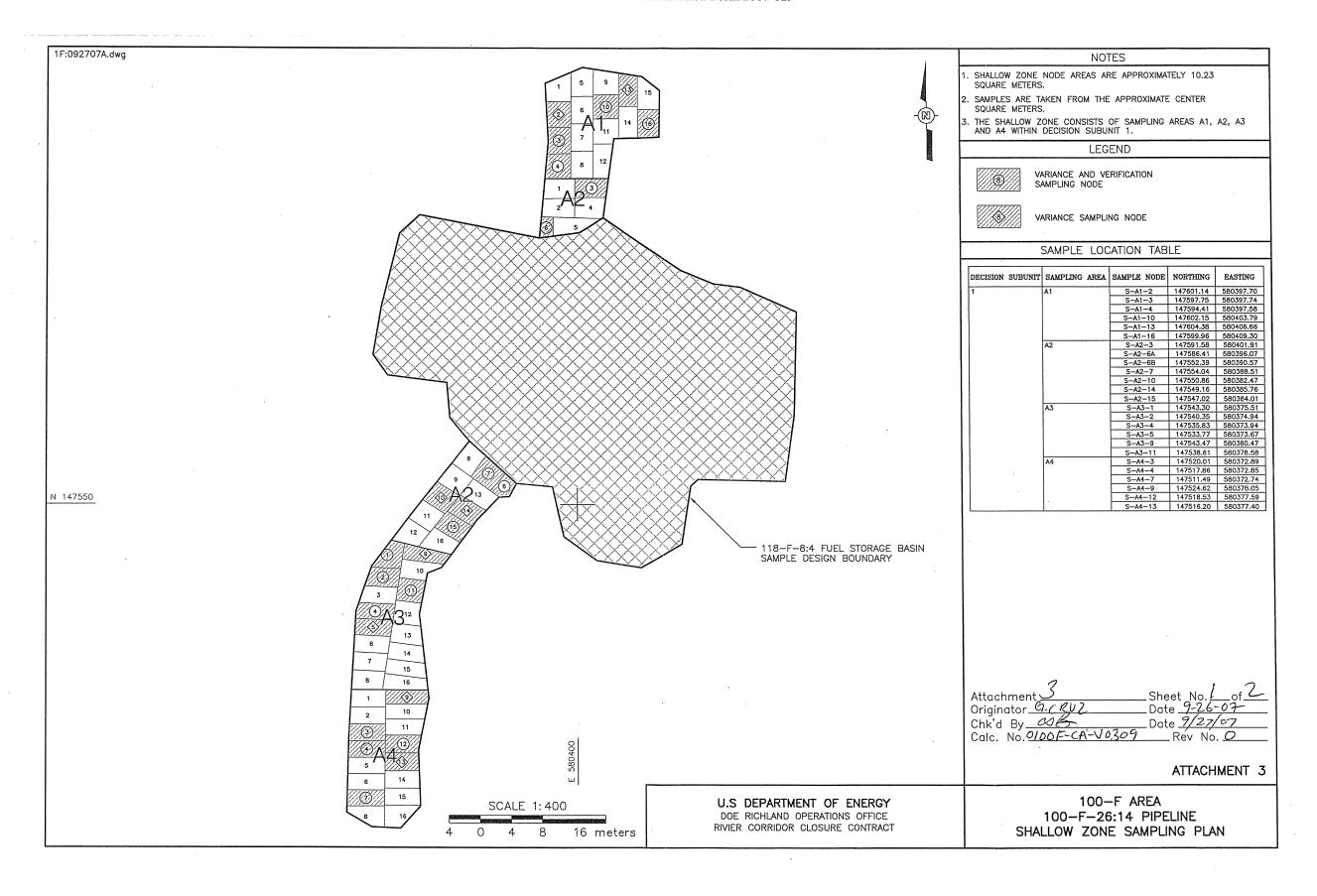
6	Default Plan	Sampling Area 1	Sampling Area 2	Sampling Area 3	Sampling Area 4	Sampling Area 5	Sampling Area 6	Sampling Area 7	Sampling Area 8	Sampling Area 9	Sampling Area 10
7	Variance/Verification	3	6	1	4	5	1	3	3	4	16
8	Variance/Verification	4	7	11	3	15	15	5	13	10	10
9	Variance/Verification	16	3	2	7	7	10	11	4	3	14
10	Variance/Verification	10	15	4	12	1	13	4	8	16	4
11	Variance	2	14	5	9	13	12	8	2	14	8
12	Variance	13	10	9	13	2	16	1	12	5	3
13	Not Sampling	6	1	10	8	14	4	16	5	8	6
14	Not Sampling	1	9	13	1	10	5	12	1	1	15
15	Not Sampling	9	12	7	5	6	2	· 6	7	15	9
16	Not Sampling	15	16	15	14	16	6	2	15	11	1
17	Not Sampling	8	13	8	10	12	11	13	14	2	12
18	Not Sampling	5	2	3	11	4	3	9	10	7	11
19	Not Sampling	7	11	14	15	11	14	14	6	13	2
20	Not Sampling	11	4	6	2	9	7	7	11	9	7
21	Not Sampling	12	8	16	16	3	8	15	9	6	13
22	Not Sampling	14	5	12	6	8	9	10	16	12	5

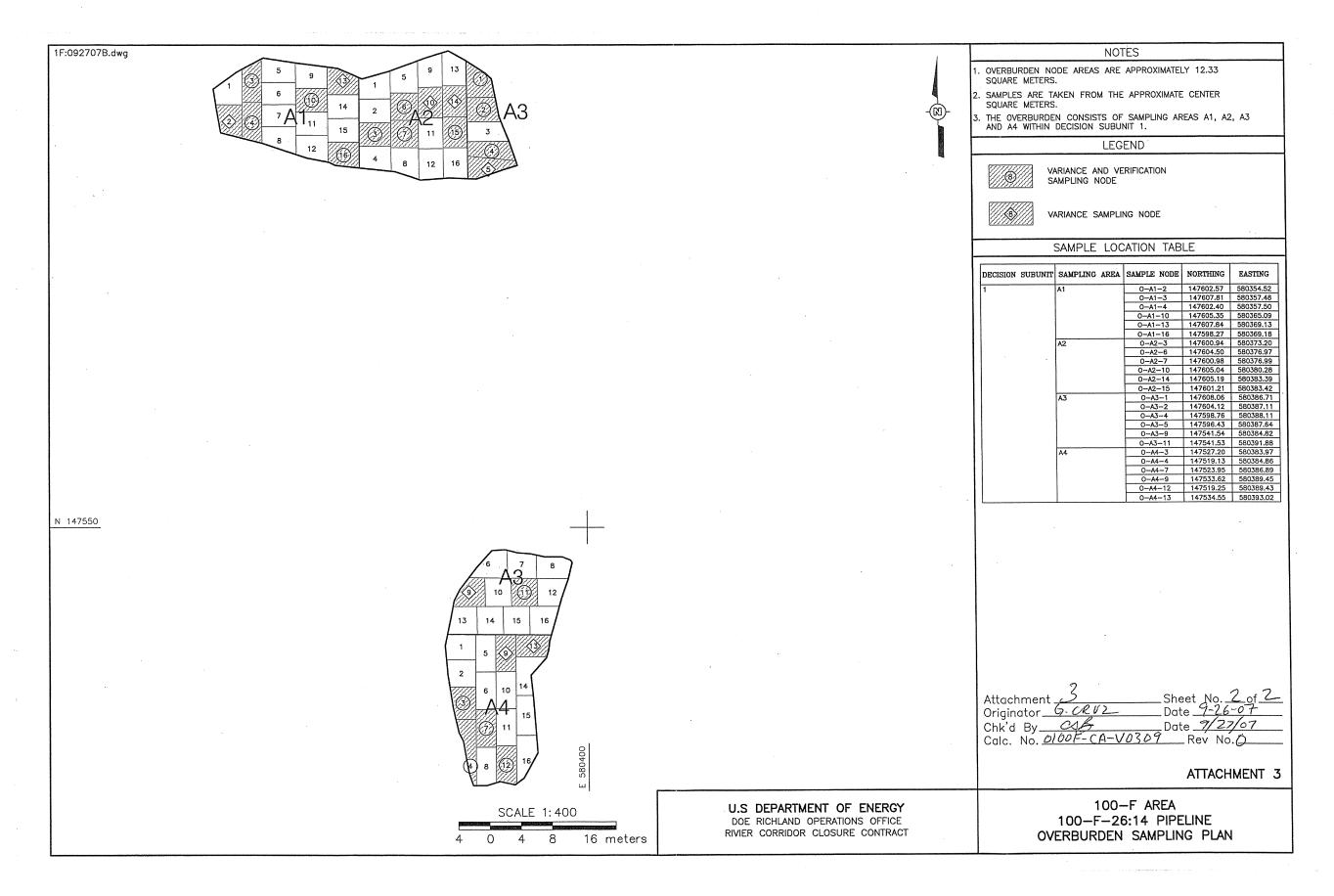
^{**} Note: Grid nodes for each sampling area in each waste site should be numbered consistently, e.g., begin numbering the nodes in the northwestern-most node, then number consecutively left to right.

25

26 27 28

35 36 37


38


Washingt	on Closure Hanford	1							
Originator	G. Cruz	Date	9/26/2007	_Calc. No.	0100F-C	A-V0309	Rev. No.	0	, ,
Project	100-F-26:14 Pipel	ine Sa	mple Design	_Job No.	14655	Checked	OB	Date	927/07
Subject	Shallow Zone and	l Over	burden Sampling Plan				Sheet No.	1 of 1	

1 ATTACHMENT 2

3 Number of Decision Subunits Based on Area.

6	Area of Primary Decision Unit (m2)	Number of Subunits
7	<1,394	1
8	>1,394 to <2,326	2
9	>2,326 to <3,256	3
10	>3,256 to <4,186	4
11	>4,186 to <9,303	2
12	>9,303 to <13,024	3
13	>13,024 to <16,745	4
14	>16,745 to <20,466	5
15	>20,466	ROUNDa (Area/3,720)
16 a ROUND is an i	nteger rounding function.	
17		

	CALCULATION COVER SHEET										
Project	Title 100 F	Area Remedial /	Action		Job No.	14655					
Area	100 F										
Disciplin	ne Environme	ental	•	Calc. No.	100F-CA-V0297	7					
Subject	Subject 100-F-26:14 Pipeline Shallow Zone Variance Calculation										
Compu	ter Program	MS Excel	Program	No. Excel	2003						
The attache	ed calculations have conjunction with othe	been generated to do er relevant documents	ocument compliance v in the administrative	vith established cle record.	eanup levels. These c	alculations should					
Commi	tted Calculatio	n 🛛 Pre	liminary 🗌	Supersede	ed 🗌 V	oided 🗌					
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date					
0	3	J. R. DeBuigne	R.T. Coffman RTCoffmar	N/A	S.W. Callison	9-25-07					
			<i>,</i> ,								
		SU	MMARY OF RE	EVISION							
WCH-DE-0	18 (04/14/2006)			*Obtain Calc.	No. from R&DC and I	Form from Intranet					

Washington Closure Hanford

Originator R. T. Coffman Date 9/11/2007 Calc. No. 0100F-CA-V0297 Rev. No. 0
Project 100-F Remedial Action Job No. 14655 Checked R. T. Coffman Date 9/25/07
Subject 100-F-26:14 Pipeline Shallow Zone Variance Calculation Sheet No. 1 of 2

1 Conclusion:

The required number of samples calculated (1sample) for each decision sub-unit is less than the default number (4 samples) specified in the DOE/RL-96-22, Rev 4. Therefore, the default number of samples will be collected from each shallow zone decision sub-unit.

6 Problem:

Calculate the number of close out samples required for 100-F-26:14 Pipeline Shallow Zone Decision Unit verification sampling as required in "100 Area Remedial Action Sampling and Analysis Plan" (DOE/RL-96-22, Rev 4) and "Instruction Guide for the Remediation of 100 Areas Waste Sites" (0100X-IG-G0001, Rev 5).

Given:

10 11

- 12 1) Sample locations for the 100-F-26:14 Pipeline Shallow Zone Decision Unit are identified on the 100-F-26:14
 13 Shallow Zone and Stockpiling Soil, Soil Debris (BCL) Sampling Plan, Calculation number 0100F-CA-V0309, Rev.
 14 0.
- 15 2) Lookup values from DOE/RL-96-22, Rev 4.
- ¹⁶ 3) Sample Design requirements from DOE/RL-96-22, Rev 4 and 0100X-IG-G0001, Rev 5.

Topic

(4) Field sampling information from sampling logbook EL-1174-3.

19 Solution:

Sheet No. Contents

Calculation methodology is described in Appendix A of DOE/RL-96-22, Rev 4. Data from attached worksheets are used to calculate the required number of closeout samples. Variance calculation is based on the same three isotopes used to develop the statistical approach in DOE/RL-96-22, Rev 4. The statistical design is based on the premise that these isotopes are the predominant components of the contamination and are representative of the contamination distribution.

25

20

	1	Calc. Summary	Summary of Calc Brief	-
	2	Shallow Zone	Required Number of Samples Calculation	
1				
ı				

Subject

CALCULATION SHEET

Washington Closure Hanford

Originator R. T. Coffman 100-F Remedial Action Project

9/11/2007 Calc. No. Date Job No. 14655 Checked 100-F-26:14 Pipeline Shallow Zone Variance Calculation

0100F-CA-V0297

Rev. No. Date Sheet No.

¹ Statistical Evaluation of Analytical Data

- 3 The required number of samples resulting from the calculation is highlighted at the bottom of the page.
- ⁴ Each value is reflective of the specific analyte evaluated.
- ⁵ The highest value of the three evaluations is used to determine the required number of samples as compared
- 6 against the default of four.
- ⁷ Sample locations are from Calculation 0100F-CA-V0309.
- ${\tt 8}$ Mean, Standard Deviation, t, and Number of Samples formulas are from DOE/RL-96-22, Appendix A.
- 11 Decision Unit: 100-F-26:14 Pipeline Shallow Zone Variance Calculation
- 12 Samples values from GEA analysis

13	Sample Areas	A1 thru A4			С	onstituent			
14	Sample #	Sample Date	Location	Cobalt-60	Q	Cs-137	Q	Europium-152	Q
15				pCi/g		pCi/g		pCi/g	
16	Look-up Value	e (HT) ========	======>	1.4	113	6.2	ļi ir	3.3	
17	J15BP7	8/7/2007	S-A1-2	0.055	U	0.086		0.152	U
18	J15BP8	8/7/2007	S-A1-3	0.053	С	0.224		0.626	
19	J15BP9	8/7/2007	S-A1-4	0.042	С	0.069		0.113	U
20	J15BR0	8/7/2007	S-A1-10	0.032	С	0.042		0.1	U
21	J15BR1	8/7/2007	S-A1-13	0.051	С	0.054	U	0.146	U
22	J15BR2	8/7/2007	S-A1-16	0.053	С	0.098		0.122	U
23	J15BR3	8/7/2007	S-A2-3	0.067		0.48		0.789	
24	J15BR4	8/7/2007	S-A2-6A	0.039	U	0.129		0.124	U
	J15BR5	8/7/2007	S-A2-6B	0.076	U	0.202		0.18	U
25	J15BR6	8/7/2007	S-A2-7	0.06	U	0.073		0.16	U
26	J15BR7	8/7/2007	S-A2-10	0.067	U	0.069	U	0.159	U
27	J15BR8	8/7/2007	S-A2-14	0.044	U	0.046	U	0.114	U
28	J15BR9	8/7/2007	S-A2-15	0.05	U	0.066	U	0.122	U
29	J15BT0	8/7/2007	S-A3-1	0.041	U	0.17		0.106	U
30	J15BT1	8/7/2007	S-A3-2	0.046	U	0.047	U	0.13	U
31	J15BT2	8/7/2007	S-A3-4	0.05	U	0.063	U	0.139	U
32	J15BT3	8/7/2007	S-A3-5	0.053	U	0.05	U	0.123	U
33	J15BT4	8/7/2007	S-A3-9	0.044	U	0.122		0.122	U
34	J15BT5	8/7/2007	S-A3-11	0.037	U	0.078		0.113	U
35	J15BT6	8/7/2007	S-A4-3	0.061	U	0.08		0.161	Ü
36	J15BT7	8/7/2007	S-A4-4	0.079	U	0.076	C	0.156	U
37	J15BT8	8/7/2007	S-A4-7	0.108		0.184		0.13	U
38	J15BT9	8/7/2007	S-A4-9	0.045	U	0.049	U	0.1	U
39	J15BV0	8/7/2007	S-A4-12	0.041	U	0.071	U	0.1	U
40	J15BW3	8/7/2007	S-A4-13	0.053	U	0.13		0.145	U
41	Mean (LV) ===		====>	0.05		0.11		0.18	
	Standard Devia	0.02		0.09		0.16			
43	α (5%) =====	1.645		1.645		1.645			
44	β (20%) =====		0.842		0.842		0.842		
45	Number of Sai	mples =======	=====>	1		1		1	
46		·		· · · · · · · · · · · · · · · · · · ·		**************************************			

CALCULATION COVER SHEET												
Project	Title 100 F	Area Remedial	Action		Job No.	14655						
Area	100 F				-							
Discipli	Discipline Environmental *Calc. No. 0100F-CA-V0298											
Subjec	Subject 100-F-26:14 Pipeline BCL Stockpile Variance Calculation											
Compu	ter Program	MS Excel	Progran	No. Excel 2	2003							
The attach	ed calculations have conjunction with other	been generated to do er relevant documents	cument compliance versions in the administrative	vith established clear record.	anup levels. These ca	lculations should						
Commi	tted Calculatio	on 🛛 Pre	eliminary 🗌	Supersede	d 🗌 Vo	oided 🗌						
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date						
0	3	J. R. DeBuigne 9-25-07	R.T. Coffman 9/25/07	N/A	S.W. Callison	9-25-07						
			3 0									
		su	MMARY OF RE	EVISION								
WCH-DF-C	018 (04/14/2006)			*Ohtain Calo	No. from R&DC and F	orm from Intronet						

Washington Closure Hanford

Originator R. T. Coffman 9/11/2007 Calc. No. 0100F-CA-V0298 Rev. No. 0 Project 100-F Remedial Action Job No. 14655 Checked R. T. Coffman 9/25/0 Date 100-F-26:14 Pipeline BCL Stockpile Variance Calculation Subject Sheet No. of 2

1 Conclusion:

The required number of samples calculated (1sample) for each decision sub-unit is less than the default number (4 samples) specified in the DOE/RL-96-22, Rev 4. Therefore, the default number of samples will be collected from each shallow zone decision sub-unit.

Problem:

Calculate the number of close out samples required for 100-F-26:14 Pipeline BCL Stockpile Decision Unit verification sampling as required in "100 Area Remedial Action Sampling and Analysis Plan" (DOE/RL-96-22, Rev 4) and "Instruction Guide for the Remediation of 100 Areas Waste Sites" (0100X-IG-G0001, Rev 5).

Given:

10 11

18 19

24

- 12 1) Sample locations for the 100-F-26:14 Pipeline BCL Stockpile Decision Unit are identified on the 100-F-26:14
 13 Shallow Zone and Stockpiling Soil, Soil Debris (BCL) Sampling Plan, Calculation number 0100F-CA-V0309, Rev.
 14 0.
- 15 2) Lookup values from DOE/RL-96-22, Rev 4.
 - 3) Sample Design requirements from DOE/RL-96-22, Rev 4 and 0100X-IG-G0001, Rev 5.
- ¹⁷ 4) Field sampling information from sampling logbook EL-1174-3.

Solution:

Calculation methodology is described in Appendix A of DOE/RL-96-22, Rev 4. Data from attached worksheets are used to calculate the required number of closeout samples. Variance calculation is based on the same three isotopes used to develop the statistical approach in DOE/RL-96-22, Rev 4. The statistical design is based on the premise that these isotopes are the predominant components of the contamination and are representative of the contamination distribution.

ô	Sheet No.	Contents	Topic
7	1	Calc. Summary	Summary of Calc Brief
В	2	BCL Stockpile	Required Number of Samples Calculation
9			
)			
1			
2			
3			
1			
5			
. 1			

Wushington Closure Ranford

CALCULATION SHEET

Washington Closure Hanford Rev. No. R. T. Coffman Date 9/11/2007 Calc. No. 0100F-CA-V0298 100-F Remedial Action Project Job No. 14655 Date 9/25/07 Checked ## Parc 100-F-26:14 Pipeline BCL Stockpile Variance Calculation Subject Sheet No. RT COFFMAN

- ¹ Statistical Evaluation of Analytical Data
- 2
- 3 The required number of samples resulting from the calculation is highlighted at the bottom of the page.
- ⁴ Each value is reflective of the specific analyte evaluated.
- 5 The highest value of the three evaluations is used to determine the required number of samples as compared
- 6 against the default of four.
- ⁷ Sample locations are from Calculation 0100F-CA-V0309.
- ⁸ Mean, Standard Deviation, *t*, and Number of Samples formulas are from DOE/RL-96-22, Appendix A.
- 11 Decision Unit: 100-F-26:14 Pipeline BCL Stockpile Variance Calculation
 12 Samples values from GEA analysis

13 Sample Areas	A1 thru A4		Constituent					
14 Sample #	Sample Date	Location	Cobalt-60	Q	Cs-137	Q	Europium-152	Q
15			pCi/g		pCi/g		pCi/g	
	e (HT) ========		1.4	36 Ju	6.2	VE.	3.3	
17 J15FF6	8/21/2007	O-A1-2	0.017	U	0.069		0.052	
18 J15FF7	8/21/2007	O-A1-3	0.025		0.136		0.099	
19 J15FF8	8/21/2007	O-A1-4	0.032	U	0.034		0.075	U
20 J15FF9	8/21/2007	O-A1-10	0.445		5.75		4.66	
21 J15FH0	8/21/2007	O-A1-13	0.016	U	0.142		0.136	
22 J15FH1	8/21/2007	O-A1-16	0.092		0.412		0.437	
23 J15BM9	8/2/2007	O-A2-3	0.098	U	0.355		0.468	
24 J15BN0	8/2/2007	O-A2-6	0.07	U	0.584		0.504	
25 J15BN1	8/2/2007	O-A2-7	0.052	U	0.202		0.343	
26 J15BN2	8/2/2007	O-A2-10	0.044	U	0.198		0.135	U
27 J15BN3	8/2/2007	O-A2-14	0.058	U	0.058	U	0.144	U
28 J15BN4	8/2/2007	O-A2-15	0.098	U	0.384		0.249	U
29 J15BN5	8/2/2007	O-A3-1	0.059	U	0.092		0.168	U
30 J15BN6	8/2/2007	O-A3-2	0.055		0.54		0.502	
31 J15BN7	8/2/2007	O-A3-4	0.06	U	0.238		0.237	
32 J15BN8	8/2/2007	O-A3-5	0.057	U	0.107		0.131	U
33 J15BN9	8/2/2007	O-A3-9	0.078	U	0.091		0.186	U
34 J15BP0	8/2/2007	O-A3-11	0.063	U	0.117		0.143	U
35 J15FH2	8/21/2007	O-A4-3	0.025	U	0.146		0.062	U
36 J15FH3	8/21/2007	O-A4-4	0.308		0.219		0.051	U
37 J15FH4	8/21/2007	O-A4-7	0.03	U	0.106		0.091	U
38 J15FH5	8/21/2007	O-A4-9	. 0.037	U	0.036		0.099	U
39 J15FH6	8/21/2007	O-A4-12	0.055	U	0.136		0.234	U
40 J15FH7	8/21/2007	O-A4-13	0.035	U	0.047		0.088	U
			0.08		0.42		0.39	
	42 Standard Deviation (S) ==========>				1.14		0.92	
			1.645		1.645		1.645	
			0.842		0.842		0.842	
45 Number of Sa	mples ========	=====>	1		1		1	
46								

100-F-26_14 Pipe BCL

Acrobat 8.0

CALCULATION COVER SHEET

Project T	itle: 100-F Field Remediati	on			Job	No. 14655
Area: 100)-F					
Discipline	e: Environmental		*Cal	culation No: 0100	0F-CA-V0305	
Subject: _	100-F-26:14 116-F5 Influer	nt Pipelines Clear	nup Verification 9	5% UCL Calculat	tion	
Compute	r Program: Excel		Progra	am No: Excel 200	3	
The atta	iched calculations have been should be used in c	generated to docur conjunction with oth	ment compliance w er relevant docume	rith established clea ents in the administ	anup levels. These rative record.	calculations
Committe	ed Calculation 🛛	Preliminar	у 🗆	Superseded [Void	ded 🗌
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date
0	Total = 15	L. D. Habel	J. M. Capron	N/A	S. W. Callison	St. Complete Service S
1	Total = 15	L. D. Habel	J. M. Capron	N/A	S. W. Callison	11-6-07
		MIM	by Sin Cla	5	5Wall	•
		0	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.			
	•					
		SUMM	ARY OF RE	VISION		
1	Added flags from third pa	irty validation to c	lata. Affected pa	ge 7 and attachm	ient1 pages 2 an	d 3.

WCH-DE-018 (05/08/2007)

*Obtain Calc. No. from Document Control and Form from Intranet

	Washington Closure Hanford		
	Originator L. D. Habel	Data 10/01/07	Colo No. 0100E CA VOCCE - Barrier
	<u> </u>	Date 10/01/07 Job No. 14655	Calc. No. <u>0100F-CA-V0305</u> Rev. No. <u>0</u> Checked J. M. Capron Date <u>10/01/07</u>
	Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 9	95% UCL Calculation	
			by 5.W. Clark Sheet No. 1 of 11
	Summary		AVV.
1	Purpose:		
2	Calculate the 95% upper confidence limit (UCL) values to evalua	ite compliance with	cleanup standards for the shallow zone
4	excavation of the subject site. Also, perform the Washington Add	ministrative Code (V	VAC) 173-340-740(7)(e) 3-part test for
5	nonradionuclide contaminants of concern (COCs) and contamina	ants of potential con-	cern (COPCs) and calculate the relative percent
6	difference (RPD) for primary-duplicate sample pairs, as necessar	ry.	
7	Table of Contents:		
8	Sheets 1 to 4 - Summary		
9	Sheets 5 to 7 - 100-F-26:14 Excavation Shallow Zone Statistical	Calculations	
1	Sheets 8 to 10 - 118-F-8:4 Overburden/BCL Material Statistical (Calculations	
2	Sheets 11 - Split/Duplicate Analysis		
3	Attachment 1 - 100-F-26:14 Verification Sampling Results (3 she	eets)	
4		,	
5 6	Given/References:		
7	1) Sample Results (Attachment 1).		
8	2) Background values and remedial action goals (RAGs) are fro	om DOE-RL (2005b)	, DOE-RL (2001), and
9	Ecology (2005).		
0	3) DOE-RL, 2001, Hanford Site Background: Part 1, Soil Backgr	round for Nonradioa	active Analytes, DOE/RL-92-24, Rev. 4,
1	U.S. Department of Energy, Richland Operations Office, Rich 4) DOE-RL, 2005a, 100 Area Remedial Action Sampling and Ar	iland, wasnington.	DOE/DL 00 00 Day 4 H.C. Days to 1
3	of Energy, Richland Operations Office, Richland, Washington	naiysis rian (SAP), i	DOE/RL-96-22, Rev. 4, U.S. Department
4	5) DOE-RL, 2005b, Remedial Design Report/Remedial Action V	i. Vork Plan for the 10	0 Area (RDR/RAWP) DOF/RL-96-17
5	Rev. 5, U.S. Department of Energy, Richland Operations Office	ce, Richland, Wash	inaton.
6	6) Ecology, 1992, Statistical Guidance for Ecology Site Manage	rs, Publication #92-	54, Washington Department of Ecology.
:7 :8	Olympia, Washington.		
9	7) Ecology, 1993, Statistical Guidance for Ecology Site Manage	rs, Supplement S-6,	Analyzing Site or Background Data with
0	Below-detection Limit or Below-PQL Values (Censored Data	Sets), Publication #	92-54, Washington Department of
1	Ecology, Olympia, Washington.		
2	8) Ecology, 2005, Cleanup Levels and Risk Calculations (CLAR Olympia, Washington, https://fortress.wa.gov/ecy/clarc/CLAl	C) Database, Wash	lington State Department of Ecology,
4	9) EPA, 1994, USEPA Contract Laboratory Program National Fi	HCHome.aspx>.	for Ingressia Data Davison
5	EPA 540/R-94/013. U.S. Environmental Protection Agency, W	Vashington D.C.	To morganic Data Neview,
6	10) WAC 173-340, 1996, "Model Toxic Control Act - Cleanup," W	/ashington Administ	rative Code
7			
8 9	Solution:		
0	Calculation methodology is described in Ecology publication #92-	-54 (Ecology 1992, 1	1993), below, and in the RDR/RAWP (DOE-RL
1	[2005b]. Use data from attached worksheets to perform the 95%	UCL calculation for	each analyte, the
2	WAC 173-340-740(7)(e) 3-part test for nonradionuclides, and the	RPD calculations for	or primary-duplicate sample pairs, as required.
3	The hazard quotient and carcinogenic risk calculations are locate Sites Verification Package (RSVP).	ed in a separate calc	ulation brief as an appendix to the Remaining
4 5	Sites Verilloation Fackage (NSVF).		
6	Calculation Description:		
7	The subject calculations were performed on data from soil verifica	ation samples from t	the subject waste site. The data were entered
8	into an EXCEL 2003 spreadsheet and calculations performed by	using the built-in sp	readsheet functions and/or creating formulae
9 0	within the cells. The statistical evaluation of data for use in accor	dance with the RDF	R/RAWP (DOE-RL 2005b) is documented by
1	this calculation. Duplicate RPD results are used in evaluation of	data quality within th	ne RSVP for this site.
2			
3			
4			
5			
6 7			
В			
9			
o			
1			
2			
4			
5			

Washington Closure Hanfor	ď
---------------------------	---

Originator L. D. Habel 44 Project 100-F Field Remediation	Date 10/02/07 Job No. 14655	Calc. No. 0100F-CA-V0305 Checked J. M. Capron		10/02
Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification		64-5. W. Clark	Date-10/0±4 Sheet No. 2 of 1	
Summary (continued)		Auc.		

Summary (continued)

UCL Methodology:

2 3 4

5

6

8

10 11

12 13 14

15 16

17

18 19

20

21

24

25 26

33 34

35 36

37

38

39

40

44 45

46

47 48

49

54

55

56

For nonradioactive analytes with ≤50% of the data below detection limits and all detected radionuclide analytes, the statistical value calculated to evaluate the effectiveness of cleanup is the 95% UCL. For nonradioactive analytes with >50% of the data below detection limits, the maximum detected value for the data set is used instead of the 95% UCL. The 95% UCL is also not calculated for data sets with no reported detections.

Calculated cleanup levels are not available in Ecology (2005) under WAC 173-340-740(3) for:

aluminum, calcium, iron, magnesium, potassium, silicon, and sodium;

therefore, these constituents are not considered site COPCs and are also not included in these tables.

The 95% UCL values were not calculated for radium-226, radium-228, thorium-228, thorium-232, and potassium-40, as these isotopes are excluded from consideration as COCs based on natural occurrence and analogous site information.

All nonradionuclide data reported as being undetected are set to ½ the detection limit value for calculation of the statistics (Ecology 1993). For radionuclide data, calculation of the statistics is done using the reported value. In cases where the laboratory does not report a value below the minimum detectable activity (MDA), half of the MDA is used in the calculation. For the statistical evaluation of duplicate sample pairs, the samples are averaged before being included in the data set, after adjustments for censored data as described above.

For nonradionuclides, the WAC 173-340 statistical guidance suggests that a test for distributional form be performed on the data and the 95% UCL calculated on the appropriate distribution using Ecology software. For nonradionuclide small data sets (n < 10) and all radionuclide data sets, the calculations are performed assuming nonparametric distribution, so no tests for distribution are performed. For nonradionuclide data sets of ten or greater, as for the subject site, distributional testing and calculation of the 95% UCL is done using Ecology's MTCAStat software (Ecology 1993). Due to differences in addressing censored data between the RDR/RAWP (DOE-RL 2005b) and MTCAStat coding and due to a limitation in the MTCAStat coding (no direct capability to address variable quantitation limits within a data set), substitutions for censored data are performed before software input and the resulting input set treated as uncensored.

The WAC 173-340-740(7)(e) 3-part test is performed for nonradionuclide analytes only and determines if:

- 1) the 95% UCL exceeds the most stringent cleanup limit for each COPC,
- 2) greater than 10% of the raw data exceed the most stringent cleanup limit for each COPC,
- 3) the maximum value of the raw data set exceeds two times the most stringent cleanup limit for each COPC.

The RPD values are evaluated for analytes detected in a primary-duplicate or primary-split sample pair for the purposes of data quality assessment within the CVP. The RPD is calculated when both the primary value and the duplicate value for a given analyte are above detection limits and are greater than 5 times the target detection limit (TDL). The RPD calculations use the following formula:

$$RPD = [|M-S|/((M+S)/2)]*100$$

where, M = main sample value S = split (or duplicate) sample value

For quality assurance/quality control (QA/QC) split and duplicate RPD calculations, a value less than 30% indicates the data compare favorably. For regulatory splits, a threshold of 35% is used (EPA 1994b). If the RPD is greater than 30% (or 35% for regulatory split data), further investigation regarding the usability of the data is performed. To assist in the identification of anomalous sample pairs, when an analyte is detected in the primary or duplicate/split sample, but was quantified at less than 5 times the TDL in one or both samples, an additional parameter is evaluated. In this case, if the difference between the primary and duplicate/split results exceed a control limit of 2 times the TDL, further assessment regarding the usability of the data is performed. Additional discussion is provided in the data quality assessment section of the applicable CVP, as necessary.

Washington Closure Hanford

 Originator
 L. D. Habel
 Date
 10/01/07
 Calc. No. 0100F-CA-V0305
 Rev. No.
 0

 Project
 100-F Field Remediation
 Job No.
 14655
 Checked J. M. Capron
 Date
 10/01/07

 Subject
 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation
 W. C. Clerk
 Sheet No.
 3 of 11

Summary (continued)

Methodology (continued):

For quality assurance/quality control (QA/QC) split and duplicate RPD calculations, a value less than 30% indicates the data compare favorably. For regulatory splits, a threshold of 35% is used (EPA 1994). If the RPD is greater than 30% (or 35% for regulatory split data), further investigation regarding the usability of the data is performed. No split samples were collected for cleanup verification of the subject site. Additional discussion is provided in the data quality assessment section of the applicable RSVP, as necessary.

Results

The results presented in the tables that follow include the summary of the results of the 95% UCL calculations or the maximum value, the WAC 173-340-740(7)(e) 3-part test evaluation, and the RPD calculations, and are for use in risk analysis and the RSVP for this site.

17 18 19

3

13

14 15 16

20	Results Summary - Remediation Footprint											
21		Excavation S	Shallow Zone	OB-	BCL							
22	Analyte	95% UCL ^b	Maximum Value ^c	95% UCL ^b	Maximum Value ^c	Units						
23[Cesium-137	0.206		1.43		pCi/g						
24[Cobalt-60	0.073		0.179		pCi/g						
25[Europium-152	0.370		1.07		pCi/g						
26[Nickel-63			7.04		pCi/g						
27[Strontium-90			0.304		pCi/g						
28[Antimony	0.79				mg/kg						
29[Arsenic	2.8		2.9		mg/kg						
30[Barium	101		90.1		mg/kg						
31[Beryllium	0.21	**		0.21	mg/kg						
32[Boron	11.0		9.2		mg/kg						
33[Cadmium			0.17		mg/kg						
34	Chromium	9.3		9.4		mg/kg						
35[Hexavalent Chromium	0.38				mg/kg						
36[Cobalt	6.3		6.5		mg/kg						
37[Copper	12.6		14.7		mg/kg						
38	Lead	5.3		15,1		mg/kg						
39	Manganese	272	**	297		mg/kg						
40[Mercury		0.02	0.06		mg/kg						
41[Molybdenum		0.51		0.56	mg/kg						
12[Nickel	9.9		10.2		mg/kg						
43	Vanadium	39.6		40.3		mg/kg						
44 T	Zinc	35.6		38,7		mg/kg						

⁴⁶ aNo detections were reported in any data set for COCs/COPCs not listed in this table.

^{47 &}lt;sup>b</sup>For nonradionuclides, where ≤ 50% of a data set is below detection limits, the 95% UCL value is used for a given analyte.

^{48 °}For nonradionuclides, where > 50% of a data set is below detection limits, the statistical value defaults to the maximum detected value in

⁴⁹ the data set (Attachment 1). 50

⁵¹ BCL = below cleanup levels

⁵² COC = contaminant of concern

⁵³ COPC = contaminant of potential concern

⁵⁴ ND = not detected (for all samples in the data set)

⁵⁵ UCL = upper confidence limit

Washington Closure Hanford

Originator L. D. Habel

Project 100-F Field Remediation
Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation

October 10/01/07 Calc. No. 0100F-CA-V0305 Rev. No. 0

Checked J. M. Capron Date 10/01/07

Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation

October 10/01/07 Calc. No. 0100F-CA-V0305 Rev. No. 0

October 10/01/07 Calc. No. 0100F-CA-V0305 Rev. No. 0100F-CA-V0305 Re

1 Summary (continued)

2

3 Excavation Shallow Zone - WAC 173-340 3-Part Test for most stringent RAG:

4 95% UCL > Cleanup Limit? 5 > 10% above Cleanup Limit? NO YES

6 Any sample > 2x Cleanup Limit?

NO

7

8 Because of the "yes" answers to the WAC 173-340 3-part test for barium, additional evaluation of the attainment 9 of cleanup criteria will be performed.

9 of cleanup criteria will t

11 OB/BCL - WAC 173-340 3-Part Test for most stringent RAG:

12 95% UCL > Cleanup Limit?

YES YES

13 > 10% above Cleanup Limit?14 Any sample > 2x Cleanup Limit?

NO

15

16 Because of the "yes" answers to the WAC 173-340 3-part test for lead, additional evaluation of the attainment

17 of cleanup criteria will be performed.

18 19 20

20 21

Relative Percent Difference Results^a -

OA/OC Analysis

22												
		Excavation										
		Shallow	Excavation									
	Analyte	Zone	Shallow									
	-	Duplicate	Zone Split									
23		Analysis ^b	Analysis ^b									
	Aluminum	96%	6%									
25	Barium	148%	104%									
26	Boron		80%									
27	Calcium	127%	42%									
28	Chromium		16%									
29	Copper	84%	16%									
30	Iron	67%	18%									
31	Magnesium	76%	2%									
32	Manganese	64%	8%									
33	Silicon	54%	118%									
34	Vanadium	74%	8%									
35	Zinc	55%	25%									

^{36 &}lt;sup>a</sup>Relative percent difference evaluation was not required for analytes not included in this table.

³⁷ bThe significance of relative percent difference values are discussed within the RSVP for the subject site.

^{38 -- =} analysis not required

³⁹ QA/QC = quality assurance/quality control

⁴⁰ RSVP = remaining sites verification package

Washington Closure Hanford

Originator L. D. Habel

Project 100-F Field Remediation
Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation

1 100-F-26:14 Excavation Shallow Zone Statistical Calculations

2 Verification Data

_	Vermeation Data													
3	Sample	Sample	Sample	Cesium-137			Co	obalt-	60	Europium-152				
4	Area	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA		
5	SZ A-3	J15BV8	8/9/07	0.076		0.027	0.022	U	0.022	0.062	U	0.062		
6	SZ A-3 Dup	J15BV9	8/9/07	0.085		0.035	0.036	U	0.036	0.102	U	0.102		
7	SZ A-1	J15BV6	8/9/07	0.118		0.035	0.043	U	0.043	0.113		0.086		
8	SZ A-2	J15BV7	8/9/07	0.263		0.044	0.055		0.043	0.525		0.105		
9	SZ A-4	J15BW0	8/9/07	0.061		0.030	0.089	П	0.031	0.058	U	0.058		

10 Statistical Computation Input Data

11 12	Sample Area	Sample Number	Sample Date	Cesium-137 pCi/g	Cobalt-60 pCi/g	Europium-152 pCi/g
13	SZ A-3	J15BV8/J15BV9	8/9/07	0.081	0.015	0.041
14	SZ A-1	J15BV6	8/9/07	0.118	0.022	0.113
15	SZ A-2	J15BV7	8/9/07	0.263	0.055	0.525
16	SZ A-4	J15BW0	8/9/07	0.061	0.089	0.029

17 Statistical Computations

18			Ces	ium	137	Co	balt-60	Europium-152			
19	95% UCL base			ta set. Use ic z-stat.		e data set. Use metric z-stat.	F .	e data set. Use netric z-stat.			
20	,	Ν	4			4		4			
21	% < Detection	ı limit	0%			50%		50%			
22		Mean	0.131			0.045		0.177			
23	Standard dev	iation	0.091			0.034		0.235			
24	95% UCL on r	mean	0.206			0.073		0.370			
25	Backgr	ound	NA			NA		NA			
26	Statistical value above backgr	round	0.206			0.073		0.370			

Date 10/01/07 Job No. 14655

Calc. No. <u>0100F-CA-V0305</u> Checked J. M. Capron

Rev. No. 0
Date 10/01/07
Sheet No. 5 of 11

Washington Closure Hanford

Originator L. D. Habel Walter Project 100-F Field Remediation
Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation

Date 10/01/07 Job No. 14655

Calc. No. 0100F-CA-V0305 Checked J. M. Capron

Rev. No. 0
Date 10/01/07
Sheet No. 6 of 11

1 100-F-26:14 Excavation Shallow Zone Statistical Calculations

2 Verification Data

3	Sample	Sample	Sample		Arseni	ic	E	3arium		B€	erylliu	m		Boron		Ch	romiu	ım	Hexaval	ent Ch	romium	(Cobalt		C	oppe	r
4	Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
5	SZ A-3	J15BV8	8/9/07	1.8		1.2	216	C	0.06	0.33		0.03	31.6		1.1	8.0	C	0.30	0.28		0.20	6.0	C	0.24	13.2		0.27
6	SZ A-3 Dup	J15BV9	8/9/07	1.2	U	1.2	32.6	C	0.06	80.0		0.03	1.0	U	1.0	4.2	C	0.29	0.50		0.20	2.7	С	0.23	5.4		0.26
7	SZ A-1	J15BV6	8/9/07	2.0		1.2	55.8	C	0.06	0.20		0.03	1.1	U	1.1	9.1	C	0.30	0.32		0.20	6.0	C	0.24	12.5		0.27
8	SZ A-2	J15BV7	8/9/07	3.1		1.2	58.5	C	0.06	0.20		0.03	1.6		1.0	9.5	C	0.29	0.25		0.20	6.6	C	0.23	12.5		0.26
9	SZ A-4	J15BW0	8/9/07	2.4		1.2	49.0	C	0.06	0.16		0.03	1.3		1.0	6.9	C	0.29	0.36		0.20	5.0	C	0.23	11.1		0.26

10 Statistical Computation Input Data

11 12	Sample Area	Sample Number	Sample Date	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Boron mg/kg	Chromium mg/kg	Hexavalent Chromium mg/kg	Cobalt mg/kg	Copper mg/kg
13	SZ A-3	J15BV8/J15BV9	8/9/07	1.2	124	0.21	16	6.1	0.39	4.4	9.30
14	SZ A-1	J15BV6	8/9/07	2.0	55.8	0.20	0.55	9.1	0.32	6.0	12.5
15	SZ A-2	J15BV7	8/9/07	3.1	58.5	0.20	1.6	9.5	0.25	6.6	12.5
16	SZ A-4	J15BW0	8/9/07	2.4	49.0	0.16	1.3	6.9	0.36	5.0	11.1

8			Arsenic		Barium	Be	eryllium		Boron	Cł	nromium	Hexava	lent Chromium		Cobalt		Copper
9	95% UCL based on		ta set (n<10). Use metric z-statistic.		set (n<10). Use netric z-statistic.		Small data set (n<10). Use nonparametric z-statistic.		Small data set (n<10). Use nonpararnetric z-statistic.		Small data set (n<10). Use nonparametric z-statistic.		a set (n<10). Use metric z-statistic.		a set (n<10). Use metric z-statistic.	Small data set (n<10). Use nonparametric z-statistic.	
20	N	4		4		4		4		4		4		4	T	4	
1	% < Detection limit	. 0%		0%		0%		25%		0%		0%		0%		0%	
1	Mean	2.2		71.9		0.19		4.9	•	7.9		0.33		5,5		11.4	
3	Standard deviation	0.79		35.2		0.021		7.5		1.7		0.061		1.0		1.5	
ŀ	95% UCL on mean			101		0.21		11		9.3		0.38		6.3		12.6	
5	Maximum value			216		0.33		31.6		9.5		0.50		6.6		13.2	
3	Final Statistical Value	2.8		101		· 0.21		11		9.3		0.38		6.3		12.6	
7	Most Stringent Cleanup Limit for nonradionuclide and RAG type (mg/kg)	:	Direct Exposure, GW & River Protection	132	GW Protection	1.51	GW & River Protection	320	GW Protection	18.5	GW & River Protection	2	River Protection	32	GW Protection	22.0	River Protectio
3	WAC 173-340 3-PART TEST																
)	95% UCL > Cleanup Limit?			NO		NO		NO		NO		NO		NO		NO	
)	> 10% above Cleanup Limit?			YES		NO		NO		NO		NO		NO		NO	
1	Any sample > 2X Cleanup Limit?	NO		NO		NO		NO		NO	1	NO		NO	······································	NO	
32	Further WAC 173-340 Compliance? Assessment Required		Yes	be perform meets the when co	I assessment will ned. The data set 3-part test criteria mpared to direct c cleanup levels.		Yes		Yes	·	Yes		Yes		Yes		Yes

Washington Closure Hanford

Originator L. D. Habel
Project 100-F Field Remediation
Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation

Date 10/29/07 **Job No.** 14655

Calc. No. 0100F-CA-V0305 Checked J. M. Capron

1 100-F-26:14 Excavation Shallow Zone Statistical Calculations

>	V	er	ifi	cation	Data

3	Sample	Sample	Sample	T	Lead		Mar	ngane	se	N.	lercur	у		Nickel		Vai	nadiu	m		Zinc		At	ntimor	ıy	Mol	ybdeni	.um
4	Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
5	SZ A-3	J15BV8	8/9/07	4.1		0.98	228		0.21	0.01	U	0.01	9.5		0.81	34.2	CJ	0.24	29.1	C	0.12	0.83	J	0.66	0.51		0.48
6	SZ A-3 Dup	J15BV9	8/9/07	1.9		0.95	118		0.2	0.01	U	0.01	4.2		0.78	15.8	CJ	0.23	16.6	C	0.12	0.79	J	0.64	0.46	U	0.46
7	SZ A-1	J15BV6	8/9/07	5.9		0.98	251		0.21	0.02		0.02	9.8		0.8	39.7	CJ	0.24	35.3	C	0.12	0.65	UJ	65	0.47	U	0.47
8	SZ A-2	J15BV7	8/9/07	4.8		0.95	291		0.2	0.01	U	0.01	10		0.77	40.2	CJ	0.23	35.9	C	0.11	0.69	J	0.63	0.46	U	0.46
9	SZ A-4	J15BW0	8/9/07	2.6		0.94	200		0.2	0.01	U	0.01	8.1		0.77	25.1	CJ	0.23	27.7	C	0.11	0.63	UJ	0.63	0.46	U	0.46

10 Statistical Computation Input Data

11	Sample Area	Sample Number	Sample Date	Lead mg/kg	Manganese mg/kg	Mercury mg/kg	Nickel mg/kg	Vanadium mg/kg	Zinc mg/kg	Antimony mg/kg	Molybdenum mg/kg
13	SZ A-3	J15BV8/J15BV9	8/9/07	3.0	173	0.005	6.9	25.0	22.9	0.81	0.37
14	SZ A-1	J15BV6	8/9/07	5.9	251	0.02	9.8	39.7	35.3	0.65	0.24
15	SZ A-2	J15BV7	8/9/07	4.8	291	0.005	10	40.2	35.9	0.69	0.23
16	SZ A-4	J15BW0	8/9/07	2.6	200	0.005	8.1	25.1	27.7	0.32	0.23

7 Statistical Computations		1			R.A.	lavauru		Nickel		anadium	I	Zinc	Α.	ntimony	840	lybdenum
8	Le	ad	Mar	ganese	IVI	lercury		NICKEI					A	ntimony	IVIO	туриенин
95% UCL based on		t (n<10). Use ric z-statistic.		set (n<10). Use etric z-statistic.	l .	set (n<10). Use netric z-statistic.		a set (n<10). Use metric z-statistic.		a set (n<10). Use netric z-statistic.		a set (n<10). Use metric z-statistic.		set (n<10). Use netric z-statistic.		a set (n<10). Use metric z-statistic.
9 N	4		4		4		4		4		4	T I	4		4	
1 % < Detection limit	0%		0%		75%		0%		.0%		0%		50%		75%	
2 Mean	4.1		229		0.01		8.7		32.5		30.4		0.62		0.27	
Standard deviation	1.5		52.6		0.01		1.5		8.61		6.29		0.21		0.07	
4 95% UCL on mean	5.3		272		0.01		9.9		39.6		35.6		0.79		0.32	
5 Maximum value	5.9		291		0.02		10		40.2		35.9		0.83		0.51	
6 Final Statistical Value	5.3		272		0.02		9.9		39.6		35.6		0.79		0.51	
Most Stringent Cleanup Limit for nonradionuclide and RAG type (mg/kg)	10.2	GW & River Protection	512	GW & River Protection	0.33	GW & River Protection	19.1	River Protection	85.1	GW Protection	67.8	River Protection	5	GW & River Protection	8	GW Protection
8 WAC 173-340 3-PART TEST	10.2	1 1010011011						····								
9 95% UCL > Cleanup Limit?	NO		NO		NO		NO		NO		NO		NO		NO	
> 10% above Cleanup Limit?	NO		NO		NO		NO		NO .		NO		NO		NO	
Any sample > 2X Cleanup Limit?	NO		NO		NO		NO		NO		NO		NO		NO	
WAC 173-340 Compliance? Yes		es		Yes		Yes		Yes		Yes		Yes		Yes		Yes

Washington Closure Hanford

Date 10/01/07 Job No. 14655

Originator L. D. Habel 49

Project 100-F Field Remediation
Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation

1 100-F-26:14 Overburden/BCL Statistical Calculations 2 Verification Data

3	Sample	Sample	Sample	Ce	sium-	137	C	obalt-	60	Euro	pium-	-152	l N	lickel-6	3	Str	ontiun	n-90
4	Area	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
5	OB A-1	J15FF4	8/21/07	1.96		0.076	0.252		0.074	1.36		0.185	9.62		3.19	0.373		0.214
6	OB A-2	J15BV3	8/8/07	0.521		0.027	0.043	T	0.021	0.527		0.058	1.97	U	3.25	0.153	U	0.246
7	OB A-3	J15BV4	8/8/07	0.410	1	0.042	0.040	U	0.040	0.576		0.091	1.26	U	3.33	0.186		0.179
8	OB A-4	J15FF5	8/21/07	0.090		0.083	0.087	U	0.087	0.210	U	0.210	2.50	U	3.24	0.006	U	0.226
a a	Statistical Computa	ation Input Data																

9 3	Statistical Computa	mon input bata				r							
10	Sample	Sample	Sample		um-137	Cobalt		Europiu		Nickel	1		ontium-90
11	Area	Number	Date	р	Ci/g	pCi/	g	pCi	/g	pCi/	g	· .	pCi/g
12	OB A-1	J15FF4	8/21/07	1.96		0.252		1.36		9.62		0.373	
13	OB A-2	J15BV3	8/8/07	0.521		0.043		0.527		1.97		0.153	
14	OB A-3	J15BV4	8/8/07	0.410		0.020		0.576		1.26		0.186	
15	OB A-4	J15FF5	8/21/07	0.090		0.044		0.105		2.50		0.006	

7	omputations	Ces	um-137	Col	palt-60	Europ	ium-152	Nic	ckel-63	Stro	ntium-90
8	95% UCL based on		e data set. Use netric z-stat.		e data set. Use netric z-stat.		data set. Use netric z-stat.		e data set. Use metric z-stat.	3	de data set. Use imetric z-stat.
9	N	4		4		4		4		4	
10	% < Detection limit	0%		50%		25%		75%		50%	
1	Mean	0.745		0.090		0.642		3.84		0.180	
2	Standard deviation	0.830		0.109		0.523		3.89		0.151	
23	95% UCL on mean	1.43		0.179		1.07		7.04		0.304	
24	Background			NA		NA		NA		NA	
25	Statistical value above background			0.179		1.07		7.04		0.304	

Calc. No. 0100F-CA-V0305 Checked J. M. Capron

by s.w. clark

 Rev. No.
 0

 Date
 10/01/07

 Sheet No.
 8 of 11

Washington Closure Hanford

Originator L. D. Habel 44

Project 100-F Field Remediation
Subject 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation

Date 10/01/07 Job No. 14655

Calc. No. 0100F-CA-V0305 Checked J. M. Capron

Rev. No. 0
Date 10/01/07
Sheet No. 9 of 11

1 100-F-26:14 Overburden/BCL Statistical Calculations

2 Verification Data

3	Sample	Sample	Sample	, , ,	Arseni	С		3arium		Be	erylliur	n		Boron		C	admiu	m	Chromi	um		Cobalt		C	oppe	r
4	Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg Q	PQL	mg/kg	Q	PQL	mg/kg	Tal	PQL
5	OB A-1	J15FF4	8/21/07	· 3.1		1.2	56.5	C	0.06	0.03	U	0.03	1.2	С	1.1	0.15	U	0.15	7.6 C	0.29	5.6		0.24	12.2		0.26
6	OB A-2	J15BV3	8/8/07	2.5		1.2	61.7	C	0.06	0.03	U	0.03	1.0	U	1.0	0.16		0.14	7.5 C	0.29	6.2		0.23	12.6	c	0.26
7	OB A-3	J15BV4	8/8/07	2.6		1.2	63.5	C	0.06	0.03	U	0.03	1.1	U	1.1	0.19		0.15	9.2 C	0.30	6.8	f	0.24	13.9	tct	0.27
8	OB A-4	J15FF5	8/21/07	2.5	T	1.2	105	С	0.06	0.21	C	0.03	13.5	С	1.1	0.15	U	0.15	9.7 C	0.30	5.7		0.24	15.3	† * †	0.27

9 Statistical Computation Input Data

10	Sample	Sample	Sample	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper
11	Area	Number	Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
12	OB A-1	J15FF4	8/21/07	3.1	56.5	0.02	1.2	0.075	7.6	5.6	12.2
13	OB A-2	J15BV3	8/8/07	2.5	61.7	0.02	0,50	0.16	7.5	6.2	12.6
14	OB A-3	J15BV4	8/8/07	2.6	63.5	0.02	0.55	0.19	9.2	6.8	13.9
15	OB A-4	J15FF5	8/21/07	2.5	105	0.21	13.5	0.075	9.7	5.7	15.3

16 Statistical Computations

17		Α	Arsenic		Barium	Be	eryllium		Boron		Ca	admium	Cł	romium		Cobalt		Coppe	er
18	95% UCL based on		set (n<10). Us netric z-statistic		a set (n<10). Use netric z-statistic.		set (n<10). Use netric z-statistic.	Small data nonparar	•			set (n<10). Use netric z-statistic.	I .	set (n<10). Use netric z-statistic.	1	a set (n<10). Use metric z-statistic.		,	n<10). Use z-statistic.
19	N	4		4		4		4			4		4	T	4		4	T	
20	% < Detection limit	0%		0%		75%		50%			50%		0%		0%		0%		
21	Mean	2.7		71.7		0.06		3.9			0.13		8.5		6.1		13.5		
22	Standard deviation	0.29		22.4		0.10		6.4			0.059		1.1		0.55		1.40		
23	95% UCL on mean	2.9		90.1		0.14		9.2			0.17		9.4		6.5		14.7		
24	Maximum value	3.1		105		0.21		13.5			0.19		9.7		6.8		15.3		
25	Final Statistical Value	2.9		90.1		0.21		9.2			0.17		9.4		6.5		14.7		
26	Most Stringent Cleanup Limit for nonradionuclide and RAG type	20 [.]	Direct Exposu GW & River Protection		OW Distraction	4.54	GW & River	000	0111	Davis	0.01	GW & River		GW & River					
	(mg/kg) WAC 173-340 3-PART TEST	20	Protection	132	GW Protection	1.51	Protection	320	GW	Protection	0.81	Protection	18.5	Protection	32	GW Protection	22.0	Rive	er Protection
28	95% UCL > Cleanup Limit?	NO	•	NO		NO		NO			NO		NO		NO		NO		
29	> 10% above Cleanup Limit?	NO		NO		NO		NO			NO		NO		NO		NO		
30	Any sample > 2X Cleanup Limit?	NO		NO		NO		NO			NO		NO						
	7 Try Sumple > 2X Glound Pellinic.	110				110	***************************************	110			INO		I NO		NO		NO		
31	WAC 173-340 Compliance? Yes		Yes		Yes		Yes		Yes			Yes		Yes		Yes		Yes	

Washington Closure Hanford

Date 10/01/07 Job No. 14655

Calc. No. 0100F-CA-V0305 Checked J. M. Capron by S.W. Clark Rev. No. 0
Date 10/01/07
Sheet No. 10 of 11

1 100-F-26:14 Overburden/BCL Statistical Calculations

2 Verification Data

3	Sample	Sample	Sample		Lead		Ma	ngane	ese	ĪV	lercu	ry		Nicke	l	Va	nadiu	m		Zinc		Mol	ybden	ıum
4	Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
5	OB A-1	J15FF4	8/21/07	3.7		0.97	266	C	0.21	0.07		0.01	9.3	С	0.79	34.6		0.24	38.9	С	0.12	0.56	С	0.47
6	OB A-2	J15BV3	8/8/07	4.2		0.95	297		0.2	0.03		0.01	9.1		0.77	36.9	T	0.23	33.3	C	0.11	0.46	U	0.46
7	OB A-3	J15BV4	8/8/07	20.4		0.98	298		0.21	0.05		0.01	10.1		0.81	42.4	Т	0.24	38.2	С	0.12	0.48	U	0.48
8	OB A-4	J15FF5	8/21/07	5.9		0.98	270	С	0.21	0.03		0.02	10.4	С	0.8	36.1		0.24	36.0	C	0.12	0.47	U	0.47

9 Statistical Computation Input Data

10	Sample	Sample	Sample	Lead	Manganese	Mercury	Nickel	Vanadium	Zinc	Molybdenum
11	Area	Number	Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
12	OB A-1	J15FF4	8/21/07	3.7	266	0.07	9.3	34.6	38.9	0.56
13	OB A-2	J15BV3	8/8/07	4.2	297	0.03	9.1	36.9	33.3	0.23
14	OB A-3	J15BV4	8/8/07	20.4	298	0.05	10.1	42.4	38.2	0.24
15	OB A-4	J15FF5	8/21/07	5.9	270	0.03	10.4	36.1	36.0	0.24

17			Lead	Manga	inese	M	ercury		Nickel		Va	anadium		Zinc	Mol	ybdenu	ım
18	95% UCL based on		set (n<10). Use etric z-statistic.	Small data set nonparametri		I .	set (n<10). Use etric z-statistic.	Small data nonparan	•	•		a set (n<10). Use netric z-statistic.		a set (n<10). Use netric z-statistic.	Small data nonparam	•	•
19	N	4		4		4		4			4		4		4		
20[% < Detection limit			0%		0%		0%			0%		0%		75%		
21[Mean	8.6		283		0.05		9.7			37.5		36.6		0.32		
2[Standard deviation			17.1		0.02		0.62			3.40		2.52		0.16		
3	95% UCL on mean	15.1		297		0.06		10.2			40.3		38.7		0.45		
4[Maximum value			298		0.07		10.4			42.4		38.9		0.56		
25	Final Statistical Value	15.1		297		0.06		10.2			40.3		38.7		0.56		
26	Most Stringent Cleanup Limit for nonradionuclide and RAG type (mg/kg) WAC 173-340 3-PART TEST		GW & River Protection		GW & River Protection	0.33	GW & River Protection	19.1	River Pr	rotection	85.1	GW Protection	67.8	River Protection	. 3	GW F	Protection
8!	95% UCL > Cleanup Limit?	YES		NO		NO		NO			NO		NO		NO		
29	> 10% above Cleanup Limit?	YES		NO		NO		NO	***************************************		NO		NO	······································	NO		
30	Any sample > 2X Cleanup Limit?	NO		NO		NO		NO			NO		NO		NO	***************************************	
31	Further WAC 173-340 Compliance? Assessment Required	be performed meets the 3- when compa	ssessment will d. The data set part test criteria ared to direct eanup levels.	Υє	98		Yes		Yes			Yes		Yes		Yes	

									CALCULA	NOIT	SHEET														
Washington Closur			4.									40.104.10	_												
		L. D. Habel 4				-					Date Job No.					0100F-CA			40)			Rev. No.	0		
	• • • • • •	100-F-26:14 1		ent Pir	nelines Clea	anun Verific	ation	95% UCI	Calculation		טטט ועט.	14000			Checke	d <u>J. M. Cap</u>						Date Sheet No.		-	
	,															Dy 3.0	V. Clat	6			`	oncer no.	11 01 11	-	
1 Split/Duplicate Anal	, 					·																			
2 Sample	Sample	Sample		sium-			dium-			ium-2		Thoriur			Thorium-			ıminı			ntimo			rseni	
3 Area -4 SZ A-3	Number J15BV8	Date 8/9/07	pCi/g 0.076	Q	MDA 0.027	pCi/g 0.484	Q	MDA 0.043	pCi/g 0.609	Q	MDA 0.108	pCi/g 0.599	Q	MDA	pCi/g C		mg/kg	Q	PQL	mg/kg	Q		mg/kg	Q	PQL
5 SZ A-3 Dup	J15BV9	8/9/07	0.076	\vdash	0.027	0.416	+	0.054	0.660	\dashv	0.108	0.599		0.034	0.609 0.660	0.108	6920 2430	C	5.0 4.8	0.83	+	0.66	1.8		1.2
6 SZ A-3 Split	J15BW2	8/9/07	0.081	$\vdash \vdash \vdash$	0.033	0.410	+ +	0.034	0.000		0.120	0.779		0.036	0.660	0.120	6510		5.1	0.79	В	0.64 1.0	1.2	U B	0.5
7 Analysis:	1 0.02.12	0,0,0,	0.001	J	0.010	1			J	L		L			L		1 0310	LL	3.1		IPI	1.0	1.0		0.5
8	TDL			0.1		T	0.1			0.2			1		1		1	5			6			10	
9	Both >		Yes	(conti	inue)	Yes	(cont	inue)	Yes (d	***************************************		Yes (d	conti	inue)	Yes (co	ntinue)	Yes (conti	inue)	Yes	(cont	inue)	No - eva	uate d	lifference
Duplicate Analysis	Both >5		No - eval	uate c	difference	No - eval	uate d	difference	No - evalu	ate d	lifference	No - evalu	ate c	difference	No - evaluate	difference	Yes (RPD)	No - eva	luate d	difference			
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Difference		No	accep	atabla	No	booor	otable	No. o		tabla	No. o		tabla	NIS SSS			96%	- 1-1 -						
13	Both >			(conti		110-	accer	nable	No - a	ccep	lable	No-a	ccep	lable	No - acc	ертавіе	Yes	applic			accer (cont	otable		accep (conti	
14		XTDL?			difference												Yes (difference	No - eva	`	
15 Split Analysis	RF	PD														***************************************		6.1%		1.10 0.10		dillororido	110 014	uuto u	
16	Difference	>2xTDL?	No -	accep	otable												Not a	applic	able	No -	accep	otable	No -	accep	table
17 Split/Duplicate Anal	lysis, Excavat	ion Shallow 2	Zone (conti	nued)																				
18 Sample	Sample	Sample	E	Bariur	n	В	erylliu		В	oron		Chr	omiu	um	Cob	alt	С	oppe	er	T	Iron			Lead	
19 Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg C		mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
20 SZ A-3	J15BV8	8/9/07	216	C	0.06	0.33	$\vdash \vdash$	0.03	31.6		1.1		С	0.30	6.0 C		13.2		0.27	13000	С	7.1	4.1		0.98
21 SZ A-3 Dup 22 SZ A-3 Split	J15BV9	8/9/07	32.6	С	0.06	0.08	닊	0.03	1.0	<u>n</u>	1.0	4.2	С	0.29	2.7 C	<u> </u>	5.4	\sqcup	0.26	6500	C	6.9	1.9		0.95
23 Analysis:	J15BW2	8/9/07	67.9	11	0.46	0.25	B	0.14	13.6	В	3.0	9.4		0.45	7.4 B	0.46	11.3		0.80	15600	لــــــــــــــــــــــــــــــــــــــ	7.5	5.8	LI	0.60
24	TDL		T	2			0.5		1	2	· · · · · · · · · · · · · · · · · · ·	I	1	W	2		Τ	1			5			5	
25	Both >	PQL?	Yes	(conti	inue)	Yes	(cont	inue)	No - evalu	ate d	lifference	Yes (c	onti	inue)	Yes (co		Yes (conti	inue)	Yes	(cont	inue)	Yes	(conti	nue)
26 27 Duplicate Analysis		SxTDL?	Yes	(calc	RPD)	No - eval	uate d	difference				No - evalu			No - evaluate		. Yes ((calc		No - eva	<u>` </u>	
27 Duplicate Allarysis	RF			148%														84%			66.7%	6			
28	Difference			applic				otable .	Yes - ass			Yes - ass			No - acc			applic			applic	~		accep	
29 30 Calit Analysis	Both >	SXTDL?		(conti (calc				inue) difference	Yes (c			Yes (c			Yes (co		Yes ((cont			(conti	
31 Split Analysis		PD.		104%		140 - eval	uate	21116161106		80%	ירט)		16%	nru)	No - evaluati	difference	res (16%	RPD)		18.2%	RPD)	No - eva	iuate d	lifference
32		>2xTDL?	<u> </u>	applic		No -	accer	otable	Not a		able	Not a		able	No - acc	eptable	Not a	applic			applic		No -	accep	table
33 Split/Duplicate Anal	lysis Excavat	ion Shallow	Zone (conti	nued	1					d			I		<u> </u>		<u> </u>								
34 Sample	Sample	Sample		gnesi	/	Ma	ngan	ese	Moly	bden	num	N	icke	I	Potas	sium	s	ilico	n	T	Sodiu	m	V	nadiu	ım
35 Area	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg C	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
36 SZ A-3	J15BV8	8/9/07	3820	C	2.4	228	1_1	0.21	0.51		0.48	9.5		0.81	815 C		1610	С	2.6	481	С	2.1	34.2	С	0.24
37 SZ A-3 Dup 38 SZ A-3 Split	J15BV9 J15BW2	8/9/07 8/9/07	1720 3760	С	2.3	118		0.20	0.46	U	0.46	4.2		0.78	364 C		923	С	2.5	90.6	C	2.0	15.8	С	0.23
39 Analysis:	J15DW2	6/9/07	3760	لـــــــــــــــــــــــــــــــــــــ	18	246		0.08	1.8	U	1.80	9.0		2.30	1090	151	412		18.1	157		12.0	37.1		1.10
40	TDL		T	75		1	5			5		1	4		40	0	Τ	2			50			2.5	
41	Both >	PQL?	Yes	(cont	inue)	Yes	(cont	inue)	No - evalu	iate d	lifference	Yes (d	conti	inue)	Yes (co		Yes		inue)	Yes		inue)	Yes	(conti	nue)
Duplicate Analysis		5xTDL?	Yes	(calc		Yes		RPD)				No - evalu	ate o	difference	No - evaluat	e difference		<u> </u>	RPD)			difference		(calc I	
43		PD		76%		<u> </u>	64%											54%						74%	
44 45		>2xTDL? PQL?		applic			applic		No - a			No - a			No - acc			applic				s further		applic	
46		5xTDL?			RPD)			inue) RPD)	No - evalu	iale 0	mierence				Yes (co No - evaluat				inue) RPD)			tinue) difference		(conti	
47 Split Analysis		PD		1.6%		103	7.6%					140 Evalu	ait (amerer ice	140 - evaluat	- unerence		118%		INO - eva	iuale	unerence	res	(calc l 8.1%	
48		>2xTDL?		applic		Not	applic		No - a	ссер	table	No - a	ccep	otable	No - acc	eptable		applic		Yes - a	ssess	s further	Not	applic	
49 Split/Duplicate Ana	lysis, Excavat	tion Shallow	Zone (conti	inued	1)																		***************************************		
50 Sample	Sample	Sample		Zinc	;	Hexaval	ent C	hromium	Ca	alciur	m	Potas	ssiui	m-40	1										
51 Area	Number	Date	mg/kg	Q		mg/kg		PQL	mg/kg	Q															
52 SZ A-3	J15BV8	8/9/07	29.1	C		0.28	4-4	0.20		C	2.1	13.4		0.245											
53 SZ A-3 Dup	J15BV9	8/9/07	16.6	C		0.50	+,,-	0.20	1690	C	2.1	13.4		0.369						•					
54 SZ A-3 Split 55 Analysis:	J15BW2	8/9/07	37.5		3.00	0.35	U	0.35	4970		60.2	l	1	L	J										
56 Analysis.	TDL		1	1		T	1		T	100		T	0.5		1										
57		PQL?	Yes	(cont	tinue)	Yes	(cont	inue)	Yes (inue)	Yes (inue)											
58 Duplicate Analysis		5xTDL?	Yes	(calc	RPD)	No - eva	luate	difference	Yes (calc I	RPD)	Yes (calc	RPD)											
59		PD		55%						127%			0%		1										
60		>2xTDL?		applic				otable	Not a			Not a	pplic	cable											
61 62 Calit Analysis		PQL? 5xTDL?			tinue) RPD)	No - eva	iuate	difference	Yes (-										
Split Analysis		PD	168	25%						42%					1										
64		e >2xTDL?	Not		cable	No-	accei	ptable		applic		 			1										
			1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			2000		1,000		~~~	L			ı										

Attachment 1. 100-F-26:14 Verification Sampling Results.

Sample	HEIS	Sample	Americ	um-2	41 GEA	Ba	rium	-133		ium-	137	Co	balt	-60	Euro	pium	-152
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	0	MDA	pCi/g	0	MDA	pCi/g	0	MDA
OB A-1	J15FF4	8/21/07	0.263	U	0.263	0.085	U	0.085	1.96		0.076	0.252		0.074	1.36		0.185
OB A-2	J15BV3	8/8/07	0.143	U	0.143	0.029	U	0.029	0.521		0.027	0.043		0.021	0.527		0.058
OB A-3	J15BV4	8/8/07	0.133	U	0.133	0.060	U	0.060	0.410		0.042	0.040	Ū	0.040	0.576		0.091
OB A-4	J15FF5	8/21/07	0.073	U	0.073	0.082	U	0.082	0.090		0.083	0.087	U	0.087	0.210	U	0.210
SZ A-1	J15BV6	8/9/07	0.277	U	0.277	0.041	U	0.041	0.118		0.035	0.043	Ū	0.043	0.113		0.086
SZ A-2	J15BV7	8/9/07	0.307	U	0.307	0.044	U	0.044	0.263		0.044	0.055		0.043	0.525		0.105
SZ A-3	J15BV8	8/9/07	0.145	U	0.145	0.029	U	0.029	0.076		0.027	0.022	U	0.022	0.062	U	0.062
SZ A-3 Dup	J15BV9	8/9/07	0.120	U	0.120	0.055	U	0.055	0.085		0.035	0.036	U	0.036	0.102	U	0.102
SZ A-3 Split	J15BW2	8/9/07				-0.004	U	0.014	0.081		0.016	0.008	U	0.016	0.012	U	0.036
SZ A-4	J15BW0	8/9/07	0.043	U	0.043	0.027	U	0.027	0.061		0.030	0.089		0.031	0.058	Ū	0.058

Sample	HEIS	Sample	Euro	piun	ı-154	Eur	opiur	n-155	Ni	ckel-	63	Pota	ssiu	m-40	Rad	ium-	226
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	0	MDA	pCi/g	Q	MDA	pCi/g	0	MDA
OB A-1	J15FF4	8/21/07	0.247	U	0.247	0.174	U	0.174	9.62	_	3.19	12.1		0.720	0.405	_	0.157
OB A-2	J15BV3	8/8/07	0.076	U	0.076	0.082	U	0.082	1.97	U	3.25	13.3		0.234	0.407		0.044
OB A-3	J15BV4	8/8/07	0.132	U	0.132	0.185	U	0.185	1.26	U	3.33	15.0		0.264	0.464		0.064
OB A-4	J15FF5	8/21/07	0.242	U	0.242	0.157	Ū	0.157	2.50	U	3.24	6.34		0.700	0.246		0.150
SZ A-1	J15BV6	8/9/07	0.124	U	0.124	0.103	U	0.103	0.128	U	3.60	14.4		0.332	0.413		0.074
SZ A-2	J15BV7	8/9/07	0.135	U	0.135	0.117	U	0.117	3.24	U	3.50	13.3		0.360	0.433	_	0.085
SZ A-3	J15BV8	8/9/07	0.075	U	0.075	0.083	U	0.083	-0.310	U	3.73	13.4		0.245	0.484		0.043
SZ A-3 Dup	J15BV9	8/9/07	0.127	U	0.127	0.094	U	0.094	-0.286	U	3.44	13.4		0.369	0.416		0.054
SZ A-3 Split	J15BW2	8/9/07	0.010	U	0.052	0.014	U	0.039	-0.293	U	6.28						0.054
SZ A-4	J15BW0	8/9/07	0.077	U	0.077	0.064	U	0.064	1.45	U	3.38	14.6		0.199	0.414		0.043

Sample	HEIS	Sample	Rac	lium-	228	Silver-1	08 m	etastable	Thoriu	m-22	8 GEA	Thoriu	m-2	32 GEA	Stro	ntiun	1-90
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	0	MDA	pCi/g	0	MDA	pCi/g	0	MDA
OB A-1	J15FF4	8/21/07	0.980	U	0.980	0.063	Ū	0.063	0.325		0.145	0.980	Ū	0.980	0.373	×	0.214
OB A-2	J15BV3	8/8/07	0.594		0.098	0.018	U	0.018	0.625		0.032	0.594		0.098	0.153	IJ	0.246
OB A-3	J15BV4	8/8/07	0.832		0.160	0.031	U	0.031	0.942		0.084	0.832		0.160	0.186		0.179
OB A-4	J15FF5	8/21/07	0.292		0.266	0.056	U	0.056	0.431		0.101	0.292		0.266	0.006	IJ	0.226
SZ A-1	J15BV6	8/9/07	0.753		0.146	0.026	U	0.026	0.619		0.046	0.753		0.146	-0.005	IJ	0.200
SZ A-2	J15BV7	8/9/07	0.590		0.176	0.030	U	0.030	0.645		0.054	0.590		0.176	0.148	IJ	0.263
SZ A-3	J15BV8	8/9/07	0.609		0.108	0.017	U	0.017	0.599		0.034	0.609		0.108	-0.097	Ū	0.302
SZ A-3 Dup	J15BV9	8/9/07	0.660		0.128	0.027	U	0.027	0.779		0.056	0.660		0.128	0.019	IJ	0.220
SZ A-3 Split	J15BW2	8/9/07				-0.003	U	0.011							-0.021	II	0.154
SZ A-4	J15BW0	8/9/07	0.708		0.092	0.018	U	0.018	0.646		0.028	0.708		0.092	0.006	Ü	0.269

Sample	HEIS	Sample	Uraniı	ım-23	5 GEA	Uraniı	ım-2	38 GEA
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA
OB A-1	J15FF4	8/21/07	0.270	U	0.270	9.43	Ü	9.43
OB A-2	J15BV3	8/8/07	0.109	U	0.109	2.83	U	2.83
OB A-3	J15BV4	8/8/07	0.186	U	0.186	4.66	U	4.66
OB A-4	J15FF5	8/21/07	0.270	U	0.270	9.14	U	9.14
SZ A-1	J15BV6	8/9/07	0.149	U	0.149	4.01	U	4.01
SZ A-2	J15BV7	8/9/07	0.169	U	0.169	4.53	U	4.53
SZ A-3	J15BV8	8/9/07	0.162	U	0.162	2.80	U	2.80
SZ A-3 Dup	J15BV9	8/9/07	0.148	U	0.148	4.36	U	4.36
SZ A-3 Split	J15BW2	8/9/07	1					
SZ A-4	J15BW0	8/9/07	0.105	U	0.105	2.90	U	2.90

Note: Data qualified with B, C, D and/or J, are considered acceptable values.

GEA = gamma energy analysis

PQL = practical quantitation limit

HEIS = Hanford Environmental Information System

Q = qualifier

MDA = minimum detectable activity

U = undetected

Attachment Originator Checked Calc. No.

 1
 Sheet

 L. D. Habel
 Date

 J. M. Capron
 Date

 0100F-CA-V0305
 Rev.

Sheet No. 1 of 3

Date 10/01/07

Date Rev. No. 04

Attachment 1. 100-F-26:14 Verification Sampling Results.

Sample	HEIS	Sample	Al	umin			ntime	ony		rseni		В	ariu	m	Be	rylliu	m
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	0	POL	mg/kg	0	POL	mg/kg	o	POL
OB A-1	J15FF4	8/21/07	5460	С	4.9	0.65	Ü	0.65	3.1		1.2	56.5	Ĉ	0.06	0.03	Ū	0.03
OB A-2	J15BV3	8/8/07	4960		4.8	0.63	U	0.63	2.5		1.2	61.7	С	0.06	0.03	U	0.03
OB A-3	J15BV4	8/8/07	6100		5.0	0.66	U	0.66	2.6		1.2	63.5	С	0.06	0.03	U	0.03
OB A-4	J15FF5	8/21/07	6750	С	4.9	0.65	U	0.65	2.5		1.2	105	С	0.06	0.21	С	0.03
SZ A-1	J15BV6	8/9/07	5740	С	4.9	0.65	UJ	0.65	2.0		1.2	55.8	С	0.06	0.20		0.03
SZ A-2	J15BV7	8/9/07	5850	С	4.8	0.69	J	0.63	3.1		1.2	58.5	С	0.06	0.20		0.03
SZ A-3	J15BV8	8/9/07	6920	С	5.0	0.83	J	0.66	1.8		1.2	216	С	0.06	0.33		0.03
SZ A-3 Dup	J15BV9	8/9/07	2430	С	4.8	0.79	J	0.64	1.2	U	1.2	32.6	С	0.06	0.08		0.03
SZ A-3 Split	J15BW2	8/9/07	6510		5.1	1.4	В	1.0	1.8	В	0.5	67.9	П	0.46	0.25	В	0.14
SZ A-4	J15BW0	8/9/07	4310	С	4.8	0.63	UJ	0.63	2.4		1.2	49.0	С	0.06	0.16		0.03

Sample	HEIS	Sample		Boror	ì	C	admi	um	(Calciur	n	Chrom	ium	(total)	Hexavale	nt Ch	romium
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	0	POL	mg/kg	0	POL
OB A-1	J15FF4	8/21/07	1.2	C	1.1	0.15	Ŭ	0.15	5250		2.1	7.6	C	0.29	0.21	Ū	0.20
OB A-2	J15BV3	8/8/07	1.0	ŭ	1.0	0.16		0.14	4060	С	2.0	7.5	С	0.29	0.20	U	0.20
OB A-3	J15BV4	8/8/07	1.1	Ü	1.1	0.19		0.15	5620	С	2.1	9.2	С	0.30	0.20	U	0.20
OB A-4	J15FF5	8/21/07	13.5	C	1.1	0.15	U	0.15	6200		2.1	9.7	С	0.30	0.20	U	0.20
SZ A-1	J15BV6	8/9/07	1.1	U	1.1	0.15	U	0.15	6260	С	2.1	9.1	С	0.30	0.32		0.20
SZ A-2	J15BV7	8/9/07	1.6		1.0	0.14	U	0.14	4230	С	2.0	9.5	C	0.29	0.25		0.20
SZ A-3	J15BV8	8/9/07	31.6		1.1	0.15	U	0.15	7630	С	2.1	8.0	C	0.30	0.28		0.20
SZ A-3 Dup	J15BV9	8/9/07	1.0	U	1.0	0.14	U	0.14	1690	С	2.1	4.2	C	0.29	0.50		0.20
SZ A-3 Split	J15BW2	8/9/07	13.6	В	3.0	0.12	U	0.12	4970		60.2	9.4	П	0.45	0.35	U	0.35
SZ A-4	J15BW0	8/9/07	1.3		1.0	0.14	U	0.14	3000	С	2.0	6.9	С	0.29	0.36		0.20

Sample	HEIS	Sample	(Cobal	t	(Copp	er		Iron			Lea	d	Ma	gnesi	um
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	0	POL	mg/kg	0	POL
OB A-1	J15FF4	8/21/07	5.6		0.24	12.2		0.26	14100	C	7.0	3.7		0.97	3440	Ĉ	2.4
OB A-2	J15BV3	8/8/07	6.2		0.23	12.6	С	0.26	15900	С	6.9	4.2		0.95	3410	C	2.3
OB A-3	J15BV4	8/8/07	6.8		0.24	13.9	С	0.27	18100	С	7.1	20.4		0.98	4030	C	2.4
OB A-4	J15FF5	8/21/07	5.7		0.24	15.3		0.27	14400	С	7.1	5.9		0.98	3660	C	2.4
SZ A-1	J15BV6	8/9/07	6.0	С	0.24	12.5		0.27	15400	С	7.1	5.9		0.98	3670	c	2.4
SZ A-2	J15BV7	8/9/07	6.6	С	0.23	12.5		0.26	16700	С	6.8	4.8		0.95	3820	C	2.3
SZ A-3	J15BV8	8/9/07	6.0	С	0.24	13.2		0.27	13000	С	7.1	4.1		0.98	3820	C	2.4
SZ A-3 Dup	J15BV9	8/9/07	2.7	C	0.23	5.4		0.26	6500	С	6.9	1.9		0.95	1720	С	2.3
SZ A-3 Split	J15BW2	8/9/07	7.4	В	0.46	11.3		0.80	15600		7.5	5.8		0.60	3760		18
SZ A-4	J15BW0	8/9/07	5.0	С	0.23	11.1		0.26	11000	С	6.8	2.6		0.94	3000	С	2.3

Sample	HEIS	Sample	Ma	ngan	ese	M	1ercu	ıry	Mo	lybder	num	N	lick	el	Po	tassit	ım
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	О	POL	mg/kg	0	PQL
OB A-1	J15FF4	8/21/07	266	С	0.21	0.07		0.01	0.56	С	0.47	9.3	С	0.79	997	Ċ	9.4
OB A-2	J15BV3	8/8/07	297		0.20	0.03		0.01	0.46	U	0.46	9.1		0.77	974	C	9.2
OB A-3	J15BV4	8/8/07	298		0.21	0.05		0.01	0.48	U	0.48	10.1		0.81	1120	C	9.5
OB A-4	J15FF5	8/21/07	270	С	0.21	0.03		0.02	0.47	U	0.47	10.4	С	0.80	1090	C	9.5
SZ A-1	J15BV6	8/9/07	251		0.21	0.02		0.02	0.47	U	0.47	9.8		0.80	912	C	9.5
SZ A-2	J15BV7	8/9/07	291		0.20	0.01	U	0.01	0.46	U	0.46	10.0		0.77	1060	C	9.2
SZ A-3	J15BV8	8/9/07	228		0.21	0.01	U	0.01	0.51		0.48	9.5		0.81	815	C	9.5
SZ A-3 Dup	J15BV9	8/9/07	118		0.20	0.01	U	0.01	0.46	U	0.46	4.2		0.78	364	Ċ	9.3
SZ A-3 Split	J15BW2	8/9/07	246		0.08	0.01	U	0.01	1.8	U	1.80	9.0	П	2.30	1090		151
SZ A-4	J15BW0	8/9/07	200		0.20	0.01	U	0.01	0.46	U	0.46	8.1		0.77	700	С	9.2

Note: Data qualified with B, C, D and/or J, are considered acceptable values.

 $B = \text{estimated result} \\ C = \text{blank contamination} \\ MDA = \text{minimum detectable activity} \\ PQL = \text{practical quantitation limit}$

GEA = gamma energy analysis Q = qualifierHEIS = Hanford Environmental Information System U = undetected Attachment Originator Checked

L. D. Habel Date
J. M. Capron Date

Sheet No. 2 of 3

Date 10/29/07

Sample	HEIS	Sample	Se	eleniu	m		Silico	n		Silver		Se	odiu	m	Va	nadiı	ım
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	0	PQL
OB A-1	J15FF4	8/21/07	1.3	U	1.3	3710		2.5	0.26	U	0.26	224	C	2.1	34.6		0.24
OB A-2	J15BV3	8/8/07	1.2	U	1.2	1190	C	2.5	0.26	U	0.26	126	C	2.0	36.9		0.23
OB A-3	J15BV4	8/8/07	1.3	U	1.3	824	С	2.6	0.27	U	0.27	155	С	2.1	42.4		0.24
OB A-4	J15FF5	8/21/07	1.3	U	1.3	2490		2.5	0.27	U	0.27	227	C	2.1	36.1		0.24
SZ A-1	J15BV6	8/9/07	1.3	U	1.3	578	CJ	2.5	0.27	U	0.27	211	C	2.1	39.7	CJ	0.24
SZ A-2	J15BV7	8/9/07	1.2	U	1.2	880	Cl	2.5	0.26	U	0.26	170	С	2.0	40.2	CJ	0.23
SZ A-3	J15BV8	8/9/07	1.3	U	1.3	1610	CJ	2.6	0.27	U	0.27	481	С	2.1	34.2	CI	0.24
SZ A-3 Dup	J15BV9	8/9/07	1.2	Ū	1.2	923	CJ	2.5	0.26	U	0.26	90.6	С	2.0	15.8	CJ	0.23
SZ A-3 Split	J15BW2	8/9/07	0.9	U	0.9	412		18.1	0.73	U	0.73	157		12.0	37.1		1.10
SZ A-4	J15BW0	8/9/07	1.2	U	1.2	932	CJ	2.5	0.26	U	0.26	130	С	2.0	25.1	CJ	0.23

Sample	HEIS	Sample		Zinc	
Location	Number	Date	mg/kg	Q	PQL
OB A-1	J15FF4	8/21/07	38.9	С	0.12
OB A-2	J15BV3	8/8/07	33.3	С	0.11
OB A-3	J15BV4	8/8/07	38.2	С	0.12
OB A-4	J15FF5	8/21/07	36.0	C	0.12
SZ A-1	J15BV6	8/9/07	35.3	С	0.12
SZ A-2	J15BV7	8/9/07	35.9	C	0.11
SZ A-3	J15BV8	8/9/07	29.1	С	0.12
SZ A-3 Dup	J15BV9	8/9/07	16.6	C	0.12
SZ A-3 Split	J15BW2	8/9/07	37.5		3.00
SZ A-4	J15BW0	8/9/07	27.7	С	0.11

Note: Data qualified with B, C, D and/or J, are considered acceptable values.

B = estimated result

MDA = minimum detectable activity

Attachment

Sheet No. 3 of 3 Date 10/29/07

C = blank contamination

PQL = practical quantitation limit

Originator Checked

L. D. Habel J. M. Capron Date 0100F-CA-V0305

GEA = gamma energy analysis

Q = qualifier HEIS = Hanford Environmental Information System U = undetected

Calc. No.

Rev. No. 0 (cett

Acrobat 8.0

CALCULATION COVER SHEET

Project T	itle: 100-F Field Remediati	on		•	Job	No. 14655
Area: 100	D-F					
Discipline	e: Environmental		*Cal	culation No: 010	0F-CA-V0311	
Subject:	100-F-26:14 Hazard Quotie	ent and Carcinog	enic Risk Calcula	itions		
Compute	er Program: Excel		Progra	am No: Excel 200	03	
The atta	ached calculations have been should be used in c	generated to docu conjunction with oth	ment compliance w ner relevant docume	rith established clear ents in the adminis	anup levels. These trative record.	calculations
Committe	ed Calculation 🛛	Prelimina	ry 🗆	Superseded [Void	ded 🗌
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date
0	Total = 4	L. D. Habel	J. M. Capron	N/A	S. W. Callison	
		11/1	by S. W. Clar	K	SW all	10-4-07
			Live can	-		
		SUMM	ARY OF RE	VISION		

WCH-DE-018 (05/08/2007)

*Obtain Calc. No. from Document Control and Form from Intranet

_	Washington Closure Hanford		CALCULATION SHEET					
	Originator:	L.D. Habel $ abla abla$	Date:	10/3/07	Calc. No.:	0100F-CA-V0311	Rev.:	0
	Project:	100-F Field Remediation	Job No:	14655	Checked:	J. M. Capron	Date:	10/3/07
L	Subject:	100-F-26:14 Hazard Quotient and Carcinogenic Risk Calculations				by S. W. Clark	Sheet No. 1 of 3	
						/ swe		

PURPOSE:

Provide documentation to support the calculation of the hazard quotient (HQ) and carcinogenic (excess cancer) risk values for the 100-F-26:14 site remedial action. In accordance with the remedial action goals (RAGs) in the remedial design report/remedial action work plan (RDR/RAWP) (DOE-RL 2005), the following criteria must be met:

- 1) An HQ of <1.0 for all individual noncarcinogens
- 2) A cumulative HQ of <1.0 for noncarcinogens
- 3) An excess cancer risk of <1 x 10⁻⁶ for individual carcinogens
- 4) A cumulative excess cancer risk of <1 x 10⁻⁵ for carcinogens.

GIVEN/REFERENCES:

1) DOE-RL, 2005, Remedial Design Report/Remedial Action Work Plan for the 100 Areas, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

2) EPA, 1994, Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children, EPA/540/R-93/081, Publication No. 9285.7-15-1, U.S. Environmental Protection Agency, Washington, D.C.

3) WAC 173-340, "Model Toxics Control Act - Cleanup," Washington Administrative Code, 1996.

4) WCH, 2007, 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation, 0100F-CA-V0305, Washington Closure Hanford, Richland, Washington.

SOLUTION:

1) Calculate an HQ for each noncarcinogenic constituent detected above background and compare it to the individual HQ of <1.0 (DOE-RL 2005).

2) Sum the HQs and compare to the cumulative HQ criterion of <1.0.

3) Calculate an excess cancer risk value for each carcinogenic constituent detected above background and compare it to the individual excess cancer risk criterion of $<1 \times 10^{-6}$ (DOE-RL 2005).

4) Sum the excess cancer risk values and compare to the cumulative cancer risk criterion of $<1 \times 10^{-5}$.

Washingto	on Closure Hanford	CALCULATION SHEET					
Originator:	L.D. Habel Lat	Date:	10/3/07	Calc. No.:	0100F-CA-V0311	Rev.:	0
Project:	100-F Field Remediation	Job No:	14655	Checked:	J. M. Capron	Date:	10/3/07
Subject:	Subject: 100-F-26:14 Hazard Quotient and Carcinogenic Risk Calculations			by S.W. Clark	Sheet No.	2 of 3	
					Ov. In		

METHODOLOGY:

HQ and carcinogenic risk calculations were conservatively calculated for the entire 100-F-26:14 waste site using the maximum of the statistically determined value for each analyte in all decision units (WCH 2007). Of the nonradionuclide contaminants of concern (COC) lead was the only analyte that required the HQ and risk calculations because it was quantified above background. Additionally, boron, hexavalent chromium, and molybdenum required the HQ and risk calculations because these COCs were detected and a Washington State or Hanford Site background value is not available. All other site nonradionuclide COCs were not detected or were quantified below background levels. An example of the HQ and risk calculations is presented below:

1) For example, the maximum statistical result for molybdenum (0.56 mg/kg), divided by the noncarcinogenic RAG value of 400 mg/kg (calculated in accordance with the noncarcinogenic toxic effects WAC 173-340-740[3]), is 1.4 x 10⁻³. Comparing this value, and all other individual values, to the requirement of <1.0, this criterion is met.

2) After the HQ calculations are completed for the appropriate analytes, the cumulative HQ is obtained by summing the individual values. (To avoid errors due to intermediate rounding, the individual HQ values prior to rounding are used for this calculation.) The sum of the HQ values is 4.6 x 10⁻² Comparing this values to the requirement of <1.0, this criterion is met.

3) To calculate the excess cancer risk, the maximum statistical value is divided by the carcinogenic RAG value, then multiplied by 1×10^{-6} . For example, the maximum value for hexavalent chromium is 0.38 mg/kg; divided by 2.1 mg/kg, and multiplied as indicated, is 1.8×10^{-7} . Comparing this value to the requirement of $<1 \times 10^{-6}$, this criterion is met.

4) After these calculations are completed for the carcinogenic analytes, the cumulative excess cancer risk is obtained by summing the individual values. The sum of the excess cancer risk values is 1.8×10^{-7} . Comparing this value to the requirement of $<1 \times 10^{-5}$, this criterion is met.

RESULTS:

- 1) List individual noncarcinogens and corresponding HQs >1.0: None
- 2) List the cumulative noncarcinogenic HQ >1.0: None
- 3) List individual carcinogens and corresponding excess cancer risk $> 1 \times 10^{-6}$: None
- 4) List the cumulative excess cancer risk for carcinogens $>1 \times 10^{-5}$: None.

Table 1 shows the results of the calculation.

Washingto	on Closure Hantord	CALCULATION SHEET					
Originator:	L.D. Habel Lto	Date:	10/3/07	Calc. No.:	0100F-CA-V0311	Rev.:	0
Project:	100-F Field Remediation	Job No:	14655	Checked:	J. M. Capron	Date:	10/3/07
Subject: 100-F-26:14 Hazard Quotient and Carcinogenic Risk Calculations			by 5, W. Clarket	Sheet No.	3 of 3		
					()~v.)@		

Table 1. Hazard Quotient and Excess Cancer Risk Results for the 100-F-26:14 Waste Site.

Contaminants of Potential Concern	Statistical Value ^a (mg/kg)	Noncarcinogen RAG ^b (mg/kg)	Hazard Quotient	Carcinogen RAG ^b (mg/kg)	Carcinogen Risk
Metals				saidh la bhallan.	
Boron	11.0	16,000	6.9E-04		
Chromium, hexavalent ^c	0.38	240	1.6E-03	2.1	1.8E-07
Lead ^d	15.1	353	4.3E-02		
Molybdenum	0.56	400	1.4E-03		
Totals					
Cumulative Hazard Quotient: 4.6E-02					
Cumulative Excess Cancer Risk:					

13 Notes:

3

5 6

10 11 12

14 RAG = remedial action goal

-- = not applicable

20 CONCLUSION:

21 22

23

24

17

18 19

This calculation demonstrates that the 100-F-26:14 waste site meets the requirements for the hazard quotients and carcinogenic (excess cancer) risk as identified in the RDR/RAWP (DOE-RL 2005).

¹⁵ a = From Calculation No. 0100F-CA-V0305 (WCH 2007).

¹⁶ b = Value obtained from Washington Administrative Code (WAC) 173-340-740(3), Method B, 1996, unless otherwise noted.

^c = Value for the carcinogen RAG calculated based on the inhalation exposure pathway (WAC) 173-340-750(3), 1996.

^d = Value for the noncarcinogenic RAG obtained from EPA (1994).

Acrobat 8.0

CALCULATION COVER SHEET

Project T	itle: Field Remo	ediation			Job	No. 14655
Area:	100-F					
Disciplin	e: Environment	tal	*Calc	ulation No: _010	00F-CA-V0312	
Subject:	100-F-26:14 1	16-F5 Influent F	Pipelines Cleanu	p Verification I	RESRAD Calcu	lation Brief
Compute	er Program: <u>RES</u>	RAD	Prograi	m No: Version	6.3	
The	attached calculations ha should be	ave been generated to used in conjunction v	o document compliand with other relevant doc	ce with established cl cuments in the admin	eanup levels. These istrative record.	calculations
Committ	ed Calculation 🛚	Pr	eliminary 🗌	Superseded	☐ Vo	ided 🗌
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date
0	Cover – 1 pg Summary – 5 pg Attm. 1 - 1 pg					
	Attm. 2 - 19 pg Attm. 3 - 21 pg Attm. 4 - 10 pg Attm. 5 - 20 pg Attm. 6 - 21 pg	L.W. Clark	al M Sullowa		SWall	10-4-07
	Attm. 7 - 10 pg Total – 108 pages	S. W. Clark	H. M. Sulloway) N/A	S. W. Callison	, ,
		SUMN	MARY OF RI	EVISION		

WCH-DE-018 (05/08/2007)

*Obtain Calc. No. from Document Control and Form from Intranet

Washington Closure Hanford	CALCULATION SHEET

Originator:	S. W. Clark	Date:	10/3/47	Calc. No.:	0100F-CA-V0312/	Rev.:	, 0,
Project:	100-F Field Remediation	Job No:	14655	Checked:	H. M. Sulloway	Date:	10/3/07
Subject: 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification RESRAD Calculation Brief Sheet No. 1/ of 5							

PURPOSE:

Calculate the soil and groundwater concentrations, dose, and risk contributions from remaining radionuclide contaminants in the remediated 100-F-26:14 116-F5 Influent Pipelines areas (the excavation shallow zone and overburden/below cleanup level soil areas) over a period of 1,000 years.

GIVEN/REFERENCES:

- 1) Cleanup verification data from 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification 95% UCL Calculation, Calculation No. 0100F-CA-V0305, Rev. 0, Washington Closure Hanford, Richland, Washington (100-F-26:14 95% UCL Calculation).
- Remedial Design Report/Remedial Action Work Plan for the 100 Area (RDR/RAWP),
 DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland,
 Washington.
 For the purpose of these RESRAD calculations, the radioactive contaminants of concern
 - 3) For the purpose of these RESRAD calculations, the radioactive contaminants of concern (COCs) established in the 100-F-26:14 95% UCL Calculation are cesium-137, cobalt-60, europium-152, nickel-63, and strontium-90.
 - 4) The nonradionuclide COCs include barium, hexavalent chromium, lead, and mercury. The full suite of nonradionuclide contaminants of potential concern (COPCs) and attainment of their remediation goals are discussed in the 100-F-26:14 95% UCL Calculation. All nonradionuclide direct exposure RAGs are met and protection of groundwater and the river can be demonstrated by the results of vertical migration modeling in the 100 Area Analogous Sites RESRAD Calculations, 0100X-CA-V0050, Rev. 0, Bechtel Hanford, Inc., Richland, Washington, which predicts that the nonradionuclides will not migrate to groundwater (and thus the Columbia River) within 1,000 years.
 - 5) RESidual RADioactivity (RESRAD) computer code, version 6.3, to calculate compliance with residual radioactivity guidelines, developed for the U.S. Department of Energy by the Environmental Assessment Division of Argonne National Laboratory, Argonne, Illinois.
 - 6) Sample design data from the 100-F-26:14 Shallow Zone and Overburden Sampling Plan, Calculation No. 0100F-CA-V0309, Rev. 0, Washington Closure Hanford, Richland, Washington.
 - 7) Groundwater elevation from *Hanford Groundwater Monitoring for Fiscal Year 2006*, PNNL-16346, Pacific Northwest National Laboratory, Richland, Washington.

SOLUTION:

1) Separate RESRAD runs were performed for the 100-F-26:14 116-F5 Influent Pipelines Excavation Shallow Zone and Overburden/Below Cleanup Level Stockpile soils. Table 1 shows the elevations (NAVD88) and thickness of each soil horizon. Attachment 1 shows representative dimensions of soil horizons and contaminant pathways considered for dose, risk, and groundwater protection. Input factors for each run are shown in the "Summary" section of the RESRAD "Mixture Sums and Single Radionuclide Guidelines" printouts in the Attachments to this Calculation Summary.

Washing	gton Closure Hanford	CALC	ULĄŢI	ON SHEE	ET		
Originator:	S. W. Clark	Date:	10/8/07	Calc. No.:	0100F-CA-V0312/	Rev.:	
Project:	100-F Field Remediation	Job No:	14655	Checked:	H. M. Sulloway	Date:	10
Subject:	Subject: 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification RESRAD Calculation Brief					Sheet N	No. /2

Table 1. Waste Site Dimensions for RESRAD Modeling								
Parameter	Units	Excavation Shallow Zone	OB/BCL					
Contaminated Zone Dimensions								
Cover Depth	m	0	0					
Area of Contaminated Zone (CZ)	m ²	655	789					
Length Parallel to Aquifer Flow	m	30	40					
Elevati	ions of Vadose	Zone Horizons						
Elevation: Surface	m	126.4	126.4					
Elevation: Groundwater	m	114.0	114.0					
Thickness: Contaminated Zone	m	4.6	4.6					
Thickness: Unsaturated Zone m 7.8 7.8								
OB/BCL = Overburden/Below Cleanup Levels Stockpile								

2) The year where the peak dose (or concentration) occurs from each individual radionuclide COC and layer is determined by a preliminary run. This year is then added for all horizons for the final RESRAD runs. For the direct exposure pathway (i.e. soil ingestion and inhalation and external radiation), the peak year occurred at year zero (year 2007) for all COCs. For the water pathways (i.e. drinking water and food ingestion) the peak year was year 7 for cobalt-60, year 43 for cesium-137 and strontium-90, and year 135 for nickel-63. The 7-, 43-, and 135-year time periods were added to all RESRAD runs.

METHODOLOGY:

1) Runs of RESRAD version 6.3 were completed for the 100-F-26:14 116-F5 Influent Pipelines Excavation Shallow Zone and Overburden/Below Cleanup Level Stockpile soils using the radionuclide concentrations shown in Table 2. RESRAD numerical output reports for dose, risk, and concentration are presented in the Attachments to this calculation summary.

Table 2. Cleanup Verification Data Set Radionuclides (from the 100-F-26:14 95% UCL Calculation)						
COCs	Excavation Shallow Zone	Overburden/Below Cleanup Levels Stockpile				
R	Radionuclide Activity (pCi/g)					
Cesium-137	0.206	1.43				
Cobalt-60	0.073	0.179				
Europium-152	0.370	1.07				
Nickel-63		7.04				
Strontium-90		0.304				

<u>Washing</u>	gton Closure Hanford	CALCULA'	JION SHEET

Originator:	S. W. Clark	Date:	10/3/07	Calc. No.:	0100F-CA-V0312	Rev.:	101
Project:	100-F Field Remediation	Job No:	14655	Checked:	H. M. Sulloway	Date:	10/3/07
Subject: 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification RESRAD Calculation Brief Sheet No. B of 5						lo. B of 5	

RESULTS:

1

1) Radionuclide "All Pathways" Dose Rate

The "all pathways" (maximum) dose rates are shown in Table 3. The maximum all pathways dose rate from the 100-F-26:14 116-F5 Influent Pipelines is 10.0 mrem/yr at year zero (2007) from the Overburden/Below Cleanup Level Stockpile area. The maximum all-pathways dose rates from the Excavation Shallow Zone is 2.72 mrem/yr at year zero (2007).

7
8

Table 3. All Pathways Dose Rate (mrem/yr)										
RESRAD	Vadose Zone	The state of the s								
Run	Horizons	0	0 1 3 7 11 43 135 300 100							
Excavation	Shallow Zone	2.72E+00	2.72E+00 2.54E+00 2.23E+00 1.74E+00 1.39E+00 3.29E-01 2.01E-02 4.00E-04 3.25E-11							
OB/BCL	OB/BCL Shallow Zone 1.00E+01 9.50E+00 8.55E+00 7.02E+00 5.85E+00 1.85E+00 1.64E-01 4.32E-03 5.29E-06									
OB/BCL = Over	OB/BCL = Overburden/Below Cleanup Levels Stockpile									

9 10

2) Radionuclide Excess Lifetime Cancer Risk

The radionuclide excess lifetime cancer risk (ELCR) results are shown in Table 4. The maximum ELCR for the 100-F-26:14 116-F5 Influent Pipelines is 1.21×10^{-4} at year zero (2007) for the Overburden/Below Cleanup Level Stockpile area. The maximum ELCR result for the Excavation Shallow Zone is 2.91×10^{-5} .

14 15

13

11 12

	Table 4. Radionuclide Excess Lifetime Cancer Risk										
RESRAD	Vadose Zone		Excess Cancer Risk at Each Time Slice (yr)								
Run	Horizons	0	1	3	7	11	43	135	300	1000	
Excavation	Shallow Zone	2.91E-05	2.75E-05	2.47E-05	2.01E-05	1.65E-05	4.51E-06	3.18E-07	6.43E-09	5.23E-16	
OB/BCL	Shallow Zone	1.21E-04	1.16E-04	1.06E-04	8.99E-05	7.71E-05	2.71E-05	2.66E-06	9.92E-08	2.38E-10	
OB/BCL = Overl	OB/BCL = Overburden/Below Cleanup Levels Stockpile										

16 17

18 19

20

21

22

3) Radionuclide Groundwater Protection

The radionuclide concentrations in groundwater calculated by the RESRAD model are summarized in Table 5. None of the radionuclide contaminants of concern are calculated to reach groundwater in the 1,000 years of the RESRAD model evaluation. Therefore calculation of organ specific dose via the groundwater (and river) pathway is not necessary to determine that the 4 mrem/yr drinking water dose limitation is met.

Washington Closure Hanford	CALCULATION SHEET
Wasiiiididii Ciosule Hallidid	CALCULANTINATER

Originator:	S. W. Clark	Date:	14/3/0	Calc. No.:	0100F-CA-V0312	Rev.:	10 /
Project:	100-F Field Remediation	Job No:	14655	Checked:	H. M. Sulloway JULS	Date:	10/2/07
Subject:	100-F-26:14 116-F5 Influent Pipel	ines Clean	up Verifica			Sheet N	No. 4 of 5

Tab	Table 5. Predicted Groundwater (Well Water/Drinking Water) Concentrations (2 Pages)											
Radio- RESRAD Run Groundwater Concentrations in pCi/L at Ea								Each Time Slice (yr)				
nuclides	TOSTA TAIL	0	1	3	7	11	43	135	300	1000	pCi/L	
Co-60	Excavation SZ	0	0	0	0	0	0	0	0	0	100	
	OB/BCL	0	0	0	0	0	0	0	0	0	1	
Cs-137	Excavation SZ	0	0	0	0	0	0	0	0	0	60	
	OB/BCL	0	0	0	0	0	0	0	0	0	1	
Eu-152	Excavation SZ	0	0	0	0	0	0	0	0	0	200	
	OB/BCL	0	0	0	0	0	0	0	0	0	1	
Ni-63	Excavation SZ	0	0	0	0	0	0	0	0	0	50	
-	OB/BCL	0	0	0	0	0	0	0	0	0	1	
Sr-90	Excavation SZ	0	0	0	0	0	0	0	0	0	8	
	OB/BCL	0	0	0	0	0	0	0	0	0	1	

OB/BCL = Overburden/Below Cleanup Levels Stockpile RAGs = Remedial action goals from the 100 Area RDR/RAWP SZ = Shallow Zone

CONCLUSIONS:

• The "all pathways" (maximum) dose rates are shown in Table 3. The maximum all pathways dose rate from the 100-F-26:14 116-F5 Influent Pipelines is 10.0 mrem/yr at year zero (2007) from the Overburden/Below Cleanup Level Stockpile area. The maximum all-pathways dose rates from the Excavation Shallow Zone is 2.72 mrem/yr at year zero (2007).

• The radionuclide excess lifetime cancer risk (ELCR) results are shown in Table 4. The maximum ELCR for the 100-F-26:14 116-F5 Influent Pipelines is 1.21 x 10⁻⁴ at year zero (2007) for the Overburden/Below Cleanup Level Stockpile area. The maximum ELCR result for the Excavation Shallow Zone is 2.91 x 10⁻⁵.

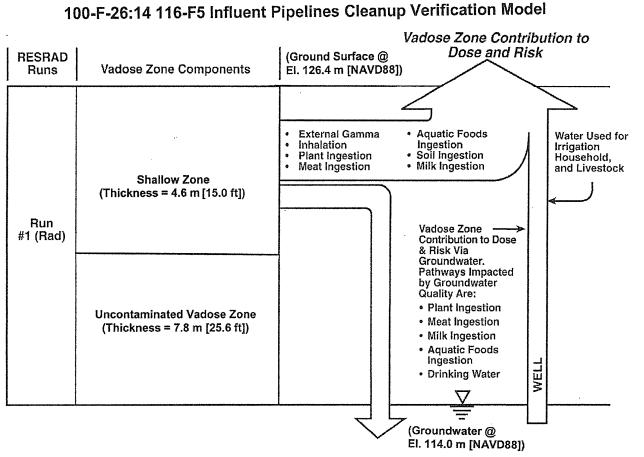
• The dominant pathway for the RESRAD evaluations dose rate for the Excavation Shallow Zone and the Overburden/Below Cleanup Level Stockpile area is direct external exposure due to europium-152.

• None of the site COCs are projected to exceed remedial action goals (RAGs).

• None of the radionuclide contaminants of concern are calculated to reach groundwater in the 1,000 years of the RESRAD model evaluation. Therefore it is not necessary to perform the calculation of organ specific dose via the groundwater (and river) pathway to determine that the 4 mrem/yr drinking water dose limitation is met.

wasning	ton Closure Hantord	CALC	ULAII	ON SHEE			
Originator:	S. W. Clark	Date:	14/3/0	Calc. No.:	0100F-CA-V0312,	Rev.:	/ 0
Project:	100-F Field Remediation	Job No:	14655	Checked:	H. M. Sulloway	Date:	19/2/1

1 A


3

1. Graphic showing 100-F-26:14 Cleanup Verification Model (1 page)

Subject: 100-F-26:14 116-F5 Influent Pipelines Cleanup Verification RESRAD Calculation Brief

- RESRAD Output: 100-F-26:14 Excavation Shallow Zone Radionuclides Mixture Sums and
 Single Radionuclide Guidelines (19 pages)
- RESRAD Output: 100-F-26:14 Excavation Shallow Zone Radionuclides Intake Quantities
 and Health Risk Factors (21 pages)
- RESRAD Output: 100-F-26:14 Excavation Shallow Zone Radionuclides Concentration of
 Radionuclides, (10 pages)
- 5. RESRAD Output: 100-F-26:14 Overburden/Below Cleanup Level Radionuclides Mixture
 Sums and Single Radionuclide Guidelines (20 pages)
- RESRAD Output: 100-F-26:14 Overburden/Below Cleanup Level Radionuclides
 Radionuclides Intake Quantities and Health Risk Factors (21 pages)
- 7. RESRAD Output: 100-F-26:14 Overburden/Below Cleanup Level Radionuclides
 Radionuclides Concentration of Radionuclides (10 pages)

16

Vadose Zone Contribution to Groundwater Contamination

E0211029.1

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 1 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Table of Contents

Part I: Mixture Sums and Single Radionuclide Guidelines

Dose Conversion Factor (and Related) Parameter Summary	2
Site-Specific Parameter Summary	3
Summary of Pathway Selections	7
Contaminated Zone and Total Dose Summary	8
Total Dose Components	Ü
Time = 0.000E+00	9
Time = 1.000E+00	10
Time = 3.000E+00	11
Time = 7.000E+00	12
	13
	14
Time = 1.350E+02	15
Time = 3.000E+02	16
Time = 1.000E+03	17
Dose/Source Ratios Summed Over All Pathways	18
Single Radionuclide Soil Guidelines	18
Dose Per Nuclide Summed Over All Pathways	19
Soil Concentration Per Nuclide	19

Attachment 2 Sheet No. 1 of 15 Originator: S. W. Clark Date (5/3/6) Chk'd By H. M. Sulloway (11/2) Calc. No. 0100F-CA-V0312 Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 2 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Dose Conversion Factor (and Related) Parameter Summary
File: HEAST 2001 MORBIDITY

0 3		3	Current 3	3	Base 3	Paran	meter
Menu 3	Parameter	3	Value 3	3	Case*	Nar	ne
ÄÄÄÄÄÄ	ŢŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖŖ	۱Å	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÅÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	KÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ
B-1 3	Dose conversion factors for inhalation, mrem/pCi:	3	3	3	;		
B-1 3	Co-60	3	2.190E-04 3	3 2	2.190E-04	DCF2(1)
B-1 3	Cs-137+D		3.190E-05				2)
	Eu-152		2.210E-04 3				3)
	Gd-152		2.430E-01				
		3		3 .	::-502 01	, ,,,,,,	-,
D-1	Dose conversion factors for ingestion, mrem/pCi:	2	2	3	:	1	
	Co-60	3	2.690E-05 3	3 2	2-690F-05	DCE37	1)
	Cs-137+D		5.000E-05				2)
	Eu-152		6.480E-06				
	Gd-152		1.610E-04				
		3		3	1.0102 04		٠,
D-34	Food transfer factors:	3	2	3		5	
	Co-60 , plant/soil concentration ratio, dimensionless	3	8.000E-02	3 5	8 000E-02	DTF/	1,1)
	Co-60 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d)		2.000E-02				1,2)
	Co-60 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)		2.000E-03				1,3)
D-34		3		, '		K11'(1,37
	Cs-137+D , plant/soil concentration ratio, dimensionless	3	4.000E-02	3 /	0005-02	DTC/	2,1)
	Cs-137+D , beef/livestock-intake ratio, (pCi/kg)/(pCi/d)		3.000E-02				2,2)
	Cs-137+D , milk/livestock-intake ratio, (pCi/L)/(pCi/d)		8.000E-03				2,3)
D-34		3		3 (KIFC	2,3)
	Eu-152 , plant/soil concentration ratio, dimensionless		2.500E-03				3,1)
	Eu-152 , peant/soft concentration ratio, dimensionless Eu-152 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d)						
			2.000E-03				
D-34 3		3	5.000E-05	, .		KIF(3,3)
							F 43
	Gd-152 , plant/soil concentration ratio, dimensionless		2.500E-03				5,1)
	Gd-152 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d)		2.000E-03				5,2)
υ-34	Gd-152 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	3	2.000E-05	, ,		, KIF(5,3)
		,		3			
	Bioaccumulation factors, fresh water, L/kg: Co-60 , fish	,					
			3.000E+02				
	Co-60 , crustacea and mollusks	3	2.000E+02	, ,		, RIOLVI	C(1,2)
D-5							
	Cs-137+D , fish		2.000E+03				
	Cs-137+D , crustacea and mollusks	,	1.000E+02				C(2,2)
D-5		3		3		3	
	Eu-152 , fish		5.000E+01				
	Eu-152 , crustacea and mollusks	3	1.000E+03				C(3,2)
D-5		3		3		3	
	Gd-152 , fish		2.500E+01				
	Gd-152 , crustacea and mollusks		1.000E+03				
		ΙÏ	111111111111	ΙĨ.	1111111111	IIIIIII	IIIIIII
*Base	Case means Default.Lib w/o Associate Nuclide contributions.						

Attachment	2	Sheet No.	. 2 of 19
Originator: S. W	. Clark	Date	
Chk'd By H. M. S	Sulloway	Date	
Calc. No0100	F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 3 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Cito.Cr		ifia Danama	٠.	n Cummanı				
0 3	pec	ific Parame User	. e	i Summary	3 Head	by RESRAD	³ Parameter	
Menu ³ Parameter	3	000,		Default		t from user input)		
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄ	*********	ÅÄ	AAAAAAAAA		88888888888888888888	1	Ä
R011 3 Area of contaminated zone (m**2)		6.550E+02					3 AREA	٦
RO11 3 Thickness of contaminated zone (m)		4.600E+00					3 THICKO	
RO11 3 Length parallel to aquifer flow (m)		3.000E+01					3 LCZPAQ	
RO11 3 Basic radiation dose limit (mrem/yr)		1.500E+01					3 BRDL	
RO11 3 Time since placement of material (yr)		0.000E+00					3 TI	
RO11 3 Times for calculations (yr)		1.000E+00					³ T(2)	
RO11 3 Times for calculations (yr)		3.000E+00					³ T(3)	
RO11 3 Times for calculations (yr)		7.000E+00					³ T(4)	
RO11 3 Times for calculations (yr)		1.100E+01					³ T(5)	
RO11 3 Times for calculations (yr)		4.300E+01					³ T(6)	
RO11 3 Times for calculations (yr)		1.350E+02					³ T(7)	
RO11 ³ Times for calculations (yr)		3.000E+02					³ T(8)	
RO11 3 Times for calculations (yr)		1.000E+03					3 T(9)	
RO11 3 Times for calculations (yr)		not used					3 T(10)	
3	3		3	0.0001.00	3		3	
R012 3 Initial principal radionuclide (pCi/g): Co-60	3	7.300E-02	3	0.0005+00	3		³ S1(1)	
		2.060E-01					3 S1(2)	
		3.700E-01					³ S1(3)	
R012 ³ Concentration in groundwater (pCi/L): Co-60		not used					3 M1(1)	
		not used					3 W1(2)	
R012 ³ Concentration in groundwater (pCi/L): Eu-152		not used						
1	3		3	0.0002+00	3		³ W1(3)	
R013 ³ Cover depth (m)	3	0.000E+00		0 0005+00	3		3 COVERO	
R013 Density of cover material (g/cm**3)		not used					3 DENSCV	
R013 Cover depth erosion rate (m/yr)		not used					3 ACA	
R013 Density of contaminated zone (g/cm**3)		1.600E+00					3 DENSCZ	
R013 Contaminated zone erosion rate (m/yr)		1.000E-03					3 VCZ	
R013 Contaminated zone total porosity		4.000E-01					J TPCZ	
RO13 ³ Contaminated zone field capacity		1.500E-01					3 FCCZ	
R013 ³ Contaminated zone hydraulic conductivity (m/yr)							3 HCCZ	
R013 Contaminated zone b parameter		4.050E+00					3 BCZ	
R013 ³ Average annual wind speed (m/sec)		3.400E+00					3 WIND	
RO13 3 Humidity in air (g/m**3)		not used					3 HOWID	
R013 * Evapotranspiration coefficient		9.100E-01					3 EVAPTR	
RO13 Precipitation (m/yr)		1.600E-01					3 PRECIP	
R013 3 Irrigation (m/yr)		7.600E-01					3 RI	
R013 3 Irrigation mode		overhead					3 IDITCH	
R013 Runoff coefficient		2.000E-01					3 RUNOFF	
R013 3 Watershed area for nearby stream or pond (m**2)		1.000E+06					3 WAREA	
RO13 Accuracy for water/soil computations		1.000E-03					3 EPS	
3	3		3	1.0002 03	3		3	
R014 3 Density of saturated zone (g/cm**3)	3	1.600E+00	3	1 5005+00	3		3 DENSAQ	
R014 3 Saturated zone total porosity		4.000E-01					3 TPSZ	
R014 3 Saturated zone effective porosity		2.500E-01					3 EPSZ	
RO14 3 Saturated zone field capacity		1.500E-01					3 FCSZ	
RO14 3 Saturated zone hydraulic conductivity (m/yr)		5.530E+03				***	3 HCSZ	
R014 ³ Saturated zone hydraulic gradient		1.250E-03					3 HGWT	
RO14 3 Saturated zone b parameter		4.050E+00					3 BSZ	
RO14 3 Water table drop rate (m/yr)		1.000E-03					3 VWT	
R014 Water table drop rate (myyr)		4.600E+00						
word were bomb meave deben (in perox water rapte)	-	7.0000=00		1.000E+01			3 DWIBWT	

Attachment	2	Sheet No	. 3 of 19
Originator: S. W	. Clark	Date	
Chk'd By H. M. S	Sulloway	Date	
Calc. No. 0100	F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 4 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Site-Specific Parameter Summary (continued)							
0 3		sed by RESRAD ³ Parameter					
Menu ³ Parameter	3 Input 3 Default 3 (If diffe	rent from user input) ³ Name					
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA						
RO14 Model: Nondispersion (ND) or Mass-Balance (MB)	2 ND 2 ND 2	3 MODEL					
RO14 ³ Well pumping rate (m**3/yr)	3 2.500E+02 3 2.500E+02 3	3 UW					
and the second s	3 3 3	2					
R015 3 Number of unsaturated zone strata	3 1 3 1 3	3 NS					
RO15 3 Unsat. zone 1, thickness (m)	3 7.800E+00 3 4.000E+00 3	3 H(1)					
RO15 ³ Unsat. zone 1, soil density (g/cm**3)	3 1.600E+00 3 1.500E+00 3	The state of the s					
R015 ³ Unsat. zone 1, total porosity	3 4.000E-01 3 4.000E-01 3	3 TPUZ(1)					
R015 3 Unsat. zone 1, effective porosity	3 2.500E-01 3 2.000E-01 3	3 EPUZ(1)					
R015 ³ Unsat. zone 1, field capacity	3 1.500E-01 3 2.000E-01 3	3 FCUZ(1)					
RO15 ³ Unsat. zone 1, soil-specific b parameter	3 4.050E+00 3 5.300E+00 3	3 BUZ(1)					
RO15 ³ Unsat. zone 1, hydraulic conductivity (m/yr)	3 2.500E+02 3 1.000E+01 3	3 HCUZ(1)					
	2 2 2 2	2					
R016 3 Distribution coefficients for Co-60		2					
R016 3 Contaminated zone (cm**3/g)	3 5.000E+01 3 1.000E+03 3	3 DCNUCC(1)					
R016 Unsaturated zone 1 (cm**3/g)	3 5.000E+01 3 1.000E+03 3	3 DCNUCU(1,1)					
R016 ³ Saturated zone (cm**3/g)	3 5.000E+01 3 1.000E+03 3	3 DCNUCS(1)					
R016 Leach rate (/yr)	3 0.000E+00 3 0.000E+00 3	2.166E-04 3 ALEACH(1)					
RO16 ³ Solubility constant	2 0.000E+00 2 0.000E+00 2	not used ³ SOLUBK(1)					
		3					
R016 3 Distribution coefficients for Cs-137		3					
R016 3 Contaminated zone (cm**3/g)	3 5.000E+01 3 4.600E+03 3	3 DCNUCC(2)					
R016 3 Unsaturated zone 1 (cm**3/g)	3 5.000E+01 3 4.600E+03 3	3 DCNUCU(2,1)					
R016 3 Saturated zone (cm**3/g)	3 5.000E+01 3 4.600E+03 3	3 DCNUCS(2)					
RO16 3 Leach rate (/yr)	3 0.000E+00 3 0.000E+00 3	2.166E-04 3 ALEACH(2)					
RO16 ³ Solubility constant	3 0.000E+00 3 0.000E+00 3	not used 3 SOLUBK(2)					
R016 3 Distribution coefficients for Eu-152	2 2 2	3					
R016 3 Contaminated zone (cm**3/g)	3 2.000E+02 3-1.000E+00 3	·					
R016 3 Unsaturated zone 1 (cm**3/g)	3 2.000E+02 3-1.000E+00 3	3 DCNUCC(3)					
R016 3 Saturated zone (cm**3/g)	3 2.000E+02 3-1.000E+00 3	3 DCNUCU(3,1)					
R016 3 Leach rate (/yr)	3 0.000E+00 3 0.000E+00 3	D011000(3)					
R016 3 Solubility constant	3 0.000E+00 3 0.000E+00 3						
KOID: SOUDICITY CONSTAIR	. 0.000E±00 - 0.000E±00 -	not used ³ SOLUBK(3)					
R016 3 Distribution coefficients for daughter Gd-152	3 3 3	3					
R016 ³ Contaminated zone (cm**3/g)	3-1.000E+00 3-1.000E+00 3	8.249E+02 3 DCNUCC(5)					
R016 3 Unsaturated zone 1 (cm**3/g)	3-1.000E+00 3-1.000E+00 3	8.249E+02 3 DCNUCU(5,1)					
R016 3 Saturated zone (cm**3/g)	3-1.000E+00 3-1.000E+00 3	8.249E+02 3 DCNUCS(5)					
RO16 3 Leach rate (/yr)	3 0.000E+00 3 0.000E+00 3	1.316E-05 3 ALEACH(5)					
RO16 ³ Solubility constant	3 0.000E+00 3 0.000E+00 3	not used 3 SOLUBK(5)					
3	3 3 3	30E0BK(3)					
R017 ³ Inhalation rate (m**3/yr)	3 7.300E+03 3 8.400E+03 3	3 INHALR					
RO17 Mass loading for inhalation (g/m**3)	3 1.000E-04 3 1.000E-04 3	3 MLINH					
R017 ³ Exposure duration	3 3.000E+01 3 3.000E+01 3	3 ED					
RO17 ³ Shielding factor, inhalation	3 4.000E-01 3 4.000E-01 3	3 SHF3					
RO17 ³ Shielding factor, external gamma	3 8.000E-01 3 7.000E-01 3	3 SHF1					
R017 ³ Fraction of time spent indoors	3 6.000E-01 3 5.000E-01 3	3 FIND					
R017 ' Fraction of time spent outdoors (on site)	3 2.000E-01 3 2.500E-01 3	3 FOTD					
RO17 3 Shape factor flag, external gamma		ws circular AREA. 3 FS					
,							

Attachm	ent	2	 Sheet No.	4 of 19
Originator	: S.W.	Clark	Date	
Chk'd By _	H. M. S	ulloway	 Date	
Calc. No.	0100	F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 5 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

	Site-Specific	Pi			mary (conti		ied)		
0 3		3	User	3		3	,	3	Parameter
Menu 3	Parameter		Input	3			(If different from user input)		Name
	4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAAAAA		AAAAAAAAA		LAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	۸Ă	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
	Radii of shape factor array (used if FS = -1):	2		2		3		3	
R017 3	Outer annular radius (m), ring 1:				5.000E+01				RAD_SHAPE(1)
R017 3	Outer annular radius (m), ring 2:		not used		7.071E+01			3	RAD_SHAPE(2)
R017 3	Outer annular radius (m), ring 3:		not used		0.000E+00				RAD_SHAPE(3)
R017 3	Outer annular radius (m), ring 4:		not used		0.000E+00				RAD_SHAPE(4)
R017 3	Outer annular radius (m), ring 5:				0.000E+00				RAD_SHAPE(5)
R017 3	Outer annular radius (m), ring 6:		not used		0.000E+00		***		RAD_SHAPE(6)
R017 3	Outer annular radius (m), ring 7:		not used		0.000E+00				RAD_SHAPE(7)
R017 3	Outer annular radius (m), ring 8:		not used		0.000E+00				RAD_SHAPE(8)
R017 3	Outer annular radius (m), ring 9:		not used		0.000E+00				RAD_SHAPE(9)
R017 3	Outer annular radius (m), ring 10:		not used		0.000E+00				RAD_SHAPE(10)
R017 3	Outer annular radius (m), ring 11:	3	not used		0.000E+00				RAD_SHAPE(11)
R017 3	Outer annular radius (m), ring 12:		not used		0.000E+00			3	RAD_SHAPE(12)
	For the second consideration of the second			2		2		3	
	Fractions of annular areas within AREA:	2		2		3		3	
R017 3	Ring 1	3	not used		1.000E+00			3	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
R017 3	Ring 2		not used		2.732E-01		***		FRACA(2)
R017 3	Ring 3		not used		0.000E+00				FRACA(3)
R017 3	Ring 4		not used		0.000E+00		w w w		FRACA(4)
R017 3	Ring 5		not used		0.000E+00				FRACA(5)
R017 3	Ring 6				0.000E+00				FRACA(6)
R017 3	Ring 7		not used		0.000E+00		***		FRACA(7)
R017 3	Ring 8				0.000E+00				FRACA(8)
R017 3	Ring 9				0.000E+00				FRACA(9)
R017 3	Ring 10		not used		0.000E+00				FRACA(10)
R017 3	Ring 11		not used		0.000E+00				FRACA(11)
R017 3	Ring 12	•	not used	2	0.000E+00	3			FRACA(12)
-	must a superior		4 4000.00		4 (00= 00			2	
	Fruits, vegetables and grain consumption (kg/yr)								DIET(1)
	Leafy vegetable consumption (kg/yr)				1.400E+01				DIET(2)
	Milk consumption (L/yr)				9.200E+01				DIET(3)
	Meat and poultry consumption (kg/yr)				6.300E+01				DIET(4)
	Fish consumption (kg/yr)				5.400E+00				DIET(5)
	Other seafood consumption (kg/yr)				9.000E-01				DIET(6)
	Soil ingestion rate (g/yr)				3.650E+01				SOIL
	Drinking water intake (L/yr) Contamination fraction of drinking veter				5.100E+02				DWI
	Contamination fraction of drinking water				1.000E+00				FDW
	Contamination fraction of household water				1.000E+00				FHHW
	Contamination fraction of livestock water Contamination fraction of irrigation water				1.000E+00				FLW
					1.000E+00				FIRW
	Contamination fraction of aquatic food Contamination fraction of plant food		-1	3.	5.000E-01	3			FR9
	Contamination fraction of meat		- 1 - 1	3.	•	3	0.328E+00 0.327E-01		FPLANT
	Contamination fraction of milk		- I - 1	3.		3			FMEAT
KU 10 3	CONTRACTOR IT ACCION OF MILE	3	•	3	- 1	3	0.327E-01	3	FMILK
	Livestock fodder intake for meat (kg/day)				6.800E+01				
	Livestock fodder intake for milk (kg/day)				5.500E+01				LFI5
	Livestock water intake for meat (L/day)				5.000E+01				LFI6
	Livestock water intake for milk (L/day)				1.600E+01				LWI5
	Livestock water intake for mitk (L/day)				5.000E-01				LWI6 LSI
	Elitables Coll Hilland (Ng/day)		J.000L-0	•	J.000L 01			-	LOI

Attachme	nt2	Sheet No. 5 of 19
Originator:	S. W. Clark	Date
Chk'd By _ h	l. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 6 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Name	Site-Specific Parameter Summary (continued)								
### AND PROFITS OF THE PROFITS OF TH	-			000.					Parameter
R019 3 Depth of soil mixing layer (m) 3 1.000E-04 100E-04 100E-06 1 3 DM R019 3 Depth of soil mixing layer (m) 3 DM R019 3 Depth of soil mixing layer (m) 3 P.00DE-01 1 3 P.00DE-01 100E+00 100E+0									
R019 1 Depth of soil mixing layer (m)									
R019 Depth of roots (m) 3									
None-ton Prinking water fraction from ground water 1.000E+00 1.000E+00 FGWDM R019 Household water fraction from ground water 1.000E+00 1.000E+00 FGWLM R019 Livestock water fraction from ground water 1.000E+00 1.000E+00 FGWLM R019 Livestock water fraction from ground water 1.000E+00 1.000E+00 FGWLM R019 Livestock water fraction from ground water 1.000E+00 1.000E+00 FGWLM									
R019 Livestock water fraction from ground water 1,000E+00 3, FGWHH FGW19 Livestock water fraction from ground water 3, 1,000E+00 3, 3, FGWHR 3, Incompany									
RO19 3 Irvigation fraction from ground water 3 1.000E+00 3 1.000E+00 3 3 FGHIR 3 Irrigation fraction from ground water 3 1.000E+00 3 3 FGHIR 3 FGHIR 3									
R019 3 Irrigation fraction from ground water 3 1.000E+00 3 1.000E+00 3									
17 17 17 17 17 17 17 17									
R198 3 Wet weight crop yield for Non-Leafy (kg/m**2) 3 7.000E-01 3	R019 3	Irrigation fraction from ground water				1.000E+00	2		FGWIR
R198 Wet weight crop yield for Leafy (kg/m**2) 3 1.500E+00 3 1.700E+00 3 1.7			-				3		
R198 Wet Weight crop yield for Fodder (kg/m**2) 1,100E+00									
R198 Growing Season for Non-Leafy (years) 3 1.700E-01									
R198 Growing Season for Leafy (years) 2.500E-01 2.500E-01 3.500E-02 3.500E-0									
#198 3 Growing Season for Fodder (Years)									
R19B 3 Translocation Factor for Non-Leafy									
R19B 3 Translocation Factor for Leafy									
R19B 3 Translocation Factor for Fodder R19B 3 Dry Foliar Interception Fraction for Non-Leafy R19B 3 Dry Foliar Interception Fraction for Leafy R19B 3 Wet Foliar Interception Fraction for Non-Leafy R19B 3 Wet Foliar Interception Fraction for Leafy R19B 3 Wet Foliar Interception Fraction for Fodder R19B 3 Wet Foliar Interception Fraction for Leafy R19B 3 Wet Foliar Interception Fraction for Leaf									
R198									
R198									
R198 J Dry Foliar Interception Fraction for Fodder 1 2.500E-01 3 2.500E-01 3 3 RWET(3) R198 J Wet Foliar Interception Fraction for Non-Leafy Wet Foliar Interception Fraction for Non-Leafy J 2.500E-01 3 2.500E-01 3 3 RWET(1) R198 J Wet Foliar Interception Fraction for Fodder J 2.500E-01 3 2.500E-01 3 3 RWET(3) R198 J Weathering Removal Constant for Vegetation J 2.500E-01 3 2.000E-02 3 2.000E-01 3 2.500E-01 3 2.000E-01 3 2.500E-01 3 2.000E-01 3 2.500E-01 3 2.000E-01 3 2.500E-01 3 2.5									
R19B 3 Wet Foliar Interception Fraction for Non-Leafy R19B 3 Wet Foliar Interception Fraction for Leafy R19B 3 Wet Foliar Interception Fraction for Leafy R19B 3 Wet Foliar Interception Fraction for Fodder R19B 3 Wet Foliar Interception Fraction for Vegetation are room for Wegetation are room for Wegetation in water (g/cm**3) 3 2.500E-01 3 2.500E-01 3 2.000E+01									
R198 Wet Foliar Interception Fraction for Leafy									
R198									
R198 3 Weathering Removal Constant for Vegetation 3 2.000E+01 3 2.000E+01 3 2.000E+01 3 2.000E+01 3 2.000E+01 3 2.000E+01 3 3 WLAM C14 3 C-12 concentration in water (g/cm**3) 3 not used 3 2.000E+05 3 3 C12WTR C14 3 C-12 concentration in contaminated soil (g/g) 3 not used 3 2.000E+02 3 3 C12CZ C14 3 Fraction of vegetation carbon from soil 3 not used 3 2.000E+02 3 3 CSDIL C14 3 Fraction of vegetation carbon from soil 3 not used 3 3.000E+01 3 3 CAIR C14 3 C-14 evasion layer thickness in soil (m) 3 not used 3 3.000E+01 3 3 DMC C14 3 C-14 evasion flux rate from soil (1/sec) 3 not used 3 3.000E+01 3 3 EVSN C14 3 Fraction of grain in beef cattle feed 3 not used 3 1.000E+00 3 3 REVSN C14 3 Fraction of grain in milk cow feed 3 not used 3 8.000E+01 3 3 AVFG4 C14 3 Fraction of grain in milk cow feed 3 not used 3 0.000E+00 3 3 AVFG5 C14 3 Fraction of grain in milk cow feed 3 not used 3 0.000E+00 3 3 AVFG5 C14 3 Fraction of grain in milk cow feed 3 not used 3 0.000E+00 3 3 AVFG5 C14 3 Fraction of grain in milk cow feed 3 not used 3 0.000E+00 3 3 AVFG5 C15 3 Storage times of contaminated foodstuffs (days): 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3									
C14 3 C-12 concentration in water (g/cm**3) 3 not used 3 2.000E-05 3 3 C12WTR C14 3 C-12 concentration in contaminated soil (g/g) 3 not used 3 3.000E-02 3 3 C12CZ C14 3 Fraction of vegetation carbon from soil 3 not used 3 2.000E-02 3 3 CSDIL C14 3 Fraction of vegetation carbon from air 3 not used 3 2.000E-02 3 3 CSDIL C14 3 C-14 evasion layer thickness in soil (m) 3 not used 3 7.000E-01 3 3 DMC C14 3 C-14 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-07 3 3 EVSN C14 3 C-12 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-01 3 3 REVSN C14 3 Fraction of grain in beef cattle feed 3 not used 3 8.000E-01 3 3 REVSN C14 3 Fraction of grain in milk cow feed 3 not used 3 2.000E-01 3 3 AVFG5 C14 3 DCF correction factor for gaseous forms of C14 3 not used 3 0.000E-01 3 3 CO2F STOR 3 Storage times of contaminated foodstuffs (days): 3 1.400E+01 3 1.400E+01 3 1.400E+01 3 1.000E+00 3 1.000									
C14	K 17D -	weathering kellovat constant for vegetation				2.00000	3		WLAM
C14 3 C-12 concentration in contaminated soil (g/g) 3 not used 3 3.000E-02 3 3 CSOIL C14 3 Fraction of vegetation carbon from soil 3 not used 3 2.000E-02 3 3 CSOIL C14 3 Fraction of vegetation carbon from soil 3 not used 3 9.800E-01 3 3 CAIR C14 3 C-14 evasion layer thickness in soil (m) 3 not used 3 3.000E-01 3 3 DMC C14 3 C-14 evasion flux rate from soil (1/sec) 3 not used 3 3.000E-01 3 3 EVSN C14 3 C-12 evasion flux rate from soil (1/sec) 3 not used 3 1.000E-10 3 3 REVSN C14 3 Fraction of grain in beef cattle feed 3 not used 3 8.000E-01 3 3 AVFG4 C14 3 Fraction of grain in milk cow feed 3 not used 3 8.000E-01 3 3 AVFG4 C14 3 Fraction of grain in milk cow feed 3 not used 3 0.000E-00 3 3 AVFG5 C14 3 Storage times of contaminated foodstuffs (days): 3 1.000E+00 3 3 STOR_T(1) STOR 3 Storage times of contaminated foodstuffs (days): 3 1.000E+00 3 1.000E+00 3 3 STOR_T(1) STOR 3 Leafy vegetables 3 1.000E+00 3 1.000E+00 3 3 STOR_T(2) STOR 3 Meat and poultry 3 2.000E+01 3 2.000E+01 3 3 STOR_T(3) STOR 3 Fish 3 7.000E+00 3 7.000E+00 3 3 STOR_T(5) STOR 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(5) STOR 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) STOR 3 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) STOR 3 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) STOR 3 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7)	C1/, 3	C-12 concentration in water (g/cm**3)				2 0005-05	7		C1311TD
C14 3 Fraction of vegetation carbon from soil 3 not used 3 2.000E-02 3 3 CSDIL C14 3 Fraction of vegetation carbon from air 3 not used 3 2.000E-01 3 3 CAIR C14 3 C-14 evasion layer thickness in soil (m) 3 not used 3 3.000E-01 3 3 DMC C14 3 C-14 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-07 3 3 EVSN C14 3 C-12 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-07 3 3 EVSN C14 3 Fraction of grain in beef cattle feed 3 not used 3 1.000E-10 3 3 AVFG4 C14 3 Fraction of grain in milk cow feed 3 not used 3 2.000E-01 3 3 AVFG5 C14 3 DCF correction factor for gaseous forms of C14 3 not used 3 0.000E+00 3 3 CO2F 3 STOR 3 Storage times of contaminated foodstuffs (days): 3 1 1.400E+01 3 1.400E+01 3 3 STOR_T(1) STOR 3 Leafy vegetables 3 1.000E+00 3 1.000E+00 3 3 STOR_T(2) STOR 3 Meat and poultry 3 2.000E+01 3 2.000E+01 3 3 STOR_T(3) STOR 3 Fish 3 7.000E+00 3 7.000E+00 3 7.000E+00 3 3 STOR_T(5) STOR 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(5) STOR_T(6) STOR_T 3 SUrface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) STOR_T(8)									
C14 3 Fraction of vegetation carbon from air 3 not used 3 9.800E-01 3 3 DMC C14 3 C-14 evasion layer thickness in soil (m) 3 not used 3 3.000E-01 3 3 DMC C14 3 C-14 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-07 3 3 EVSN C14 3 C-12 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-10 3 3 REVSN C14 3 Fraction of grain in beef cattle feed 3 not used 3 8.000E-01 3 3 AVFG5 C14 3 DCF correction factor for gaseous forms of C14 3 DCF correction factor for gaseous forms of C14 3 Totused 3 0.000E-01 3 3 C02F C14 3 DCF correction factor for gaseous forms of C14 3 not used 3 0.000E+00 3 3 C02F C14 3 DCF correction factor for gaseous forms of C14 3 1.400E+01 3									
C14 3 C-14 evasion layer thickness in soil (m) 3 not used 3 3.000E-01 3 3 DMC C14 3 C-14 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-07 3 3 EVSN C14 3 C-12 evasion flux rate from soil (1/sec) 3 not used 3 1.000E-10 3 3 REVSN C14 3 Fraction of grain in beef cattle feed 3 not used 3 8.000E-01 3 3 AVFG4 C14 3 Fraction of grain in milk cow feed 3 not used 3 8.000E-01 3 3 AVFG5 C14 3 DCF correction factor for gaseous forms of C14 3 not used 3 0.000E+00 3 3 C02F C14 3 Storage times of contaminated foodstuffs (days): 3 7 Not used 3 0.000E+00 3 3 C02F C15 3 Storage times of contaminated foodstuffs (days): 3 7 Not used 3 0.000E+00 3 3 STOR_T(1) C16 3 Leafy vegetables, and grain 3 1.400E+01 3 1.400E+01 3 3 STOR_T(2) C17 3 STOR 3 Meat and poultry 3 2.000E+00 3 1.000E+00 3 3 STOR_T(2) C18 3 Meat and poultry 3 2.000E+00 3 7.000E+00 3 3 STOR_T(5) C18 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(5) C18 3 STOR 3 SUrface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) C19 3 STOR_T(7) C19 3 STOR_T(7) C19 3 STOR_T(8) C19 4 STOR_T(8) C19 4 STOR_T(8) C19 5 STO									
C14 3 C-14 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-07 3 3 EVSN C14 3 C-12 evasion flux rate from soil (1/sec) 3 not used 3 7.000E-07 3 3 REVSN C14 3 Fraction of grain in beef cattle feed 3 not used 3 8.000E-01 3 3 AVFG4 C14 3 Fraction of grain in milk cow feed 3 not used 3 2.000E-01 3 3 AVFG5 C14 3 DCF correction factor for gaseous forms of C14 3 not used 3 0.000E+00 3 3 C02F STOR 3 Storage times of contaminated foodstuffs (days): 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3									
C14 3 C-12 evasion flux rate from soil (1/sec) 3 not used 3 1.000E-10 3 3 REVSN C14 3 Fraction of grain in beef cattle feed 3 not used 3 2.000E-01 3 3 AVFG5 C14 3 Fraction of grain in milk cow feed 3 not used 3 2.000E-01 3 3 CO2F C14 3 DCF correction factor for gaseous forms of C14 3 not used 3 0.000E+00 3 3 CO2F C15 3 Storage times of contaminated foodstuffs (days): 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3									
C14 3 Fraction of grain in beef cattle feed 3 not used 3 8.000E-01 3 3 AVFG4 C14 3 Fraction of grain in milk cow feed 3 not used 3 2.000E-01 3 3 AVFG5 C14 3 DCF correction factor for gaseous forms of C14 3 not used 3 0.000E-00 3 3 CO2F STOR 3 Storage times of contaminated foodstuffs (days): 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3									
C14									
C14									
STOR Storage times of contaminated foodstuffs (days):									
STOR 3 Fruits, non-leafy vegetables, and grain 3 1.400E+01 3 1.400E+01 3 3 STOR_T(1)			3						5521
STOR 3 Fruits, non-leafy vegetables, and grain 3 1.400E+01 3 1.400E+01 3 1.400E+01 3 1.000E+01 3 1.00	STOR 3	Storage times of contaminated foodstuffs (days):	2		3		3	3	
STOR Leafy vegetables				1.400E+01	3	1.400E+01	3	 3	STOR T(1)
STOR 3 Milk 3 1.000E+00 3 1.000E+00 3 3 STOR_T(3) STOR 3 Meat and poultry 3 2.000E+01 3 2.000E+01 3 3 STOR_T(4) STOR 3 Fish 3 7.000E+00 3 7.000E+00 3 3 STOR_T(5) STOR 3 Crustacea and mollusks 3 7.000E+00 3 7.000E+00 3 3 STOR_T(6) STOR 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) STOR 3 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(8)									
STOR 3 Meat and poultry 3 2.000E+01 3 2.000E+01 3 3 STOR_T(4) STOR 3 Fish 3 7.000E+00 3 7.000E+00 3 3 STOR_T(5) STOR 3 Crustacea and mollusks 3 7.000E+00 3 7.000E+00 3 3 STOR_T(6) STOR 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) STOR 3 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(8)	STOR 3	Milk	3	1.000E+00	3	1.000E+00	3		
STOR 3 Fish 3 7.000E+00 3 7.000E+00 3 3 STOR_T(5) STOR 3 Crustacea and mollusks 3 7.000E+00 3 7.000E+00 3 3 STOR_T(6) STOR 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) STOR 3 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(8)									
STOR 3 Crustacea and mollusks 3 7.000E+00 3 7.000E+00 3 3 STOR_T(6) STOR 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(7) STOR 7 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(8)	STOR 3		3	7.000E+00	3	7.000E+00	3		
STOR 3 Well water 3 1.000E+00 3 1.000E+00 3 3 STOR T(7) STOR 3 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(8)	STOR 3	Crustacea and mollusks							
STOR 3 Surface water 3 1.000E+00 3 1.000E+00 3 3 STOR_T(8)	STOR 3	Well water							
	STOR 3	Surface water	3	1.000E+00	3	1.000E+00	3		
	STOR 3	Livestock fodder	3	4.500E+01	3	4.500E+01	3		STOR_T(9)
3 3 3	2		3		3		3	3	
R021 'Thickness of building foundation (m) 'not used '1.500E-01' 'FLOOR1	R021 3	Thickness of building foundation (m)	3	not used	3	1.500E-01	2	 3	FLOOR1
RO21 Bulk density of building foundation (g/cm**3) 7 not used 3 2.400E+00 7 3 DENSFL	R021 3	Bulk density of building foundation (g/cm**3)	3	not used	3	2.400E+00	3		
R021 ³ Total porosity of the cover material ³ not used ³ 4.000E-01 ³ ³ TPCV	R021 3	Total porosity of the cover material	3	not used	3	4.000E-01	2	 3	TPCV

Attachment	2	Sheet	No. 6 of 19
Originator: S. W.	Clark	Date	
Chk'd By H. M. S	ulloway	Date	
Calc. No. 0100	F-CA-V0312	Rev N	Jo O

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 7 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Site-Specifi	c P	aram	eter :	Sum	mary (conti	nued)			
0 3	3	U	ser	3			3	Used by RESRAD	3	Parameter
Menu ³ Parameter	3	I	nput	3	Defa	ult	3 (If	different from user i	input) 3	Name
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄ	ÄÄÄÄ	ÄÄÄÄÄÄ					XXXXXXXXXXXXXXXXXXXXXXXXX		
RO21 ³ Total porosity of the building foundation	3		used		1.000					TPFL
RO21 3 Volumetric water content of the cover material			used		5.000				3	PH20CV
RO21 3 Volumetric water content of the foundation	3	not	used	3	3.000	F-02	3		3	PH20FL
RO21 3 Diffusion coefficient for radon gas (m/sec):	3			3			3		3	7 (120) L
RO21 ³ in cover material	3	not	used	3	2.000	F-06	3		3	DIFCV
RO21 ³ in foundation material			used		3.000					DIFFL
RO21 3 in contaminated zone soil			used		2.000					DIFCZ
RO21 ³ Radon vertical dimension of mixing (m)			used		2.000				3	HMIX
RO21 3 Average building air exchange rate (1/hr)			used		5.000				3	REXG
RO21 3 Height of the building (room) (m)			used		2.500				3	HRM
RO21 Building interior area factor			used		0.000				3	FAI
RO21 Building depth below ground surface (m)			used		-1.000				3	DMFL
RO21 3 Emanating power of Rn-222 gas			used		2.500				,	EMANA(1)
RO21 3 Emanating power of Rn-220 gas			used		1.500				,	
KOZI Elilatla Citig power of Kir-220 gas	,	HOL	useu	*	1.500	JE-01	,		,	EMANA(2)
TITL ³ Number of graphical time points	3		32	3			3			NDTO
TITL 3 Maximum number of integration points for dose	3		32	3		-				NPTS
			-			-				LYMAX
TITL 3 Maximum number of integration points for risk	2 2 2									KYMAX
	HI	IIII	IIIII	ПП		IIIII	IIIIII	111111111111111111111111	IIIIIII	

Summary of Pathway Selections

Pathway	3	User Selection
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
1 external gamma	3	active
2 inhalation (w/o rador	1)3	active
3 plant ingestion	3	active
4 meat ingestion	3	active
5 milk ingestion	3	active
6 aquatic foods	3	active
7 drinking water	3	active
8 soil ingestion	2	active
9 radon	3	suppressed
Find peak pathway doses	3	active
1111111111111111111111111111111111	ÍÍÏÍÍ	11111111111111111111

Attachme	nt2	Sheet No. 7 of 19
Originator:	S. W. Clark	Date
Chk'd By _ H	I. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 8

Contaminated Zone Dimensions 655.00 square meters 4.60 meters Area:

Initial Soil Concentrations, pCi/g Co-60 Cs-137 7.300E-02 .2.060E-01

Thickness: 0.00 meters Cover Depth:

Eu-152 3.700E-01

Attachme	ent	2	Sheet No. 8	of 19
Originator:	S. W. Clark		_Date	
Chk'd By _	H. M. Sullow	ау	Date	
Calc. No.	0100F-CA-	-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 9 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

	0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)		
	0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
٠			ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
		mrem/yr fract.	mrem/yr fract.			mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
		AAAAAA AAAAAA						
			4.850E-07 0.0000					
			1.994E-07 0.0000					
			2.481E-06 0.0000					
			11111111111111111					
	Total	2.691E+00 0.9911	3.165E-06 0.0000	0.000E+00 0.0000	2.123E-02 0.0078	1.452E-03 0.0005	7.919E-04 0.0003	5.608E-04 0.0002

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		mrem/yr fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000						7.166E-01 0.2640
Cs-137	0.000E+00 0.0000	4.364E-01 0.1608					
		0.000E+00 0.0000					1.562E+00 0.5753
							iiiiiii iiiiiiii
		0.000E+00 0.0000		0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.715E+00 1.0000
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachm	nent2		Sheet No. 9 of 19
Originato	r: S. W. Clark		_Date
Chk'd By	H. M. Sulloway	/	Date
Calc. No.	0100F-CA-V	0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 10 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)		
0	Ground	Inhalation			Meat	Milk	Soil
		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
	mrem/yr fract.			mrem/yr fract.			mrem/yr fract.
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAA	AAAAAA AAAAAA	AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
		4.252E-07 0.0000					
		1.948E-07 0.0000					
		2.355E-06 0.0000					
1111111				1111111111 111111		111111111111111111	iiiiiii iiiiiiii
Total	2.514E+00 0.9910	2.975E-06 0.0000	0.000E+00 0.0000	2.015E-02 0.0079	1.391E-03 0.0005	7.674E-04 0.0003	5.378E-04 0.0002
^							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
	mrem/yr fract.						
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA
Co-60	0.000E+00 0.0000	6.282E-01 0.2476					
Cs-137	0.000E+00 0.0000	4.263E-01 0.1680					
	0.000E+00 0.0000					0.000E+00 0.0000	1.482E+00 0.5843
iiiiiii				11111111111111111	1111111 11111111	11111111111111111	1111111 11111111
Total	0.000E+00 0.0000	2.537E+00 1.0000					
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachmen	t	Sheet No. 10 of 19
Originator:	S. W. Clark	Date
Chk'd By _	H. M. Sulloway	Date
Calc. No	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 11

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+00 years

As in city if and indector of focal base At t = 5.000E-00 years						
	Wate	r Independent Path	ways (Inhalation e	excludes radon)		
Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
				mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
4.785E-01 0.2150	3.267E-07 0.0000	0.000E+00 0.0000	3.906E-03 0.0018	1.853E-04 0.0001	4.245E-05 0.0000	5.060E-05 0.0000
1.336E+00 0.6001	2.122E-06 0.0000	0.000E+00 0.0000	1.893E-04 0.0001	3.241E-06 0.0000	2.142E-07 0.0000	7.845E-05 0.0000
2.205E+00 0.9907	2.635E-06 0.0000	0.000E+00 0.0000	1.827E-02 0.0082	1.282E-03 0.0006	7.221E-04 0.0003	4.964E-04 0.0002
	AAAAAAAAAAAAAAAA ■ mrem/yr fract. A AAAAAAAA AAAAA 4.785E-01 0.2150 3.906E-01 0.1755 1.336E+00 0.6001 I IIIIIIIII IIIIIII	Ground Inhalation AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Water Independent Path Radon Radanananananan Radanananananananan Radanananananananananananananananananana	Water Independent Pathways (Inhalation of Radon Plant	Water Independent Pathways (Inhalation excludes radon) Radon Radon Plant Meat Radanananananananananananananananananana	Water Independent Pathways (Inhalation excludes radon) Ground Inhalation Radon Plant Meat Milk AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+00 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAA	Ä ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fract	 mrem/yr fract. 	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAA	Ä ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄ ÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.827E-01 0.2169
Cs-137	0.000E+00 0.000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.069E-01 0.1828
		0.000E+00 0.0000					1.336E+00 0.6003
iiiiiii	ifffffffff fifff	1 11111111111111111	11111111111111111	1111111 11111111	11111111111111111	1111111 111111111	ififfiffi fiffiff
Total	0.000E+00 0.000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2,225E+00 1,0000
0*Sum of	all water indep	endent and dependent	pathways.				

Attachment _	2	Sheet No. 11	of 19
Originator: S	. W. Clark	Date	
Chk'd By H.	M. Sulloway	Date	
Calc. No	100F-CA-V0312	Rev. No	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 12 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 7.000E+00 years

			,,,		1 10000 700 700 0		
0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
			mrem/yr fract.				mrem/yr fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	2.825E-01 0.1623	1.929E-07 0.0000	0.000E+00 0.0000	2.306E-03 0.0013	1.094E-04 0.0001	2.507E-05 0.0000	2.987E-05 0.0000
Cs-137	3.558E-01 0.2044	1.693E-07 0.0000	0.000E+00 0.0000	1.292E-02 0.0074	9.965E-04 0.0006	6.189E-04 0.0004	3.347E-04 0.0002
	1.085E+00 0.6231						
fffffff	1111111111 111111	11111111111111111	111111111111111111111111111111111111111	11111111111111111	fffffff ffffffff	1111111 111111111	11111111111
Total	1.723E+00 0.9899	2.086E-06 0.0000	0.000E+00 0.0000	1.538E-02 0.0088	1.109E-03 0.0006	6.442E-04 0.0004	4.282E-04 0.0002
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As mrem/yr and Fraction of Total Dose At t = 7.000E+00 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
	AAAAAAAAAAA			ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
	mrem/yr fra			mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄÄ	AAAAAAAA AAA	AAAAAAAAAA AAAAA	AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA
Co-60	0.000E+00 0.0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.850E-01 0.1638
Cs-137	0.000E+00 0.0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.707E-01 0.2130
Eu-152	0.000E+00 0.0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.085E+00 0.6233
1111111	1111111111	111 111111111 111111	111111111111111	1111111111111111	1111111 111111111	1111111 11111111	1111111 111111111
Total	0.000E+00 0.0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.740E+00 1.0000
0*Sum of	all water ind	ependent and dependen	t pathways.				

 Attachment
 2
 Sheet No. 12 of 15

 Originator:
 S. W. Clark
 Date

 Chk'd By
 H. M. Sulloway
 Date

 Calc. No.
 0100F-CA-V0312
 Rev. No.

T« Limit = 180 days 1RESRAD, Version 6.3 10/02/2007 14:48 Page 13 Summary: 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File: 100-F-26-14_Excavation_SZ.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.100E+01 years

Water Independent Pathways (Inhalation excludes radon) n Soil Nuclide mrem/yr fract. AAAAAAA AAAAAAAA AAAAAA Co-60 1.668E-01 0.1203 mrem/yr fract. AAAAAAAAA AAAAAA 1.139E-07 0.0000 mrem/yr fract. mrem/yr fract. mrem/yr fract. mrem/yr fract. mrem/yr fract AAAAAA AAAAAA 0.000E+00 0.0000 1.362E-03 0.0010 1.177E-02 0.0085 6.459E-05 0.0000 9.077E-04 0.0007 1.480E-05 0.0000 5.638E-04 0.0004 1.764E-05 0.0000 3.048E-04 0.0002 Cs-137 3.241E-01 0.2337 1.543E-07 0.0000 0.000E+00 0.0000 Eu-152 8.807E-01 0.6351 IIIIIII IIIIIIIIII 1.399E-06 0.0000 0.000E+00 0.0000 1.248E-04 0.0001 2.137E-06 0.0000 1.412E-07 0.0000 5.173E-05 0.0000 11111111111111111 11111111111111111 1111111 11111111 1111111111 111111 1.372E+00 0.9891 1.668E-06 0.0000 0.000E+00 0.0000 1.325E-02 0.0096 9.745E-04 0.0007 5.787E-04 0.0004 3.742E-04 0.0003

> Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.100E+01 years

Water Dependent Pathways Radon All Pathways* ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Water Plant AAAAAAAAAAAA Nuclide mrem/yr fract. mrem/yr fract. XXXXXXXXX XXXXX mrem/yr fract. mrem/yr fract. mrem/yr fract. Co-60 0.000E+00 0.0000 Cs-137 0.000E+00 0.0000 1.683E-01 0.1213 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 3.376E-01 0.2435 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 8.809E-01 0.6352 iffiffiff ffffff 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 1111111 1111111111 1111111 1111111 11111111 1111111 11111111 11111111111111111 Total 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 1.387E+00 1.0000 0*Sum of all water independent and dependent pathways.

Attachment	2	Sheet No. 1	3 of 19
Originator: S. \	N. Clark	Date	
Chk'd By H. M.	. Sulloway	Date	
Calc. No01	00F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 14 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t=4.300E+01 years

As intenty of and fraction of lotal bose At t = 4.500E+01 years							
0		Wate	r Independent Path	ways (Inhalation e	excludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
		mrem/yr fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAA AAAAAA	AAAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	2.464E-03 0.0075	1.683E-09 0.0000	0.000E+00 0.0000	2.011E-05 0.0001	9.542E-07 0.0000	2.186E-07 0.0000	2.606E-07 0.0000
Cs-137	1.537E-01 0.4669	7.314E-08 0.0000	0.000E+00 0.0000	5.579E-03 0.0170	4.304E-04 0.0013	2.673E-04 0.0008	1.445E-04 0.0004
Eu-152	1.665E-01 0.5059	2.646E-07 0.0000	0.000E+00 0.0000	2.360E-05 0.0001	4.041E-07 0.0000	2.670E-08 0.0000	9.780E-06 0.0000
1111111		11111111111111111	1111111 111111111		111111111111111111111111111111111111111	11111111111111111	ifffffffffffffffffffffffffffffffffffff
Total	3.226E-01 0.9803	3.394E-07 0.0000	0.000E+00 0.0000	5.622E-03 0.0171	4.317E-04 0.0013	2.676E-04 0.0008	1.5465-04 0.0005

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 4.300E+01 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.486E-03 0.0076
		0.000E+00 0.0000					1.601E-01 0.4864
		0.000E+00 0.0000					1.665E-01 0.5060
fffffff	1111111111111111		1111111 11111111	1111111 111111111	1111111 11111111	1111111 11111111	11111111111111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.291E-01 1.0000
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachment	2	Sheet No. 14	of 19
Originator: S. W.	/. Clark	Date	
Chk'd By H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 15 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ_RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As mrem/yr and Fraction of Total Dose At t = 1.350E+02 years

Water Independent Pathways (Inhalation excludes radon) 0 Ground Inhalation Radon Plant Radio-Nuclide mrem/yr fract. mrem/yr fract. mrem/yr fract. mrem/yr fract. mrem/yr fract. fract 1.345E-08 0.0000 9.186E-15 0.0000 0.000E+00 0.0000 Co-60 1.098E-10 0.0000 5.210E-12 0.0000 1.423E-12 0.0000 1.194E-12 0.0000 Cs-137 1.798E-02 0.8938 Eu-152 1.386E-03 0.0689 8.557E-09 0.0000 2.202E-09 0.0000 0.000E+00 0.0000 6.527E-04 0.0324 5.035E-05 0.0025 3.128E-05 0.0016 1.691E-05 0.0008 0.000E+00 0.0000 iiiiiiiii iiiiii 1.964E-07 0.0000 fififififi iffifi 3.362E-09 0.0000 fffffffff ffffff 2.222E-10 0.0000 !!!!!!!!!!!!!!!!!!! 8.139E-08 0.0000 111111 111111111 111111 1111111 11111111 iiiiiiii iiiii 1.936E-02 0.9626 1.076E-08 0.0000 0.000E+00 0.0000 6.529E-04 0.0325 1.699E-05 0.0008

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t=1.350E+02 years

Water Dependent Pathways All Pathways* Nuclide mrem/yr fract. mrem/yr fract. mrem/yr fract. mrem/vr fract. mrem/yr fract. AAAAAA AAAAAAAA AAAAAA AAAAAAA AAAAA Co-60 0.000E+00 0.0000 Cs-137 0.000E+00 0.0000 1.357E-08 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 1.873E-02 0.9311 Eu-152 0.000E+00 0.0000 fifffif fifffif fifffif fiffiff 0.000E+00 0.0000 [[[[[[[[[[0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 .386E-03 0.0689 fffffffff ffffff 1111111111 111111 1111111 11111111 1111111 11111111 iffiffiff ifffff 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 2.012E-02 1.0000 0*Sum of all water independent and dependent pathways.

Attachment	2	Sheet No. 15	of 19
Originator: S. W.	Clark	Date	_
Chk'd By H. M. S	Sulloway	Date	
Calc. No0100	F-CA-V0312	Rev. No	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 16 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t=3.000E+02 years

	No milety / and illustration of local bose At L = 51000E-0E years							
0	Water Independent Pathways (Inhalation excludes radon)							
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil	
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
	mrem/yr fract.			mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
		3.345E-24 0.0000						
		1.824E-10 0.0000						
		4.100E-13 0.0000						
iiiiiii		1111111 111111111		11111111111111111	1111111111 111111	1111111 11111111	fiffiffiff fiffiff	
Total	3.836E-04 0.9599	1.829E-10 0.0000	0.000E+00 0.0000	1.392E-05 0.0348	1.074E-06 0.0027	6.668E-07 0.0017	3.606E-07 0.0009	

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years

0	Water Dependent Pathways						
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
	mrem/yr fract.		mrem/yr fract.				
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAA	AAAAAAAA AAAAA	AAAAAAA AAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA
Co-60	0.000E+00 0.0000	4.942E-18 0.0000					
Cs-137	0.000E+00 0.0000	3.993E-04 0.9994					
		0.000E+00 0.0000					
1111111	iiiiiiiii iiiiii	11111111111111111	1111111111111111	1111111 111111111	1111111 11111111	1111111 11111111	1111111 11111111
Total	0.000E+00 0.0000	3.996E-04 1.0000					
0*Sum of	all water indepe	endent and dependent	pathways.				

Attachment _	2	_ Sheet No. <u>1</u>	6 of 19
Originator: S.	. W. Clark	Date	
Chk'd By H. M	M. Sulloway	Date	
Calc. No0	100F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 17 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

		/(G III OII	, , , and induction o	TOTAL DOSC AL L	- 1.000L.03 years		
0	Water Independent Pathways (Inhalation excludes radon)						
0	Ground	Inhalation	Radon	Plant	Meat	Mīlk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
	mrem/yr fract.		mrem/yr fract.				
ÄÄÄÄÄÄÄ	AAAAAA AAAAA	ΧΑΧΚΑΚ ΚΑΚΑΚΑΚΑ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
	3.117E-11 0.9599						
	3.864E-23 0.0000						
1111111	1111111 11111111			1111111111111111	1111111 11111111	1111111 11111111	ififififi ifififi
Total	3.117E-11 0.9599	1.075E-16 0.0000	0.000E+00 0.0000	1.132E-12 0.0349	8.729E-14 0.0027	5.421E-14 0.0017	2.939E-14 0.0009
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide	mrem/yr fract.						
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000						
Cs-137	0.000E+00 0.0000	3.247E-11 1.0000					
Eu-152	0.000E+00 0.0000	3.603E-16 0.0000					
1111111		111111111111111111111111111111111111111			1111111 11111111	111111111111111111	1111111 11111111
Total	0.000E+00 0.0000	3.247E-11 1.0000					
0*Sum of	all water indeper	dent and dependent	pathways.				

Attachment	2	_ Sheet No. 17 of 19
Originator:	S. W. Clark	Date
Chk'd By _H	. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 18 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Dose/Source Ratios Summed Over All Pathways Parent and Progeny Principal Radionuclide Contributions Indicated

0 Parent	Product	Thread	•	DSR(j,t)	At Time is	n Years	(mrem/yr)/	(pCi/g)		
(i)	(j)	Fraction	0.000E+00 1.000E	+00 3.000E+00	7.000E+00	1.100E+01	4.300E+01	1.350E+02	3.000E+02	1.000E+03
ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	AAA AAAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ
Co-60	Co-60	1.000E+00	9.817E+00 8.605E	+00 6.612E+00	3.904E+00	2.305E+00	3.405E-02	1.859E-07	6.769E-17	0.000E+00
OCs-137+D	Cs-137+D	1.000E+00	2.118E+00 2.070E	+00 1.975E+00	1.799E+00	1.639E+00	7.771E-01	9.092E-02	1.939E-03	1.576E-10
0Eu-152	Eu-152	7.208E-01	3.042E+00 2.888E	+00 2.602E+00	2.113E+00	1.716E+00	3.244E-01	2.700E-03	5.026E-07	7.529E-23
0Eu-152	Eu-152	2.792E-01	1.178E+00 1.119E	+00 1.008E+00	8.186E-01	6.647E-01	1.257E-01	1.046E-03	1.947E-07	2.916E-23
Eu-152	Gd-152	2.792E-01	0.000E+00 5.003E	-17 1.426E-16	3.012E-16	4.299E-16	8.808E-16	9.839E-16	9.827E-16	9.737E-16
Eu-152	äDSR(j)		1.178E+00 1.119E							
							111111111	111111111	111111111	111111111
The DSR inc	cludes conti	ributions f	rom associated (h	alf-life ó 18	0 days) da	ughters.				
0					-					

Single Radionuclide Soil Guidelines G(i,t) in pCi/g Basic Radiation Dose Limit = 1.500E+01 mrem/yr

UNUCLICE										
(i)	t= 0.000E+00	1.000E+00	3.000E+00	7.000E+00	1.100E+01	4.300E+01	1.350E+02	3.000E+02	1.000E+03	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	
Co-60	1.528E+00	1.743E+00	2.269E+00	3.842E+00	6.507E+00	4.405E+02	8.068E+07	*1.132E+15	*1.132E+15	
Cs-137	7.081E+00	7.248E+00	7.594E+00	8.337E+00	9.152E+00	1.930E+01	1.650E+02	7.738E+03	9.517E+10	
Eu-152	3.554E+00	3.744E+00	4.155E+00	5.116E+00	6.301E+00	3.333E+01	4.005E+03	2.151E+07	*1.765E+14	
1111111	111111111	iiiiiiiii	111111111	111111111	111111111	111111111	111111111	111111111	111111111	
*At spec	ific activity	limit								
0										

Summed Dose/Source Ratios DSR(i,t) in (mrem/yr)/(pCi/g) and Single Radionuclide Soil Guidelines G(i,t) in pCi/g at tmin = time of minimum single radionuclide soil guideline and at tmax = time of maximum total dose = 0.000E+00 years

ONuclide	Initial	tmin	DSR(i,tmin)	G(i,tmin)	DSR(i,tmax)	G(i,tmax)
	(pCi/g)	(years)		(pCi/g)		(pCi/g)
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ
Co-60	7.300E-02	0.000E+00	9.817E+00	1.528E+00	9.817E+00	1.528E+00
Cs-137	2.060E-01	0.000E+00	2.118E+00	7.081E+00	2.118E+00	7.081E+00
Eu-152	3.700E-01	0.000E+00	4.221E+00	3.554E+00	4.221E+00	3.554E+00
iiiiiii	111111111	11111111111111111	iiiiiiiii	111111111	111111111	1111111111

Attachment	2	Sheet No. 1	8 of 19
Originator: S. W.	. Clark	Date	
Chk'd By H. M. S	Sulloway	Date	
Calc. No0100	F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 19 Summary : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Individual Nuclide Dose Summed Over All Pathways Parent Nuclide and Branch Fraction Indicated DOSE(i.t). mrem/yr

	Parent Nuclide and Branch Fraction Indicated				
ONuclide Parent THF(i)	DOSE(j,t), mrem/yr				
	= 0.000E+00 1.000E+00 3.000E+00 7.000E+00 1.100E+01 4.300E+01 1.350E+02 3.000E+02 1.000E+03				
AAAAAA AAAAAA AAAAAAA	ΑΚΑΚΑΚΑΚΑ ΚΑΚΑΚΑΚΑΚΑ ΚΑΚΑΚΑΚΑΚ ΚΑΚΑΚΑΚΑ				
Co-60 Co-60 1.000E+00	7.166E-01 6.282E-01 4.827E-01 2.850E-01 1.683E-01 2.486E-03 1.357E-08 4.942E-18 0.000E+00				
OCs-137 Cs-137 1.000E+00	4.364E-01 4.263E-01 4.069E-01 3.707E-01 3.376E-01 1.601E-01 1.873E-02 3.993E-04 3.247E-11				
0Eu-152 Eu-152 7.208E-01	1.126E+00 1.069E+00 9.629E-01 7.819E-01 6.349E-01 1.200E-01 9.989E-04 1.860E-07 2.786E-23				
Eu-152 Eu-152 2.792E-01	4.360E-01 4.139E-01 3.730E-01 3.029E-01 2.459E-01 4.650E-02 3.869E-04 7.204E-08 1.079E-23				
Eu-152 äDOSE(j)	1.562E+00 1.482E+00 1.336E+00 1.085E+00 8.809E-01 1.665E-01 1.386E-03 2.580E-07 3.865E-23				
0Gd-152 Eu-152 2.792E-01	0.000E+00 1.851E-17 5.276E-17 1.114E-16 1.591E-16 3.259E-16 3.641E-16 3.636E-16 3.603E-16				
1111111 1111111 111111111					
THE(i) is the thread fracti	on of the parent nuclide				

Individual Nuclide Soil Concentration Parent Nuclide and Branch Fraction Indicated

ONuclide Parent	THF(i)					S(j,t), pCi/9	3			
(j) (i)		t=	0.000E+00	1.000E+00	3.000E+00	7.000E+00	1.100E+01	4.300E+01	1.350E+02	3.000E+02	1.000E+03
ÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ
Co-60 Co-60	1.000E+00		7.300E-02	6.399E-02	4.917E-02	2.903E-02	1.714E-02	2.532E-04	1.383E-09	5.034E-19	0.000E+00
OCs-137 Cs-137	1.000E+00		2.060E-01	2.013E-01	1.921E-01	1.750E-01	1.594E-01	7.557E-02	8.842E-03	1.885E-04	1.533E-11
0Eu-152 Eu-152	7.208E-01		2.667E-01	2.532E-01	2.281E-01	1.853E-01	1.504E-01	2.844E-02	2.367E-04	4.406E-08	6.600E-24
Eu-152 Eu-152	2.792E-01		1.033E-01	9.806E-02	8.837E-02	7.176E-02	5.827E-02	1.102E-02	9.167E-05	1.707E-08	2.557E-24
Eu-152 äS(j):			3.700E-01	3.512E-01	3.165E-01	2.570E-01	2.087E-01	3.946E-02	3.283E-04	6.113E-08	9.157E-24
0Gd-152 Eu-152	2.792E-01		0.000E+00	6.460E-16	1.841E-15	3.889E-15	5.552E-15	1.137E-14	1.271E-14	1.269E-14	1.257E-14
	111111111		111111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111
THF(i) is the t	THF(i) is the thread fraction of the parent nuclide.										
ORESCALC.EXE exe	ORESCALC.EXE execution time = 5.28 seconds										

Attachment	2	_ Sheet No. 19	of 19
Originator: S.1	N. Clark	Date	
Chk'd By H. M	. Sulloway	Date	
Calc. No. 01	00F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 1
Intrisk: 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File: 100-F-26-14_Excavation_SZ.RAD

Table of Contents
ΑΑΧΑΘΑΑΚΑΘΑΑΚΑΘΑΑΚΑΘΑΑΚΑΘΑΑΚΑΘΑΕ
Part III: Intake Quantities and Health Risk Factors
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Cancer Risk Slope Factors	2
Risk Slope and ETFG for the Ground Pathway	3
Amount of Intake Quantities and Excess Cancer Risks	
Time= 0.000E+00	4
Time= 1.000E+00	6
Time= 3.000E+00	8
Time= 7.000E+00	10
Time= 1.100E+01	12
Time= 4.300E+01	14
Time= 1.350E+02	16
Time= 3.000E+02	18
Time= 1.000E+03	20

Attachment 3 Sheet No. 1 of 21 Originator: S. W. Clark Date (v/3/3/2) Chk'd By H. M. Sulloway ///// Date (v/3/8/7) Calc. No. 0100F-CA-V0312 Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 2 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Cancer Risk Slope Factors Summary Table Risk Library: HEAST 2001 Morbidity

0	2	·	3	Current	3	Base	3	Param	eter
Menu	1 3	Parameter	3	Value	3	Case*	3	Nam	e
ÄÄÄÄÄ	ÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÅ	ÄÄÄÄÄÄÄÄÄÄ	ÄÅ	ÄÄÄÄÄÄÄÄÄÄ	ÄÅ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Sf-1	2	Ground external radiation slope factors, 1/yr per (pCi/g)	: 3		3		3		
Sf-1		Co-60		1.24E-05	3	1.24E-05	3	SLPF(1,1)
Sf-1	3	Cs-137+D	3	2.55E-06	3	5.32E-10	3	SLPF(2,1)
Sf-1	2	Eu-152	2	5.30E-06	3	5.30E-06	3	SLPF(3,1)
Sf-1	3	Gd-152	3	0.00E+00	3	0.00E+00		SLPF(
	3		3		2		3		
Sf-2	3	Inhalation, slope factors, 1/(pCi):	3		3		3		
Sf-2	3	Co-60	3	3.58E-11	3	3.58E-11	3	SLPF(1.2)
Sf-2	3	Cs-137+D	3	1.19E-11	3	1.19E-11	3	SLPF(2,2)
Sf-2	3	Eu-152	2	9.10E-11	3	9.10E-11	3	SLPF(3,2)
Sf-2	3	Gd-152	3	9.10E-09	3	9.10E-09	3	SLPF(5,2)
	3		3		3		3		•
Sf-3	3	Food ingestion, slope factors, 1/(pCi):	3		3		3		
Sf-3	3	Co-60	3	2.23E-11	3	2.23E-11	3	SLPF(1,3)
Sf-3	2	Cs-137+D	2	3.74E-11	3	3.74E-11	3	SLPF(2,3)
Sf-3	3	Eu-152	3	8.70E-12	3	8.70E-12	3	SLPF(3.3)
Sf-3	3	Gd-152	3	3.85E-11	2	3.85E-11	3	SLPF(5,3)
	3		3		2		3		•
Sf-3	3	Water ingestion, slope factors, 1/(pCi):	3		2		2		
Sf-3	3	Co-60	3	1.57E-11	2	1.57E-11	3	SLPF(1,4)
Sf-3	2	Cs-137+D	3	3.04E-11	3	3.04E-11	3	SLPF(2,4)
Sf-3	3	Eu-152	3	6.07E-12	2	6.07E-12	3	SLPF(3,4)
Sf-3	3	Gd-152	2	2.97E-11	3	2.97E-11	2	SLPF(5,4)
	3		2		2		2		
Sf-3	3	Soil ingestion, slope factors, 1/(pCi):	3		2		3		
Sf-3	3	Co-60	3	4.03E-11	2	4.03E-11	2	SLPF(1,5)
Sf-3	3	Cs-137+D	3	4.33E-11	3	4.33E-11	3	SLPF(2,5)
Sf-3	3	Eu-152	3	1.62E-11	2	1.62E-11	3	SLPF(3,5)
Sf-3	3	Gd-152	3	6.29E-11	3	6.29E-11	3	SLPF(5,5)
	3		3		3		3		

*Base Case means Default.Lib w/o Associate Nuclide contributions.

Attachm	ent	3	Sheet No. 2	2 of 21
Originator	: S. W. Clar	k	Date	
Chk'd By_	H. M. Sullov	vay	Date	
Calc. No.	0100F-CA	N-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 3 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Risk Slope and Environmental Transport Factors for the Ground Pathway											
ONuclide	Slope(i)*				i,t) At Tim						
(i)		0.000E+00	1.000E+00	3.000E+00	7.000E+00	1.100E+01	4.300E+01	1.350E+02	3.000E+02	1.000E+03	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	
Ba-137m	2.690E-06	5.961E-01	5.961E-01	5.961E-01	5.961E-01	5.961E-01	5.961E-01	5.961E-01	5.961E-01	5.961E-01	
Co-60	1.240E-05	6.002E-01	6.002E-01	6.002E-01	6.002E-01	6.002E-01	6.002E-01	6.002E-01	6.002E-01	6.002E-01	
Cs-137	5.320E-10	6.152E-01	6.152E-01	6.152E-01	6.152E-01	6.152E-01	6.152E-01	6.152E-01	6.152E-01	6.152E-01	
Eu-152	5.300E-06	6.024E-01	6.024E-01	6.024E-01	6.024E-01	6.024E-01	6.024E-01	6.024E-01	6.024E-01	6.024E-01	
Gd-152	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
fffffff	iiiiiiiii	111111111		fffffffff			111111111	iiiiiiiii	iiiiiiiii	iiiiiiiii	
* - Unit	s are 1/yr p	er (pCi/g)	at infinite	depth and	area. Mult	iplication	by ETFG(i,t) converts	to site con	ditions.	

Attachme	nt3	Sheet No.	3 of 21
Originator:	S. W. Clark	Date	
Chk'd By _	H. M. Sulloway	Date	
Calc. No	0100F-CA-V031	2 Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File : 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 4

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 0.000E+00 years

				athways (Inl				Water	r Dependent	Pathways		
	Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	AAAAAAAAAAA	KAKAKAKAKA	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	Total
	Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
	Co-60			1.023E+01								
	Cs-137	6.250E-03	3.041E+02	2.346E+01	1.457E+01	7.880E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.501E+02
	Eu-152	1.123E-02	3.415E+01	5.847E-01	3.863E-02	1.415E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.893E+01
	Gd-152	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
	iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii	1111111111	1111111111	11111111111
	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil											
and water-dependent water, fish, plant, meat, milk pathways												
	^											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

0						
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	4.064E-06 0.1398	5.932E-13 0.0000	3.596E-08 0.0012	1.706E-09 0.0001	3.909E-10 0.0000	8.419E-10 0.0000
Cs-137	6.744E-06 0.2320	1.605E-12 0.0000	2.454E-07 0.0084	1.894E-08 0.0007	1.176E-08 0.0004	7.363E-09 0.0003
Eu-152	1.793E-05 0.6169	1.551E-11 0.0000	4.511E-09 0.0002	7.723E-11 0.0000	5.103E-12 0.0000	3.481E-09 0.0001
Gd-152	0.000E+00 0.0000	5.210E-23 0.0000	6.705E-22 0.0000	1.148E-23 0.0000	3.035E-25 0.0000	4.540E-22 0.0000
1111111		1111111111 111111	111111 111111111	11111111111111111	111111111111111111111111111111111111111	111111 11111111
Total	2.874E-05 0.9886	1.771E-11 0.0000	2.859E-07 0.0098	2.072E-08 0.0007	1.216E-08 0.0004	1.169E-08 0.0004
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**	
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Nuclide		risk fract.					
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAA AAAAA	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Co-60	0.000E+00 0.0000	4.103E-06 0.1411					
Cs-137	0.000E+00 0.0000	7.028E-06 0.2417					
Eu-152	0.000E+00 0.0000	1.794E-05 0.6171					
Gd-152	0.000E+00 0.0000	1.188E-21 0.0000					
1111111	111111111111111111	111111111111111111111111111111111111111	111111111111111	111111 11111111	111111 1111111	111111 11111111	
Total	0.000E+00 0.0000	2.907E-05 1.0000					

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Attachme	ent	3	Sheet No	. 4 of 21
Originator:	S. W. Clar	k	Date	
Chk'd By _I	H. M. Sullov	vay	Date	
Calc. No	0100F-CA	\-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 5
Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File : 100-F-26-14_Excavation_SZ_RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		risk fract.		risk fract.		risk fract.	risk fract.
	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
		5.932E-13 0.0000					
		1.605E-12 0.0000					
Eu-152	1.793E-05 0.6169	1.551E-11 0.0000	0.000E+00 0.0000	4.511E-09 0.0002	7.723E-11 0.0000	5.103E-12 0.0000	3.481E-09 0.0001
iiiiiii	ffffffffffffffffff				1111111 11111111	111111 11111111	ffffffffffffffffffff
Total	2.874E-05 0.9886	1.771E-11 0.0000	0.000E+00 0.0000	2.859E-07 0.0098	2.072E-08 0.0007	1.216E-08 0.0004	1.169E-08 0.0004

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

Water Dependent Pathways

	11						
	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio		AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAA	AAAAAAAAAAAAAA	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nucli		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄ	XX XXXXXXXX XXXXX	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60			0.000E+00 0.0000		0.000E+00 0.0000		
Cs-13	7 0.000E+00 0.0000						
	2 0.000E+00 0.0000				0.000E+00 0.0000		1.794E-05 0.6171
ííííí		ifififf fifffffff		111111111111111111	1111111 11111111	111111 111111111	fifffff fifffff
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000F+00 0.0000	0.000F+00.0.0000	0.0000+00.0.000	0.0005+00.0.0000	2 9075-05 1 0000

 $[\]verb|****CNRSI(i,p,t)| includes contribution from decay daughter radionuclides|$

Attachm	nent	3	Sheet No. 5	of 21
Originato	r: S. W. Clark	(_Date	
Chk'd By	H. M. Sullow	ay	Date	
Calc. No.	0100F-CA	-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 6 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.000E+00 years

	Water Independent Pathways (Inhalation w/o radon) adio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				o radon)	Water Dependent Pathways					
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	, AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	(AAAÄÄÄÄÄÄÄÄ	KAKAKAKAKA	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	1.941E-03	1.890E+02	8.964E+00	2.054E+00	2.448E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.024E+02
Cs-137	6.106E-03	2.971E+02	2.292E+01	1.424E+01	7.698E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.420E+02
Eu-152		3.242E+01				0.000E+00					
Gd-152		5.963E-14									
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii
* Sum of	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and wa	and water-dependent water, fish, plant, meat, milk pathways										
0											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

•				ways (Ilmiatation e	ACTUGES LAGUITY	
0	Ground		Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.				
	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ ÄÄÄÄÄÄÄ
		5.200E-13 0.0000		1.495E-09 0.0001	3.427E-10 0.0000	7.380E-10 0.0000
		1.568E-12 0.0000		1.850E-08 0.0007	1.149E-08 0.0004	7.193E-09 0.0003
Eu-152	1.703E-05 0.6192	1.472E-11 0.0000	4.282E-09 0.0002	7.332E-11 0.0000	4.844E-12 0.0000	3.305E-09 0.0001
		5.481E-23 0.0000		1.208E-23 0.0000		4.776E-22 0.0000
iiiiiii		1111111111 111111	11111111111111111	11111111111111111	11111111111111111	1111111 11111111
Total	2.718E-05 0.9884	1.681E-11 0.0000	2.756E-07 0.0100	2.007E-08 0.0007	1.184E-08 0.0004	1.124E-08 0.0004
^						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

Water Dependent Pathways

Radio-	Water AAAAAAAAAAAAAAA	Fish AAAAAAAAAAAAAAA	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat XXXXXXXXXXXXXXX	Milk XXXXXXXXXXXXXXXXX	All Pathways**
Nuclide	risk fract.	risk fract.	risk fract.	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.597E-06 0.1308
Cs-137 Eu-152	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	6.866E-06 0.2497 1.703E-05 0.6195
Gd-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.250E-21 0.0000
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.750E-05 1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

n

Attachmer	nt3	_ Sheet No. 6	of 21
Originator: _	S, W. Clark	Date	
Chk'd By H	. M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File : 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 7

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

0	Water Independent Pathways (Inhalation excludes radon)								
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
Nuclide		risk fract.							
	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
Co-60	3.563E-06 0.1296	5.200E-13 0.0000	0.000E+00 0.0000	3.152E-08 0.0011	1.495E-09 0.0001	3.427E-10 0.0000	7.380E-10 0.0000		
Cs-137									
		1.472E-11 0.0000							
iiiiiii	1111111 11111111	1111111 11111111	1111111 111111111	1111111 111111111	1111111 11111111	1111111 11111111	11111111111111111		
Total	2.718E-05 0.9884	1.681E-11 0.0000	0.000E+00 0.0000	2.756E-07 0.0100	2.007E-08 0.0007	1.184E-08 0.0004	1.124E-08 0.0004		
0									

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

Water Dependent Pathways

Radio-	Water ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Fish AAAAAAAAAAAAAAAA	Radon ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Plant AAAAAAAAAAAAAAAA	Meat XXXXXXXXXXXXXXXX	Milk AAAAAAAAAAAAAAA	All pathways
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.597E-06 0.1308
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.866E-06 0.2497
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.703E-05 0.6195
1111111	1111111 111111111	1111111 111111111	1111111 11111111	iiiiiii iiiiiiii	1111111 11111111	11111111111111111	11111111111111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2,750E-05 1,0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachme	nt3	Sheet No. 7	of 21
Originator:	S. W. Clark	Date	
Chk'd By _ F	H. M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	2 Rev No	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 8 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 3.000E+00 years

	Water Independent Pathways (Inhalation w/o radon) Radio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ							Dependent			
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	XAAAAAAAAAAA	AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	KAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	1.492E-03	1.452E+02	6.888E+00	1.578E+00	1.881E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.555E+02
Cs-137	5.828E-03	2.836E+02	2.188E+01	1.359E+01	7.347E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.264E+02
Eu-152	9.603E-03	2.921E+01	5.002E-01	3.305E-02	1.211E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.185E+01
Gd-152			2.910E-15								
fffffff			1111111111					1111111111	1111111111	1111111111	iiiiiiiiii
* Sum of	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and wa	and water-dependent water, fish, plant, meat, milk pathways										
0											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

U		wate	r independent Patr	ways (Inhalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	2.738E-06 0.1110	3.995E-13 0.0000	2.422E-08 0.0010	1.149E-09 0.0000	2.633E-10 0.0000	5.671E-10 0.0000
Cs-137	6.288E-06 0.2549	1.496E-12 0.0000	2.289E-07 0.0093	1.766E-08 0.0007	1.097E-08 0.0004	6.865E-09 0.0003
Eu-152	1.534E-05 0.6220	1.327E-11 0.0000	3.859E-09 0.0002	6.607E-11 0.0000	4.365E-12 0.0000	2.978E-09 0.0001
Gd-152	0.000E+00 0.0000	5.982E-23 0.0000	7.698E-22 0.0000	1.318E-23 0.0000	3.484E-25 0.0000	5.213E-22 0.0000
1111111	1111111 111111111	11111111111111111	1111111 11111111	11111111111111111	1111111 11111111	11111111111111111
Total	2.437E-05 0.9879	1.516E-11 0.0000	2.569E-07 0.0104	1.887E-08 0.0008	1.123E-08 0.0005	1.041E-08 0.0004
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΑΧΑΧΑΚΑ ΚΑΚΑΚΑΚΑ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ΑΧΑΚΑ ΑΚΑΚΑΚΑ
Co-60	0.000E+00 0.0000	2.764E-06 0.1121				
Cs-137	0.000E+00 0.0000	6.553E-06 0.2657				
Eu-152	0.000E+00 0.0000	1.535E-05 0.6223				
Gd-152	0.000E+00 0.0000	1.364E-21 0.0000				
1111111	1111111 11111111			1111111 1111111	1111111 11111111	111111 11111111
Total	0.000E+00 0.0000	2.467E-05 1.0000				

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Attachment	3	Sheet No. 8	3 of 21
Originator: S. V	V. Clark	Date	_
Chk'd By H. M.	Sulloway	Date	
Calc. No010	00F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Intrisk: 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File: 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 9

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+00 years

•					_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
U		Wate	r Independent Path	ways (Inhalation e	excludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ			ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	2.738E-06 0.1110	3.995E-13 0.0000	0.000E+00 0.0000	2.422E-08 0.0010	1.149E-09 0.0000	2.633E-10 0.0000	5.671E-10 0.0000
		1.496E-12 0.0000				1.097E-08 0.0004	6.865E-09 0.0003
		1.327E-11 0.0000				4.365E-12 0.0000	2.978E-09 0.0001
1111111		1111111 111111111		11111111111111111	111111 11111111	1111111 111111111	1111111111111111
Total	2.437E-05 0.9879	1.516E-11 0.0000	0.000E+00 0.0000	2.569E-07 0.0104	1.887E-08 0.0008	1.123E-08 0.0005	1.041E-08 0.0004
0							

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+00 years

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		risk fract.					
	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	2.764E-06 0.1121					
		0.000E+00 0.0000	******	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.553E-06 0.2657
		0.000E+00 0.0000				0.000E+00 0.0000	1.535E-05 0.6223
iiiiiii					fifffffffff fffffff	1111111 11111111	iiiiiii iiiiiiii
Total	0.000E+00 0.0000	2.467E-05 1.0000					

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachm	nent	3	S	Sheet	No.	9 c	f 21
Originato	r: <u>S. W</u>	. Clark		Date		_	-
Chk'd By	H. M. S	Sulloway		Date			
Calc. No.	0100	F-CA-V0312		Rev.	No.	C)

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 10 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 7.000E+00 years

	Water Independent Pathways (Inhalation w/o rador						Water	r Dependent	Pathways		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	8.808E-04	8.573E+01	4.067E+00	9.319E-01	1.111E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	9.184E+01
Cs-137	5.308E-03	2.583E+02	1.993E+01	1.238E+01	6.693E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.973E+02
Eu-152	7.798E-03	2.372E+01	4.062E-01	2.684E-02	9.831E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.399E+01
Gd-152					1.488E-13						
	1111111111							1111111111	1111111111	1111111111	1111111111
	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and wa	and water-dependent water, fish, plant, meat, milk pathways										
0											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 7.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

U		Wate	r Independent Path	ways (Inhalation e	xcludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.				
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA
Co-60	1.616E-06 0.0806	2.359E-13 0.0000	1.430E-08 0.0007	6.785E-10 0.0000	1.555E-10 0.0000	3.348E-10 0.0000
Cs-137	5.728E-06 0.2855	1.363E-12 0.0000	2.085E-07 0.0104	1.608E-08 0.0008	9.990E-09 0.0005	6.254E-09 0.0003
Eu-152	1.246E-05 0.6209	1.077E-11 0.0000	3.133E-09 0.0002	5.365E-11 0.0000	3.545E-12 0.0000	2.418E-09 0.0001
Gd-152	0.000E+00 0.0000	6.840E-23 0.0000	8.803E-22 0.0000	1.507E-23 0.0000	3.984E-25 0.0000	5.961E-22 0.0000
1111111		11111111111111111	11111111111111111	11111111111111111	1111111 11111111	1111111111111111
Total	1.980E-05 0.9869	1.237E-11 0.0000	2.259E-07 0.0113	1.682E-08 0.0008	1.015E-08 0.0005	9.006E-09 0.0004
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 7.000E+00 years

Radio-	Water AAAAAAAAAAAAAAA	Fish AAAAAAAAAAAAAAA	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Milk ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	All Pathways**
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
	AAAAAAAA AAAAA	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.632E-06 0.0813
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.969E-06 0.2975
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.246E-05 0.6212
Gd-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.560E-21 0.0000
iiiiiii			1111111111 111111	1111111 1111111	11111111111111111	1111111111111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.006E-05 1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Attachment	3	_ Sheet No. 10 of 21
Originator: 3	S. W. Clark	Date
Chk'd By H.	M. Sulloway	Date
Calc. No	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File : 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 11

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 7.000E+00 years

0	Water Independent Pathways (Inhalation excludes radon)								
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
Nuclide				risk fract.					
ÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ							
				1.430E-08 0.0007					
				2.085E-07 0.0104					
				3.133E-09 0.0002					
iiiiiii				1111111 11111111					
Total	1.980E-05 0.9869	1.237E-11 0.0000	0.000E+00 0.0000	2.259E-07 0.0113	1.682E-08 0.0008	1.015E-08 0.0005	9.006E-09 0.0004		
0									

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 7.000E+00 years

Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAA AAAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.632E-06 0.0813
Cs-137 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.969E-06 0.2975
Eu-152 0.000E+00 0.0000					0.000E+00 0.0000	1.246E-05 0.6212
		11111111111111111	111111111111111111	1111111 111111111	1111111 111111111	1111111111111111
Total 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.006E-05 1.0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment	3	_ Sheet No. 11 of 21
Originator: _	S. W. Clark	Date
Chk'd By H	. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Intrisk: 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File : 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 12

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.100E+01 years

	Water Ind	dependent Pa	athways (Inh	halation w/o	o radon)		Water	Dependent	Pathways		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	(AÄÄÄÄÄÄÄÄÄÄ	KAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	KAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide			Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	5.201E-04	5.062E+01	2.401E+00	5.502E-01	6.557E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.423E+01
Cs-137		2.353E+02						0.000E+00			
Eu-152			3.298E-01							0.000E+00	2.760E+01
Gd-152	1.684E-16	5.124E-13	8.774E-15	2.320E-16	2.124E-13	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	7.338E-13
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii
* Sum of	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and wa	and water-dependent water, fish, plant, meat, milk pathways										
0											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.100E+01 years

0		Wate	r Independent Path	ways (Inhalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAAA AAAAA	ΆλλλΑΚΑ ΚΑΚΑΚΑΚ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	9.544E-07 0.0578	1.393E-13 0.0000	8.445E-09 0.0005	4.006E-10 0.0000	9.179E-11 0.0000	1.977E-10 0.0000
Cs-137	5.218E-06 0.3158	1.242E-12 0.0000	1.899E-07 0.0115	1.465E-08 0.0009	9.100E-09 0.0006	5.697E-09 0.0003
Eu-152	1.012E-05 0.6123	8.748E-12 0.0000	2.544E-09 0.0002	4.356E-11 0.0000	2.878E-12 0.0000	1.964E-09 0.0001
Gd-152	0.000E+00 0.0000	7.536E-23 0.0000				
iiiiiii	111111111111111111				111111111111111111111111111111111111111	111111111111111111111111111111111111111
Total	1.629E-05 0.9859	1.013E-11 0.0000	2.009E-07 0.0122	1.510E-08 0.0009	9.195E-09 0.0006	7.858E-09 0.0005
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.100E+01 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAA
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	9.636E-07 0.0583
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.437E-06 0.3291
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.012E-05 0.6126
Gd-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.719E-21 0.0000
1111111	1111111 11111111	11111111111111111	111111111111111111	111111111111111	111111111111111111111111111111111111111	111111 11111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.652E-05 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Attachment	3	Sheet No. 12	of 21
Originator:	S. W. Clark	Date	
Chk'd By H	. M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev No	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 13 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ_RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.100E+01 years

	and Fraction of local Risk at t- 1.100ETOT years						
0	Water Independent Pathways (Inhalation excludes radon)						
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA
Co-60	9.544E-07 0.0578	1.393E-13 0.0000	0.000E+00 0.0000	8.445E-09 0.0005	4.006E-10 0.0000	9.179E-11 0.0000	1.977E-10 0.0000
Cs-137	5.218E-06 0.3158	1.242E-12 0.0000	0.000E+00 0.0000	1.899E-07 0.0115	1.465E-08 0.0009	9.100E-09 0.0006	5.697E-09 0.0003
Eu-152	1.012E-05 0.6123	8.748E-12 0.0000	0.000E+00 0.0000	2.544E-09 0.0002	4.356E-11 0.0000	2.878E-12 0.0000	1.964E-09 0.0001
1111111	11111111111111111	11111111111111111	1111111 11111111	111111111111111111	11111111111111111	111111 11111111	11111111111111111
Total	1.629E-05 0.9859	1.013E-11 0.0000	0.000E+00 0.0000	2.009E-07 0.0122	1.510E-08 0.0009	9.195E-09 0.0006	7.858E-09 0.0005
0							

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.100E+01 years

Water Dependent Pathways

Radio-	Water ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Fish ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Radon ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat XXXXXXXXXXXXXXXX	Milk XXXXXXXXXXXXXX	All pathways
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	9.636E-07 0.0583
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000		5.437E-06 0.3291
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.012E-05 0.6126
iiiiiii	111111111111111111	1111111 111111111	1111111 11111111	1111111 111111111	1111111 111111111	1111111 11111111	
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000F+00 0.0000	1.6525-05 1 0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachmen	t3	Sheet No. 1	13 of 21
Originator:	S. W. Clark	Date	
Chk'd By _F	I. M. Sulloway	Date	
Calc. No	0100F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 14 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As pCi/yr at t= 4.300E+01 years

				athways (Inl				Wate	r Dependent	Pathways		
	Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ĬÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	AAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	Total
	Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant		Milk	Ingestion*
	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ
	Co-60	7.683E-06	7.477E-01	3.547E-02	8.128E-03	9.687E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	8.010E-01
	Cs-137			8.607E+00								
	Eu-152	1.197E-03	3.642E+00	6.235E-02	4.120E-03	1.509E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.217E+00
	Gd-152			1.798E-14								
	1111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii	1111111111
	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil											
	and water-dependent water, fish, plant, meat, milk pathways											
•	1				•	•						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.300E+01 years

0			r Independent Path	ways (Inhalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.				
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΑΑΑΑΑΑ ΑΑΑΑΑΑ	AAAAAA AAAAAA
Co-60	1.410E-08 0.0031	2.058E-15 0.0000	1.247E-10 0.0000	5.918E-12 0.0000	1.356E-12 0.0000	2.920E-12 0.0000
Cs-137	2.474E-06 0.5491	5.887E-13 0.0000	9.004E-08 0.0200	6.947E-09 0.0015	4.315E-09 0.0010	2.701E-09 0.0006
Eu-152	1.913E-06 0.4245	1.654E-12 0.0000	4.810E-10 0.0001	8.236E-12 0.0000	5.442E-13 0.0000	3.712E-10 0.0001
Gd-152	0.000E+00 0.0000	9.975E-23 0.0000	1.284E-21 0.0000	2.198E-23 0.0000	5.810E-25 0.0000	8.693E-22 0.0000
1111111		11111111111111111	1111111 111111111	1111111 111111111	111111 11111111	111111 11111111
Total	4.401E-06 0.9767	2.245E-12 0.0000	9.065E-08 0.0201	6.961E-09 0.0015	4.316E-09 0.0010	3.075E-09 0.0007
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.300E+01 years

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.					
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	1.423E-08 0.0032				
Cs-137	0.000E+00 0.0000	2.578E-06 0.5722				
Eu-152	0.000E+00 0.0000	1.913E-06 0.4247				
Gd-152	0.000E+00 0.0000	2.275E-21 0.0000				
1111111			1111111 11111111	111111111111111111111111111111111111111	1111111111111111	1111111 11111111
Total	0.000E+00 0.0000	4.506E-06 1.0000				

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Attachment _	3	Sheet No. 14 of 21
Originator: S.	. W. Clark	Date
Chk'd By H. N	/l. Sulloway	Date
Calc No 0	100F_CA_V0312	Rev No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 15 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ_RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.300E+01 years

0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		risk fract.					
	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA
Co-60				1.247E-10 0.0000	5.918E-12 0.0000	1.356E-12 0.0000	2.920E-12 0.0000
					6.947E-09 0.0015		
					8.236E-12 0.0000		
					1111111 11111111		
Total	4.401E-06 0.9767	2.245E-12 0.0000	0.000E+00 0.0000	9.065E-08 0.0201	6.961E-09 0.0015	4.316E-09 0.0010	3.075E-09 0.0007
0							

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.300E+01 years

Water Dependent Pathways

Radio-	Water ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Fish AAAAAAAAAAAAAAA	Radon ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat XXXXXXXXXXXXXXX	Milk XXXXXXXXXXXXXX	All pathways
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.423E-08 0.0032
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00' 0.0000	0.000E+00 0.0000	2.578E-06 0.5722
	0.000E+00 0.0000		0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.913E-06 0.4247
iiiiiii	1111111 11111111				1111111 111111111		
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.506E-06 1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment	3	Sheet No. 1	5 of 21
Originator: S. W.	/. Clark	Date	
Chk'd By H. M.	Sulloway	Date	
Calc. No010	0F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 16 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As pCi/yr at t= 1.350E+02 years

	Water Independent Pathways (Inhalation w/o radon)						Water	r Dependent	Pathways		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAA	AAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					Total
Nuclide	Inhalation	Plant	Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	4.195E-11	4.082E-06	1.937E-07	4.438E-08	5.289E-08	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.373E-06
Cs-137	2.682E-04	1.305E+01	1.007E+00	6.255E-01	3.382E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.502E+01
Eu-152	9.962E-06	3.030E-02	5.189E-04	3.428E-05	1.256E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.342E-02
Gd-152	3.855E-16	1.173E-12	2.008E-14	5.307E-16	4.860E-13	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.679E-12
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii
* Sum of	all ingest	ion pathways	s, i.e. wate	er independ	ent plant, i	neat, milk,	soil				
and wa	and water-dependent water, fish, plant, meat, milk pathways										
0					•						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.350E+02 years

0						
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclid		risk fract.				
ÄÄÄÄÄÄÄ	A AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ΑΚΑΚΑΚΑ ΚΑΚΑΚΑΚΑ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	7.698E-14 0.0000	1.123E-20 0.0000	6.811E-16 0.0000	3.231E-17 0.0000	7.403E-18 0.0000	1.594E-17 0.0000
Cs-137	2.895E-07 0.9115	6.888E-14 0.0000	1.053E-08 0.0332	8.127E-10 0.0026	5.048E-10 0.0016	3.160E-10 0.0010
Eu-152	1.592E-08 0.0501	1.376E-14 0.0000	4.003E-12 0.0000	6.854E-14 0.0000	4,529E-15 0.0000	3.089E-12 0.0000
Gd-152	0.000E+00 0.0000	1.053E-22 0.0000	1.355E-21 0.0000	2.320E-23 0.0000	6.131E-25 0.0000	9.174E-22 0.0000
fififf:		1111111 11111111	1111111 11111111	1111111 11111111	1111111111111111	111111 111111111
Total	3.054E-07 0.9617	8.264E-14 0.0000	1.054E-08 0.0332	8.128E-10 0.0026	5.048E-10 0.0016	3.191E-10 0.0010
Λ .						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.350E+02 years

Radio-	Water	Fish	Plant	Meat	Milk	All Pathways**
	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ХАХАХАХАХАХАХАХАХ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide ÄÄÄÄÄÄÄ	risk fract.	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	rīsk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract.	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.772E-14 0.0000
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.016E-07 0.9499
Fu-152	0.000F+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.592E-08 0.0501
Gd-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.401E-21 0.0000
	ffffffff ffffff	fiffffff fiffff	iiiiiiiiii iiiiii	iffifffff ifffff	fififffff fiffff	fffffffff ffffff
	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.176E-07 1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Attachment	3	_ Sheet No. 16 of 21
Originator: S. V	V. Clark	Date
Chk'd By H. M.	Sulloway	Date
Calc No 010	00F-CA-V0312	Rev No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Intrisk: 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File: 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 17

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.350E+02 years

^	Water Independent Pathways (Inhalation excludes radon)										
0		wate	r independent Path	ways (innalation e	excludes radon)						
0	Ground	Inhalation		Plant		Milk	Soil				
	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				
Nuclide					risk fract.						
					AAAAAAA AAAAAA						
					3.231E-17 0.0000						
					8.127E-10 0.0026						
		1.376E-14 0.0000			6.854E-14 0.0000						
					1111111 11111111						
Total	3.054E-07 0.9617	8.264E-14 0.0000	0.000E+00 0.0000	1.054E-08 0.0332	8.128E-10 0.0026	5.048E-10 0.0016	3.191E-10 0.0010				
0											

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.350E+02 years

Radio-	Water AAAAAAAAAAAAAAA	Fish ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Radon ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Plant XXXXXXXXXXXXXXX	Meat XXXXXXXXXXXXXX	Milk XXXXXXXXXXXXXXXX	All pathways ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
					АНАНАНАНАНАНАНА		АВАВАВАВАВАВА
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.772E-14 0.0000
					0.000E+00 0.0000	0.000E+00 0.0000	3.016E-07 0.9499
Eu-152	0.000E+00 0.0000		0.000E+00 0.0000				1.592E-08 0.0501
1111111					1111111 111111111		iiiiiiiiii iiiiiii
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.176E-07 1.0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachmen	t <u>3</u>	Sheet No. 1	7 of 21
Originator:	S. W. Clark	Date	
Chk'd By _F	H. M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 18 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 3.000E+02 years

	Water In	dependent Pa	athways (In	halation w/d	radon)		Water	r Dependent	Pathways		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	(AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation	Plant	Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60			7.051E-17								
Cs-137	5.719E-06	2.783E-01	2.147E-02	1.334E-02	7.211E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.203E-01
Eu-152	1.855E-09	5.642E-06	9.661E-08	6.383E-09	2.338E-06	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	8.083E-06
Gd-152			2.005E-14								
			1111111111					1111111111	1111111111	1111111111	11111111111
* Sum of	all ingest	ion pathway:	s, i.e. wat	er independe	ent plant, i	meat, milk,	soil				
and water-dependent water, fish, plant, meat, milk pathways											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

U		Wate	r Independent Path	ways (Inhalation e	xcludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.					
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	2.803E-23 0.0000	0.000E+00 0.0000	2.480E-25 0.0000	1.176E-26 0.0000	2.694E-27 0.0000	5.806E-27 0.0000
Cs-137	6.172E-09 0.9592	1.469E-15 0.0000	2.246E-10 0.0349	1.733E-11 0.0027	1.076E-11 0.0017	6.738E-12 0.0010
Eu-152	2.963E-12 0.0005	2.562E-18 0.0000	7.452E-16 0.0000	1.276E-17 0.0000	8.431E-19 0.0000	5.751E-16 0.0000
Gd-152	0.000E+00 0.0000	1.051E-22 0.0000	1.352E-21 0.0000	2.316E-23 0.0000	6.120E-25 0.0000	9.158E-22 0.0000
1111111	1111111 11111111	1111111 11111111	1111111 111111111	iiiiii iiiiiiiii	1111111 11111111	1111111 11111111
Total	6.175E-09 0.9597	1.471E-15 0.0000	2.246E-10 0.0349	1.733E-11 0.0027	1.076E-11 0.0017	6.738E-12 0.0010
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

Water	Fish	Plant	Meat	Milk	All Pathways**
Radio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	A AAAAAAAAAAAA A	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide risk frac	. risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAA AAAAAAAA AAAA	A AAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60 0.000E+00 0.00	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.830E-23 0.0000
Cs-137 0.000E+00 0.00	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.431E-09 0.9995
Eu-152 0.000E+00 0.00	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.965E-12 0.0005
Gd-152 0.000E+00 0.00	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.397E-21 0.0000
1111111 111111111 1111	1 11111111111 111111	1111111111111111	1111111111111111	1111111 11111111	1111111111111111
Total 0.000E+00 0.00	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.434E-09 1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Attachment	3	Sheet No	. 18 of 21
Originator: S.	W. Clark	Date	
Chk'd By H. M	. Sulloway	Date	
Calc No 01	00F-CA-V0312	Rev M	2 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Intrisk: 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File: 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 19

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

0	Water Independent Pathways (Inhalation excludes radon)									
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil			
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ			
Nuclide		risk fract.								
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA			
Co-60	2.803E-23 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.480E-25 0.0000	1.176E-26 0.0000	2.694E-27 0.0000	5.806E-27 0.0000			
Cs-137	6.172E-09 0.9592	1.469E-15 0.0000	0.000E+00 0.0000	2.246E-10 0.0349	1.733E-11 0.0027	1.076E-11 0.0017	6.738E-12 0.0010			
Eu-152						8.431E-19 0.0000	5.751E-16 0.0000			
1111111		1111111111 111111		11111111111111111	111111111111111111	1111111 111111111	11111111111111111			
Total	6.175E-09 0.9597	1.471E-15 0.0000	0.000E+00 0.0000	2.246E-10 0.0349	1.733E-11 0.0027	1.076E-11 0.0017	6.738E-12 0.0010			
0										

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t = 3.000E+02 years

Radio-	Water AAAAAAAAAAAAAA	Fish AAAAAAAAAAAAAA	Radon ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat AAAAAAAAAAAAAAA	Milk AAAAAAAAAAAAAA	All pathways ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.830E-23 0.0000
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.431E-09 0.9995
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.965E-12 0.0005
111111	111111111111111111111111111111111111111	11111111111111111	ffffffffffffffffffffffffffffffffffffff	111111 11111111	11111111111111111	1111111 111111111	111111111 1111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.434F-09 1.0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment	3	Sheet No. 1	19 of 21
Originator: S. W.	/, Clark	Date	
Chk'd By H. M.	Sulloway	Date	
Calc. No010	0F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 20 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ_RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.000E+03 years

	Water Independent Pathways (Inhalation w/o radon)							r Dependent			
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	LAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Cs-137	4.650E-13	2.263E-08	1.746E-09	1.084E-09	5.863E-10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.604E-08
Eu-152			1.447E-23								
Gd-152			1.987E-14								
iiiiiii	iiiiiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	11111111111	1111111111
* Sum of	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and water-dependent water, fish, plant, meat, milk pathways											
0											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years

Water Independent Pathways (Inhalation excludes radon)

U			r independent Path	ways (Inhalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.				
ÄÄÄÄÄÄÄ	AAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA
Co-60	0.000E+00 0.0000					
Cs-137	5.018E-16 0.9597	1.194E-22 0.0000	1.826E-17 0.0349	1.409E-18 0.0027	8.751E-19 0.0017	5.478E-19 0.0010
Eu-152	4.439E-28 0.0000	0.000E+00 0.0000				
Gd-152	0.000E+00 0.0000	1.041E-22 0.0000	1.340E-21 0.0000	2.295E-23 0.0000	6.064E-25 0.0000	9.074E-22 0.0000
1111111	1111111111111111	1111111111 111111		iiiiiii iiiiiiii	111111111111111111111111111111111111111	111111111111111111111111111111111111111
Total	5.018E-16 0.9597	2.235E-22 0.0000	1.826E-17 0.0349	1.409E-18 0.0027	8.751E-19 0.0017	5.487E-19 0.0010
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years

Radio-	Water AAAAAAAAAAAAA	Fish	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat ХАХАХАХАХАХАХАХАХ	Milk ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	All Pathways**
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.229E-16 1.0000
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.439E-28 0.0000
Gd-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.375E-21 0.0000
fffffff	fffffffff ffffff	fffffffff ffffff	fffffffff ffffff	fffffffff ffffff	11111111111111111111111111110.000000000	111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000		5.229E-16 1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Attachment	3	Sheet No. :	20 of 21
Originator: S. \	N. Clark	Date	
Chk'd By H. M.	. Sulloway	· Date	
Calc. No01	00F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 21 Intrisk : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+03 years

0 .	Water Independent Pathways (Inhalation excludes radon)								
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.		
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000		
		1.194E-22 0.0000							
		1.041E-22 0.0000							
		1111111111111111							
Total	5.018E-16 0.9597	2.235E-22 0.0000	0.000E+00 0.0000	1.826E-17 0.0349	1.409E-18 0.0027	8.751E-19 0.0017	5.487E-19 0.0010		

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t = 1.000E+03 years

Radio-	Water ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Fish AAAAAAAAAAAAAAA	Radon ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Plant	Meat XXXXXXXXXXXXXXX	Milk XXXXXXXXXXXXXXX	All pathways ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	'risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.229E-16 1.0000
Eu-152		0.000E+00 0.0000		0.000E+00 0.0000			2.375E-21 0.0000
1111111		1111111 111111111		1111111 11111111	1111111 111111111	1111111 111111111	1111111 11111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.229E-16 1.0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Originator: S. W. Clark Date	
Chk'd By H. M. Sulloway Date	
Calc. No. <u>0100F-CA-V0312</u> Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 1 Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ_RAD

Table of Contents

Part IV: Concentration of Radionuclides

2
3
4
5
6
7
8
g
10

Attachment 4 Sheet No. 1 of 10
Originator: S.W. Clark Date (6 / 3 / 6)7
Chk'd By H. M. Sulloway (1) Date (7 / 3 / 6)7
Calc. No. 0100F-CA-V0312 Rev. No. / 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 2 Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Concentration of radionuclides in environmental media at t = 0.000E+00 years

	Contaminat-	Surface	Air Par-	Well	Surface		
	ted Zone	Soil*	ticulate	Water	Water		
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ		
Nuclide	pCi/g		pCi/m**3		pCi/L		
ÄÄÄÄÄÄÄ	AAAAAAAAA /	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ		
Co-60	7.300E-02	7.300E-02	6.895E-07	0.000E+00	0.000E+00		
Cs-137	2.060E-01	2.060E-01	1.946E-06	0.000E+00	0.000E+00		
Eu-152	3.700E-01	3.700E-01	3.495E-06	0.000E+00	0.000E+00		
Gd-152	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
1111111	1111111111	1111111111	1111111111	ififififif	1111111111		
*The Sur	face Soil is	the top la	ayer of soi	l within the	e user speci	fied mixing	zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 0.000E+00 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water	Vegetable	Vegetable	Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ						
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	5.840E+00	5.840E+00	5.840E+00	5.840E+00	8.673E+00	7.154E-01	0.000E+00	0.000E+00
Cs-137	0.000E+00	8.240E+00	8.241E+00	8.241E+00	8.241E+00	1.990E+01	4.450E+00	0.000E+00	0.000E+00
Eu-152	0.000E+00	9.252E-01	9.259E-01	9.260E-01	9.260E-01	4.959E-01	1.180E-02	0.000E+00	0.000E+00
Gd-152	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1111111	1111111111	11111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111
*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.									
For liv	For livestock fodder, consumption time is t minus meat or milk storage time.								

Attachment	4	Sheet No. 2	2 of 10
Originator: S	S. W. Clark	Date	
Chk'd By H.	M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 3 Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Concentration of radionuclides in environmental media at t = 1.000E+00 years

	Contaminat-	Surface	Air Par-	Well	Surface
	ted Zone	Soil*	ticulate	Water	Water
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	6.399E-02	6.399E-02	6.044E-07	0.000E+00	0.000E+00
Cs-137	2.013E-01	2.013E-01	1.901E-06	0.000E+00	0.000E+00
Eu-152	3.512E-01	3.512E-01	3.318E-06	0.000E+00	0.000E+00
Gd-152	6.460E-16	6.460E-16	6.102E-21	0.000E+00	0.000E+00
fffffff	ffffffffff	ffffffffff	ffffffffff	ffffffffff	ffffffffff

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 1.000E+00 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea	
	Water	Vegetable	Vegetable	Meat	Milk					
Radio-	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	0.000E+00	5.119E+00	5.119E+00	5.157E+00	5.121E+00	7.603E+00	6.271E-01	0.000E+00	0.000E+00	
Cs-137	0.000E+00	8.050E+00	8.051E+00	8.061E+00	8.051E+00	1.944E+01	4.347E+00	0.000E+00	0.000E+00	
Eu-152	0.000E+00	8.783E-01	8.790E-01	8.815E-01	8.792E-01	4.708E-01	1.120E-02	0.000E+00	0.000E+00	
Gd-152	0.000E+00	1.615E-15	1.617E-15	1.530E-15	1.613E-15	8.659E-16	8.272E-18	0.000E+00	0.000E+00	
iiiiiii	ffiffffffff	fififififi	iiiiiiiiii	1111111111	iiiiiiiiii	iiiiiiiiii	ffffffffff	1111111111	ffffffffff	
*Concent	rations are	at consump	tion time a	nd include	radioactive	decay and	ingrowth du	ring storage	e time.	
For liv	For livestock fodder, consumption time is t minus meat or milk storage time.									

Attachme	ent4	Sheet I	No. 3 of 10
Originator:	S. W. Clark	Date	
Chk'd By _	H. M. Sulloway	Date	
Calc. No	0100F-CA-V	0312 Rev. N	lo. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 4 Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Concentration of radionuclides in environmental media at t = 3.000E+00 years

	Contaminat-		Air Par-	Well	Surface
	ted Zone	Soil*	ticulate	Water	Water
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	4.917E-02	4.917E-02	4.644E-07	0.000E+00	0.000E+00
Cs-137	1.921E-01	1.921E-01	1.814E-06	0.000E+00	0.000E+00
Eu-152	3.165E-01	3.165E-01	2.990E-06	0.000E+00	0.000E+00
Gd-152	1.841E-15	1.841E-15	1.739E-20	0.000E+00	0.000E+00
iiiiiii	1111111111	1111111111	fffffffffff	ffifffffff	fififfffff

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 3.000E+00 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea		
	Water	Vegetable			Milk						
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ		
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg		
ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ		
Co-60	0.000E+00	3.934E+00	3.934E+00	3.962E+00	3.935E+00	5.842E+00	4.819E-01	0.000E+00	0.000E+00		
Cs~137	0.000E+00	7.683E+00	7.684E+00	7.694E+00	7.684E+00	1.856E+01	4.149E+00	0.000E+00	0.000E+00		
Eu-152	0.000E+00	7.914E-01	7.920E-01	7.944E-01	7.922E-01	4.242E-01	1.009E-02	0.000E+00	0.000E+00		
Gd-152	0.000E+00	4.605E-15	4.608E-15	4.531E-15	4.605E-15	2.468E-15	2.351E-17	0.000E+00	0.000E+00		
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii		
*Concent	*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.										
For liv	For livestock fodder, consumption time is t minus meat or milk storage time.										

Attachmer	t4	Sheet No.	4 of 10
Originator: _	S. W. Clark	Date	
Chk'd By H	M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 5 Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ.RAD

Concentration of radionuclides in environmental media at t = 7.000E+00 years

	Contaminat-	Surface	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCî/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	2.903E-02	2.903E-02	2.742E-07	0.000E+00	0.000E+00	
Cs-137	1.750E-01	1.750E-01	1.653E-06	0.000E+00	0.000E+00	
Eu-152	2.570E-01	2.570E-01	2.428E-06	0.000E+00	0.000E+00	
Gd-152	3.889E-15		3.674E-20	0.000E+00	0.000E+00	
iiiiiii		11111111111				

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 7.000E+00 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water	Vegetable	Vegetable	Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	2.323E+00	2.323E+00	2.340E+00	2.324E+00	3.449E+00	2.845E-01	0.000E+00	0.000E+00
Cs-137	0.000E+00	6.999E+00	6.999E+00	7.008E+00	7.000E+00	1.690E+01	3.780E+00	0.000E+00	0.000E+00
Eu-152	0.000E+00	6.427E-01	6.432E-01	6.451E-01	6.433E-01	3.445E-01	8.194E-03	0.000E+00	0.000E+00
Gd-152	0.000E+00	, ,,		9.671E-15					0.000E+00
1111111		1111111111							
	rations are							ring storage	e time.
For liv	estock fodd	er, consump	tion time is	s t minus m	eat or milk	storage tir	ne.		

Attachme	ent4	s	heet No.	5 of 10
Originator	S. W. Clark		Date	_
Chk'd By _	H. M. Sulloway		Date	
Calc. No.	0100F-CA-V	0312 F	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 6 Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ_RAD

Concentration of radionuclides in environmental media at t = 1.100E+01 years

	Contaminate	· Surface Soil*	Air Par- ticulate	Well Water	Surface Water
Radio-	AAAAAAAAA		AAAAAAAAA		
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ
Co-60	1.714E-02	1.714E-02	1.619E-07	0.000E+00	0.000E+00
Cs-137	1.594E-01	1.594E-01	1.506E-06	0.000E+00	0.000E+00
Eu-152	2.087E-01	2.087E-01	1.971E-06	0.000E+00	0.000E+00
Gd-152	5.552E-15	5.552E-15	5.244E-20	0.000E+00	0.000E+00
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 1.100E+01 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water	Vegetable	Vegetable	Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	1.371E+00	1.371E+00	1.381E+00	1.372E+00	2.037E+00	1.680E-01	0.000E+00	0.000E+00
Cs-137	0.000E+00	6.376E+00	6.376E+00	6.384E+00	6.377E+00	1.540E+01	3.443E+00	0.000E+00	0.000E+00
Eu-152	0.000E+00	5.219E-01	5.223E-01	5.238E-01	5.224E-01	2.797E-01	6.654E-03	0.000E+00	0.000E+00
Gd-152	0.000E+00	1.388E-14	1.389E-14	1.384E-14	1.389E-14	7.442E-15	7.083E-17	0.000E+00	0.000E+00
iiiiiii								1111111111	
*Concent	rations are	at consump	tion time a	nd include i	radioactive	decay and	ingrowth du	ring storage	e time.
For livestock fodder, consumption time is t minus meat or milk storage time.									

Attachme	ent4		Sheet No. 6	of 10
Originator:	S. W. Clark		Date	
Chk'd By _	H. M. Sullowa	V	Date	
Calc. No.	0100F-CA-\	/0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File : 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 7

Concentration of radionuclides in environmental media at t = 4.300E+01 years

	Contaminat-	Surface	Air Par-	Well	Surface		
	ted Zone		ticulate		Water		
Radio-	AAAAAAAAA.	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ		
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L		
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ		
Co-60	2.532E-04	2.532E-04	2.392E-09	0.000E+00	0.000E+00		
Cs-137	7.557E-02	7.557E-02	7.138E-07	0.000E+00	0.000E+00		
Eu-152	3.946E-02	3.946E-02	3.727E-07	0.000E+00	0.000E+00		
Gd-152	1.137E-14	1.137E-14	1.074E-19	0.000E+00	0.000E+00		
1111111	1111111111	1111111111	1111111111	1111111111	1111111111		
*The Sur	face Soil is	the top la	ayer of soil	l within the	e user speci	fied mixing	zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 4.300E+01 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water	Vegetable	Vegetable	Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	2.026E-02	2.026E-02	2.041E-02	2.027E-02	3.009E-02	2.482E-03	0.000E+00	0.000E+00
Cs-137	0.000E+00	3.023E+00	3.023E+00	3.027E+00	3.023E+00	7.301E+00	1.632E+00	0.000E+00	0.000E+00
Eu-152	0.000E+00	9.866E-02	9.874E-02	9.903E-02	9.876E-02	5.289E-02	1.258E-03	0.000E+00	0.000E+00
Gd-152	0.000E+00	2.844E-14	2.846E-14	2.846E-14	2.847E-14	1.525E-14	1.451E-16	0.000E+00	0.000E+00
1111111	1111111111	1111111111	1111111111	iiiiiiiiii	1111111111	1111111111	fffffffffff	11111111111	1111111111
*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.								e time.	
For liv	estock fodde	er, consump	tion time i	st minus m	eat or milk	storage tir	ne.		

Attachm	ent	4	Shee	t No.	7 of 10
Originato	r: <u>S. W.</u>	Clark	Date		
Chk'd By	H. M. S	ulloway	Date		
Calc. No.	0100	F-CA-V0312	Rev.	No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 14:48 Page 8 Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation File : 100-F-26-14_Excavation_SZ_RAD

Concentration of radionuclides in environmental media at t = 1.350E+02 years

	Contaminat	- Surface	Air Par-	Well	Surface
	ted Zone	Soil*	ticulate	Water	Water
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L
ÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	1.383E-09	1.383E-09	1.306E-14	0.000E+00	0.000E+00
Cs-137	8.842E-03	8.842E-03	8.351E-08	0.000E+00	0.000E+00
Eu-152	3.283E-04	3.283E-04	3.101E-09	0.000E+00	0.000E+00
Gd-152	1.271E-14	1.271E-14	1.200E-19	0.000E+00	0.000E+00
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111

^{*}The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 1.350E+02 years*

	Drinking Water	Nonleafy Vegetable	Leafy Vegetable	Fodder Meat	Fodder Milk	Meat	Milk	Fish	Crustacea
Radīo-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA
Co-60	0.000E+00	1.106E-07	1.106E-07	1.114E-07	1.107E-07	1.643E-07	1.355E-08	0.000E+00	0.000E+00
Cs-137	0.000E+00	3.537E-01	3.537E-01	3.541E-01	3.537E-01	8.542E-01	1.910E-01	0.000E+00	0.000E+00
Eu-152	0.000E+00	8.210E-04	8.217E-04	8.241E-04	8.219E-04	4.401E-04	1.047E-05	0.000E+00	0.000E+00
Gd-152	0.000E+00			3.180E-14		1.703E-14		0.000E+00	
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	ffiffiffff	11111111111	1111111111
*Concent	rations are	at consumpt	tion time a	nd include	radioactive	decay and	ingrowth du	ring storage	e time.
For liv	estock fodd	er. consump	tion time is	s t minus m	eat or milk	storage tip	ne -		

Attachm	ent	4	Sheet No	. 8 of 10
Originato	r: S.W.C	lark	Date	
Chk'd By	H. M. Sul	loway	Date	
Calc. No.	0100F-	CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 10/02/2007 14:48 Page 9

Concentration of radionuclides in environmental media at t = 3.000E+02 years

Contaminat- Surface Air Par-Well Surface ted Zone Soil* ticulate Water Water ΑΚΑΚΑΚΑΚΑ ΚΑΚΑΚΑΚΑΚΑ ΚΑΚΑΚΑΚΑΚΑ ΚΑΚΑΚΑΚΑΚΑ ΚΑΚΑΚΑΚΑΚΑ Radio-Nuclide ÄÄÄÄÄÄÄ pCi/g pCi/g pCi/m**3 pCi/L pCi/L *The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 3.000E+02 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water	Vegetable		Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA
Co-60	0.000E+00	4.027E-17	4.027E-17	4.057E-17	4.029E-17	5.981E-17	4.934E-18	0.000E+00	0.000E+00
Cs-137	0.000E+00	7.541E-03	7.541E-03	7.551E-03	7.542E-03	1.821E-02	4.072E-03	0.000E+00	0.000E+00
Eu-152	0.000E+00	1.529E-07	1.530E-07	1.534E-07	1.530E-07	8.194E-08	1.949E-09	0.000E+00	0.000E+00
Gd-152	0.000E+00				3.176E-14				0.000E+00
1111111	fffffffffff	iiiiiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	fifffffffff	1111111111
*Concent	*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.								
For liv	For livestock fodder, consumption time is t minus meat or milk storage time.								

Attachm	ent	4	Sh	eet No.	9 of 10
Originator	: <u>S.W.</u>	Clark		ate	
Chk'd By _	H. M. S	ulloway	D:	ate	
Calc. No.	01001	F-CA-V0312	Re	ev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 1
Concent : 100-F-26:14 Excavation Shallow Zone RESRAD Calculation
File : 100-F-26-14_Excavation_SZ.RAD 10/02/2007 14:48 Page 10

Concentration of radionuclides in environmental media at t = 1.000E+03 years

	Contaminat-	 Surface 	Air Par-	Well	Surface
	ted Zone	Soil*	ticulate	Water	Water
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Cs-137	1.533E-11	1.533E-11	1.448E-16	0.000E+00	0.000E+00
Eu-152	9.157E-24	9.157E-24	8.649E-29	0.000E+00	0.000E+00
Gd-152	1.257E-14	1.257E-14	1.188E-19	0.000E+00	0.000E+00
fffffff	1111111111	fifffffffff	1111111111	1111111111	1111111111

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 1.000E+03 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water	Vegetable	Vegetable	Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Cs-137	0.000E+00	6.131E-10	6.131E-10	6.139E-10	6.132E-10	1.481E-09	3.311E-10	0.000E+00	0.000E+00
Eu-152	0.000E+00	2.290E-23	2.291E-23	2.298E-23	2.292E-23	1.227E-23	2.919E-25	0.000E+00	0.000E+00
Gd-152	0.000E+00		3.147E-14				1.604E-16		0.000E+00
1111111			fffffffffff						
	*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.								
For liv	restock fodd	er, consump	tion time is	s t minus me	eat or milk	storage ti	ne.		

Attachme	ent <u>4</u>	Sheet No. 10	of 10
Originato	r: S. W. Clark	Date	-
Chk'd By	H. M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 1 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Table of Contents

Part I: Mixture Sums and Single Radionuclide Guidelines

Dose Conversion Factor (and Related) Parameter Summary Site-Specific Parameter Summary	2
Summary of Pathway Selections	8
Contaminated Zone and Total Dose Summary	9
Total Dose Components	
Time = 0.000E+00	10
Time = 1.000E+00	11
Time = 3.000E+00	12
Time = 7.000E+00	13
Time = 1.100E+01	14
Time = 4.300E+01	15
Time = 1.350E+02	16
Time = 3.000E+02	17
Time = 1.000E+03	18
	19
	19
Dose Per Nuclide Summed Over All Pathways	20
Soil Concentration Per Nuclide	20

Attachment 5 Sheet No. 1, of 20 Originator: S. W. Clark 20 Date 10/2/07 Chk'd By H. M. Sulloway 4/1/2 Date 10/2/07 Calc. No. 0100F-CA-V0312 Rev. No. 0

1RESRAD, Version 6.3 T « Limit = 180 days 10/02/2007 15:05 Page 2 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_OB-BCL.RAD

Dose Conversion Factor (and Related) Parameter Summary File: HEAST 2001 MORBIDITY

		File: HEAST 2001 MORBIDITY				
0 3			2	Current 3	Base 3	Parameter
Menu 3		Parameter	3	Value 3		
ÄÄÄÄÄÄ	LÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÅ	LAAAAAAAAAA	AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
B-1 3	Dose conv	ersion factors for inhalation, mrem/pCi:	3	3	3	
B-1 3	Co-60	• •	3	2.190E-04 3	2.190E-04 3	DCF2(1)
B-1 3	Cs-137+D				3.190E-05 3	
	Eu-152				2.210E-04 3	
	Gd-152				2.430E-01 3	
	Ni-63				6.290E-06	
	Sr-90+D				1.300E-03	
٠,			3	1.3000-03		
D-1 3	Dose conv	ersion factors for ingestion, mrem/pCi:	3	1		
	5 Co-60	er a for fractors for fragestron, illi ellippor.	3	2 4005-05	2.690E-05	DCC7/ 11
	Cs-137+D					
	Eu-152				5.000E-05	
	Gd-152				6.480E-06	
					1.610E-04	
	Ni-63				5.770E-07	
D-1 3	sr-90+D				1.420E-04 3	
			3		1	
		sfer factors:	2			
	Co-60	, plant/soil concentration ratio, dimensionless			8.000E-02	
	Co-60	<pre>, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)</pre>	3		2.000E-02	
	Co-60	, milk/livestock-intake ratio, (pCi/L)/(pCi/d)	3		2.000E-03	RTF(1,3)
D-34 3	5		2	1		
D-34 3	Cs-137+D	, plant/soil concentration ratio, dimensionless	3	4.000E-02	4.000E-02	RTF(2,1)
D-34 3	Cs-137+D	<pre>, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)</pre>	3	3.000E-02	3.000E-02	RTF(2,2)
D-34 3	Cs-137+D	<pre>, milk/livestock-intake ratio, (pCi/L)/(pCi/d)</pre>	3	8.000E-03	8.000E-03	RTF(2,3)
D-34 3	5		3	;	1	
D-34 3	Eu-152	, plant/soil concentration ratio, dimensionless	3	2.500E-03	2.500E-03	RTF(3,1)
D-34 3	Eu-152	, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)			2.000E-03	
D-34 3	Eu-152	, milk/livestock-intake ratio, (pCi/L)/(pCi/d)			5.000E-05	
D-34 3	1	, , , , , , , , , , , , , , , , , , , ,	3			
	Gd-152	, plant/soil concentration ratio, dimensionless	3	2.500F-03	2.500E-03	RTF(5,1)
	Gd-152	, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)			2.000E-03	
	Gd-152	<pre>, milk/livestock-intake ratio, (pCi/L)/(pCi/d)</pre>			2.000E-05	
D-34 3		,	3	2.0002 05		, 111 2,27
	Ni-63	, plant/soil concentration ratio, dimensionless	3	5 000=-02	5.000E-02	RTF(6,1)
	Ni-63	, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)			5.000E-03	
	Ni-63	, milk/livestock-intake ratio, (pCi/L)/(pCi/d)			2.000E-02	
D-34 3		, mick, crossock meaks racio, (ps//2//(ps//a/	3			
	sr-90+D	, plant/soil concentration ratio, dimensionless				
	Sr-90+D				3.000E-01	
	Sr-90+D	, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)			8.000E-03	
י 24 י		, milk/livestock-intake ratio, (pCi/L)/(pCi/d)	3	2.000E-03	2.000E-03	
		labian fachana facab water 1 de-	3			
		lation factors, fresh water, L/kg:				
	Co-60	, fish	2	3.0002.02	3.000E+02	
	Co-60	, crustacea and mollusks	3		2.000E+02	BIOFAC(1,2)
D-5 3			2			
	Cs-137+D	, fish			2.000E+03	
	Cs-137+D	, crustacea and mollusks	3	1.000E+02	1.000E+02	BIOFAC(2,2)
D-5			3	:	;	3
	Eu-152	, fish	3	5.000E+01	5.000E+01	BIOFAC(3,1)
D-5 3	Eu-152	, crustacea and mollusks	3	1.000E+03	1.000E+03	

Attachm	nent	5	Sheet N	lo. 2 of 20
Originato	r: <u>S. W. (</u>	Clark	Date	
Chk'd By	H. M. St	Illoway	Date	
Calc. No.	0100F	-CA-V0312	Rev. N	o. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 3 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Dose Conversion Factor (and Related) Parameter Summary (continued)
File: HEAST 2001 MORRIDITY

		FILE: REAST 2001 MORBIDI	1 1						
0	3		3	Current	3	Base	3	Paramet	er
Menu		Parameter	3	Value	3	Case*	3	Name	
ÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÅ	ÄÄÄÄÄÄÄÄÄÄ	ÂÅ	LÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
D-5	³ Gd-152	, fish	3	2.500E+01	3	2.500E+01	3	BIOFAC(5,1)
D-5	³ Gd-152	, crustacea and mollusks	3	1.000E+03	2	1.000E+03	3	BIOFAC(5,2)
D-5	3		3		3		3		
D-5	³ Ni-63	, fish	2	1.000E+02	3	1.000E+02	2	BIOFAC(6,1)
D-5	3 Ni-63	, crustacea and mollusks	3	1.000E+02	3	1.000E+02	3	BIOFAC(6,2)
D-5	3		3		3		2		•
D-5	3 Sr-90+D	, fish	3	6.000E+01	3	6.000E+01	3	BIOFAC(7.1)
D-5	3 Sr-90+D	, crustacea and mollusks	3	1.000E+02	3	1.000E+02	3	BIOFAC(7,2)
ÍÍÍÍ	111111111111		ÍÍÍÌ	1111111111	ÍΪ	1111111111	ÍΪ	111111111	iiiii
*Bas	e Case means	Default.Lib w/o Associate Nuclide contributions							

 Attachment
 5
 Sheet No. 3 of 20

 Originator:
 S. W. Clark
 Date

 Chk'd By
 H. M. Sulloway
 Date

 Calc. No.
 0100F-CA-V0312
 Rev. No.
 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 4 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Si	te-Specific Parameter Summary	
0 3	User 3 Used by RESRAD	³ Parameter
Menu ³ Parameter	Ji Input Default (If different from user input)	3 Name
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
R011 3 Area of contaminated zone (m**2)		3 AREA
R011 Thickness of contaminated zone (m)		3 THICKO
R011 3 Length parallel to aquifer flow (m)		3 LCZPAQ
R011 3 Basic radiation dose limit (mrem/yr)		3 BRDL
R011 3 Time since placement of material (yr)		3 TI
R011 3 Times for calculations (yr)		³ T(2)
R011 3 Times for calculations (yr)		³ T(3)
R011 3 Times for calculations (yr)		³ T(4)
RO11 ³ Times for calculations (yr) RO11 ³ Times for calculations (yr)		³ T(5)
R011 3 Times for calculations (yr)		³ T(6)
R011 Times for calculations (yr)		³ T(7)
RO11 Times for calculations (yr)		³ T(8)
RO11 3 Times for calculations (yr)		³ T(9)
3		³ T(10)
R012 3 Initial principal radionuclide (pCi/g): Co		³ S1(1)
		³ S1(2)
		³ S1(3)
		³ \$1(6)
		³ S1(7)
		3 W1(1)
		3 W1(2)
R012 Concentration in groundwater (pCi/L): Eu		
R012 ³ Concentration in groundwater (pCi/L): Ni		3 W1(3)
R012 Concentration in groundwater (pci/L): Nr		3 W1(6)
Total Concentration in groundwater (per/e). 31		³ W1(7)
R013 ³ Cover depth (m)		3 COVERO
R013 3 Density of cover material (g/cm**3)		3 DENSCV
R013 Cover depth erosion rate (m/yr)		3 ACA
R013 Density of contaminated zone (g/cm**3)		3 DENSCZ
R013 ³ Contaminated zone erosion rate (m/yr)		3 VCZ
R013 3 Contaminated zone total porosity		TPCZ
R013 Contaminated zone field capacity		FCCZ
R013 3 Contaminated zone hydraulic conductivity (m	1.500E-01 2.000E-01 3	
R013 3 Contaminated zone b parameter		3 HCCZ
R013 3 Average annual wind speed (m/sec)		3 BCZ
R013 3 Humidity in air (g/m**3)		3 HOWID
R013 * Evapotranspiration coefficient		3 EVAPTR
R013 Precipitation (m/yr)		
R013 3 Irrigation (m/yr)		3 PRECIP
R013 3 Irrigation mode		3 RI
R013 3 Runoff coefficient		2 IDITCH
R013 3 Watershed area for nearby stream or pond (m		3 RUNOFF
R013 Accuracy for water/soil computations		3 WAREA
7 Accuracy for water/soft computations		3 EPS
R014 3 Density of saturated zone (g/cm**3)		
R014 3 Saturated zone total porosity		3 DENSAQ
R014 3 Saturated zone effective porosity		TPSZ
R014 - Saturated zone effective porosity		3 EPSZ
R014 3 Saturated zone hydraulic conductivity (m/yr		FCSZ
KO14 Saturated Zone nydraditic conductivity (m/yr	3 5.530E+03 3 1.000E+02 3	3 HCSZ

Attachment	5	Sheet No	. 4 of 20
Originator: S.W.	Clark	Date	
Chk'd By H. M. S	ulloway	Date	
Calc. No. 0100	F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 5 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

	arameter Summary (continued)	
0 3 Manua X	User 3 Used by RESRAD	
Menu ³ Parameter ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Input ³ Default ³ (If different from user	
R014 ³ Saturated zone hydraulic gradient	1.250E-03 ³ 2.000E-02 ³	3 HGWT
R014 3 Saturated zone b parameter	4.050E+00 3 5.300E+00 3	3 BSZ
RO14 ³ Water table drop rate (m/yr)	1.000E-03 3 1.000E-03 3	3 VWT
R014 3 Well pump intake depth (m below water table)	4.600E+00 3 1.000E+01 3	3 DWIBWT
R014 ³ Model: Nondispersion (ND) or Mass-Balance (MB)	ND 3 ND 3	3 MODEL
R014 ³ Well pumping rate (m**3/yr)	2.500E+02 3 2.500E+02 3	2 UM
3	2 2	3
R015 3 Number of unsaturated zone strata	1 3 1 3	3 NS
R015 ³ Unsat. zone 1, thickness (m)	7.800E+00 ³ 4.000E+00 ³	3 H(1)
R015 ³ Unsat. zone 1, soil density (g/cm**3)	1.600E+00 3 1.500E+00 3	3 DENSUZ(1)
R015 ³ Unsat. zone 1, total porosity	4.000E-01 3 4.000E-01 3	3 TPUZ(1)
R015 J Unsat. zone 1, effective porosity	2.500E-01 ³ 2.000E-01 ³	3 EPUZ(1)
R015 J Unsat. zone 1, field capacity	1.500E-01 3 2.000E-01 3	3 FCUZ(1)
R015 J Unsat. zone 1, soil-specific b parameter	4.050E+00 ³ 5.300E+00 ³	3 BUZ(1)
R015 ³ Unsat. zone 1, hydraulic conductivity (m/yr)	2.500E+02 ³ 1.000E+01 ³	3 HCUZ(1)
	3 3	,
R016 Distribution coefficients for Co-60 R016 Contaminated zone (cm**3/g)	5.000E+01 3 1.000E+03 3	3 20111004 43
R016 3 Unsaturated zone 1 (cm**3/g)	5.000E+01 3 1.000E+03 3	3 DCNUCC(1)
R016 3 Saturated zone (cm**3/g)	5.000E+01 3 1.000E+03 3	3 DCNUCU(1,1)
R016 3 Leach rate (/yr)	0.000E+00 3 0.000E+00 3 2.166E-04	3 DCNUCS(1)
R016 ³ Solubility constant	0.000E+00 3 0.000E+00 3 not used	3 ALEACH(1) 3 SOLUBK(1)
3	3 3 100 dsed	30COBK(1)
R016 3 Distribution coefficients for Cs-137	3 3	3
R016 3 Contaminated zone (cm**3/g)	5.000E+01 3 4.600E+03 3	3 DCNUCC(2)
R016 J Unsaturated zone 1 (cm**3/g)	5.000E+01 3 4.600E+03 3	3 DCNUCU(2,1)
R016 3 Saturated zone (cm**3/g)	5.000E+01 3 4.600E+03 3	3 DCNUCS(2)
R016 3 Leach rate (/yr)	0.000E+00 3 0.000E+00 3 2.166E-04	3 ALEACH(2)
RO16 3 Solubility constant	0.000E+00 3 0.000E+00 3 not used	3 SOLUBK(2)
3	2 2	3
R016 ³ Distribution coefficients for Eu-152	2 2	2
R016 3 Contaminated zone (cm**3/g)	2.000E+02 3-1.000E+00 3	3 DCNUCC(3)
R016 ³ Unsaturated zone 1 (cm**3/g)	2.000E+02 3-1.000E+00 3	3 DCNUCU(3,1)
R016 3 Saturated zone (cm**3/g)	2.000E+02 3-1.000E+00 3	3 DCNUCS(3)
R016 3 Leach rate (/yr)	0.000E+00 3 0.000E+00 3 5.426E-05	3 ALEACH(3)
R016 ³ Solubility constant	0.000E+00 3 0.000E+00 3 not used	3 SOLUBK(3)
	3 3	3
R016 3 Distribution coefficients for Ni-63	-	3
R016 3 Contaminated zone (cm**3/g)	3.000E+01 ³ 1.000E+03 ³	3 DCNUCC(6)
R016 ³ Unsaturated zone 1 (cm**3/g) R016 ³ Saturated zone (cm**3/g)	3.000E+01 3 1.000E+03 3	3 DCNUCU(6,1)
· · · · · · · · · · · · · · · · · · ·	3.000E+01 3 1.000E+03 3	3 DCNUCS(6)
	0.000E+00 ³ 0.000E+00 ³ 3.605E-04 0.000E+00 ³ 0.000E+00 ³ not used	3 ALEACH(6)
R016 ³ Solubility constant	0.000E+00 3 0.000E+00 3 not used	3 SOLUBK(6)
R016 ³ Distribution coefficients for Sr-90	2 2	3
R016 3 Contaminated zone (cm**3/g)	2.500E+01 3 3.000E+01 3	3 DCNUCC(7)
R016 3 Unsaturated zone 1 (cm**3/g)	2.500E+01 3 3.000E+01 3	³ DCNUCU(7,1)
R016 ³ Saturated zone (cm**3/g)	2.500E+01 3 3.000E+01 3	3 DCNUCS(7)
R016 3 Leach rate (/yr)	0.000E+00 3 0.000E+00 3 4.323E-04	3 ALEACH(7)
R016 ³ Solubility constant	0.000E+00 ³ 0.000E+00 ³ not used	3 SOLUBK(7)
	100 4364	COLODK(/)

Attachment	5	Sheet No. 5	5 of 20
Originator: S. W.	. Clark	Date	
Chk'd By H. M. S	Sulloway	Date	
Calc. No. 0100	0F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 6 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

	Site-Specific Parameter Summary (continued)								
0 2		3	User	3		3	Used by RESRAD	3	Parameter
Menu 3		3	Input	3	Default	3 (If different from user input)	3	Name
ÄÄÄÄÄÄ	i a a a a a a a a a a a a a a a a a a a	۱Å	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	À	AAAAAAAAAA	(ÅÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	۱ÅÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
	Distribution coefficients for daughter Gd-152	3		2		3		3	
R016 3		3	-1.000E+00	3.	-1.000E+00	3	8.249E+02	3	DCNUCC(5)
R016 3	Unsaturated zone 1 (cm**3/g)	2	-1.000E+00	3.	-1.000E+00	2	8.249E+02	3	DCNUCU(5,1)
R016 3		3	-1.000E+00	3.	-1.000E+00	3	8.249E+02	3	DCNUCS(5)
R016 3	Leach rate (/yr)	3	0.000E+00	2	0.000E+00	3	1.316E-05	3	ALEACH(5)
R016 3	Solubility constant	2	0.000E+00	2	0.000E+00	3	not used	3	SOLUBK(5)
3		3		3		2		2	
	Inhalation rate (m**3/yr)	3	7.300E+03	2	8.400E+03	3		3	INHALR
	Mass loading for inhalation (g/m**3)		1.000E-04					3	MLINH
	Exposure duration	3	3.000E+01	3	3.000E+01	3		3	ED
	Shielding factor, inhalation	3	4.000E-01	2	4.000E-01	3		3	SHF3
	Shielding factor, external gamma	3	8.000E-01	2	7.000E-01	3		3	SHF1
	Fraction of time spent indoors		6.000E-01						FIND
	Fraction of time spent outdoors (on site)		2.000E-01					3	FOTD
	Shape factor flag, external gamma		1.000E+00		1.000E+00		>O shows circular AREA.	3	FS
	Radii of shape factor array (used if FS = -1):	3		3		3		3	
R017 3		3	not used	3	5.000E+01	3		3	RAD_SHAPE(1)
R017 3		3	not used	2	7.071E+01	3		3	RAD_SHAPE(2)
R017 3		3	not used	3	0.000E+00	3		3	RAD_SHAPE(3)
R017 3		3	not used	3	0.000E+00	3		2	RAD_SHAPE(4)
R017 3		2	not used	3	0.000E+00	3		3	RAD SHAPE(5)
R017 3		3	not used	3	0.000E+00	3		3	RAD_SHAPE(6)
R017 3	· · · · · · · · · · · · · · · · · · ·	3	not used	3	0.000E+00	3		3	RAD_SHAPE(7)
R017 3		3	not used	3	0.000E+00	2		2	RAD_SHAPE(8)
R017 3		3	not used	3	0.000E+00	2			RAD_SHAPE(9)
R017 3		3	not used	3	0.000E+00	3		3	RAD SHAPE(10)
R017 3		3	not used	3	0.000E+00	3		3	RAD_SHAPE(11)
R017 3		3	not used		0.000E+00			3	RAD_SHAPE(12)
2		3		3		3		2	
R017 3		3		2		3		2	
R017 3		3		2	1.000E+00	2		2	FRACA(1)
R017 3		3	not used	3	2.732E-01	3		3	FRACA(2)
R017 3		3	not used	3	0.000E+00	2		2	FRACA(3)
R017 3		3	not used	3	0.000E+00	2		3	FRACA(4)
R017 3		3	not used	3	0.000E+00	3		3	FRACA(5)
R017 3			not used					3	FRACA(6)
R017 3			not used					3	FRACA(7)
R017 3	. •	2	not used	2	0.000E+00	2		2	FRACA(8)
R017 3			not used					3	FRACA(9)
R017 3			not used					3	FRACA(10)
R017 3			not used						FRACA(11)
R017 3	Ring 12	3	not used		0.000E+00			3	FRACA(12)
3		3		3		2		3	
	Fruits, vegetables and grain consumption (kg/yr)								DIET(1)
	Leafy vegetable consumption (kg/yr)		2.700E+00						DIET(2)
	Milk consumption (L/yr)		1.000E+02						DIET(3)
	Meat and poultry consumption (kg/yr)		3.600E+01						DIET(4)
	Fish consumption (kg/yr)		1.970E+01						DIET(5)
	Other seafood consumption (kg/yr)		9.000E-01						DIET(6)
RU18 3	Soil ingestion rate (g/yr)	3	7.300E+01	3	5.650E+01	3		3	SOIL

Attachm	nent5	Sheet No. 6 of 20
Originato	r: S. W. Clark	Date
Chk'd By	H. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 7 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_OB-BCL.RAD

Site-Specific					
0 3	3 User	3		by RESRAD 3	Parameter
Menu Parameter	³ Input			from user input) 3	
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					
R018 3 Drinking water intake (L/yr)		2 3 5.100E+0			DWI
R018 ³ Contamination fraction of drinking water R018 ³ Contamination fraction of household water		3 1.000E+0			FDW
R018 3 Contamination fraction of livestock water		3 1.000E+0			FHHW
R018 3 Contamination fraction of irrigation water		0 3 1.000E+0			FLW
R018 3 Contamination fraction of aquatic food		0 ³ 1.000E+0 1 ³ 5.000E-0			FIRW FR9
R018 3 Contamination fraction of plant food	3-1	3-1			
R018 3 Contamination fraction of meat	3-1	3 - 1	0.5		FPLANT FMEAT
R018 ³ Contamination fraction of milk	3-1	3 - 1	0.3		FMILK
3	3	3	3	74L 01	IFILE
R019 ³ Livestock fodder intake for meat (kg/day)	3 6.800E+01	1 3 6.800E+0	11 3 -	3	LFI5
R019 ³ Livestock fodder intake for milk (kg/day)		1 3 5.500E+0			LFI6
R019 3 Livestock water intake for meat (L/day)		1 3 5.000E+0			LWI5
R019 ³ Livestock water intake for milk (L/day)	3 1.600E+02	2 3 1.600E+0	12 3 -	3	LWI6
R019 ³ Livestock soil intake (kg/day)	3 5.000E-01	1 3 5.000E-0)1 3 -		LSI
R019 3 Mass loading for foliar deposition (g/m**3)		4 3 1.000E-0			MLFD
R019 ³ Depth of soil mixing layer (m)	3 1.500E-01	1 3 1.500E-0) 1 3 .	3	DM
R019 3 Depth of roots (m)	3 9.000E-01	1 3 9.000E-0	11 3 .		DROOT
R019 3 Drinking water fraction from ground water	3 1.000E+00	0 3 1.000E+0	10 2 -	3	FGWDW
R019 ³ Household water fraction from ground water	3 not used	3 1.000E+0	10 3	3	FGWHH
R019 ³ Livestock water fraction from ground water	3 1.000E+00	0 3 1.000E+0	10 3 -	3	FGWLW
R019 3 Irrigation fraction from ground water	3 1.000E+00	0 3 1.000E+0	. 00 3	3	FGWIR
3	3	3	3	2	
R19B ³ Wet weight crop yield for Non-Leafy (kg/m**2)		1 3 7.000E-0			YV(1)
R19B ³ Wet weight crop yield for Leafy (kg/m**2)	3 1.500E+00	0 3 1.500E+0	00 3		YV(2)
R19B ³ Wet weight crop yield for Fodder (kg/m**2)	3 1.100E+00	0 ³ 1.100E+0	. 00 2		YV(3)
R19B ³ Growing Season for Non-Leafy (years)	3 1.700E-01	1 ³ 1.700E-0)1 3 -		TE(1)
R19B ³ Growing Season for Leafy (years)	3 2.500E-01	1 ³ 2.500E-0)1 3 -	3	TE(2)
R19B ³ Growing Season for Fodder (years)		2 3 8.000E-0			TE(3)
R19B ³ Translocation Factor for Non-Leafy		1 3 1.000E-0			TIV(1)
R19B ³ Translocation Factor for Leafy		0 3 1.000E+0			TIV(2)
R19B 3 Translocation Factor for Fodder		0 3 1.000E+0		3	TIV(3)
R19B ³ Dry Foliar Interception Fraction for Non-Leafy		1 3 2.500E-0			RDRY(1)
R19B 3 Dry Foliar Interception Fraction for Leafy		1 3 2.500E-0			RDRY(2)
R19B 3 Dry Foliar Interception Fraction for Fodder		1 3 2.500E-0			RDRY(3)
R19B 3 Wet Foliar Interception Fraction for Non-Leafy		1 3 2.500E-0			RWET(1)
R19B J Wet Foliar Interception Fraction for Leafy		1 3 2.500E-0			RWET(2)
R19B Wet Foliar Interception Fraction for Fodder		1 3 2.500E-0			RWET(3)
R19B ³ Weathering Removal Constant for Vegetation	, 5.000E+0	1 3 2.000E+0)] ,		WLAM
	, 3	_			
C14 3 C-12 concentration in water (g/cm**3)		3 2.000E-0			C12WTR
C14 3 C-12 concentration in contaminated soil (g/g)	not used				C12CZ
C14 ³ Fraction of vegetation carbon from soil C14 ³ Fraction of vegetation carbon from air	not used not used				CSOIL
C14 C14 C14 evasion layer thickness in soil (m)	not used				CAIR
C14 C-14 evasion tayer thickness in soil (m)	not used				DMC
C14 C-14 evasion flux rate from soil (1/sec)	not used				EVSN
C14 ' C-12 evasion rtux rate from soft (1/sec)	not used	3 8.000E-0			REVSN AVFG4
C14 3 Fraction of grain in milk cow feed	not used	3 2.000E-0			AVFG5
C14 3 DCF correction factor for gaseous forms of C14	not used				CO2F
J. J. Joi Correction factor for gaseous forms of CI4	1100 0360	0.000270			COEF

Attachme	nt <u>5</u>	Sheet No. 7 of 20
Originator:	S. W. Clark	Date
Chk'd By _ F	I. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 8
Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_0B-BCL.RAD

	Site-Specific	Par	ameter	Sum	ma	ry (conti	nued)			
0 3		2	User	3			3	Used by RESRAD	3	Parameter
Menu ³	Parameter	3	Input	3		Default	3 (If	different from user	input) 3	Name
ÄÄÄÄÄÄ	<u>ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ</u>	ÀÄÄ.	ÄÄÄÄÄÄÄ	ÄÄÄ	ÄÄ	AAAAAAAA	ÅÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA.	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
	Storage times of contaminated foodstuffs (days):	2		2			3		3	
STOR 3	Fruits, non-leafy vegetables, and grain	3 1	.400E+0	1 3	1	.400E+01	3		3	STOR_T(1)
STOR 3	Leafy vegetables	3 1	.000E+0	0 3	1	.000E+00	3			STOR T(2)
STOR 3	Milk	3 1	.000E+0	0 3	1	.000E+00	3			STOR T(3)
STOR 3	Meat and poultry	3 2	.000E+0	1 3	2	.000E+01	3			STOR T(4)
STOR 3	Fish	3 7	.000E+0	0 3	7	.000E+00	3			STOR_T(5)
STOR 3	Crustacea and mollusks	3 7	.000E+0	0 2	7	.000E+00	3			STOR T(6)
STOR 3	Well water	3 1	.000E+0	0 3	1	.000E+00	3			STOR T(7)
STOR 3	Surface water	3 1	.000E+0	0 3	1	.000E+00	3			STOR T(8)
STOR 3	Livestock fodder	3 4	.500E+0	1 3	4	.500E+01	3			STOR T(9)
2		2		3			3		3	
R021 3	Thickness of building foundation (m)	3 n	ot used	3	1	.500E-01	3		3	FLOOR1
R021 3	Bulk density of building foundation (g/cm**3)	³ n	ot used	3	2	.400E+00	3			DENSFL
R021 3	Total porosity of the cover material	³ n	ot used	3	4	.000E-01	3		3	TPCV
R021 3	Total porosity of the building foundation	3 n	ot used	3	1	.000E-01	3			TPFL
R021 3	Volumetric water content of the cover material	3 n	ot used	3	5	.000E-02	2		3	PH2OCV
R021 3	Volumetric water content of the foundation	³ n	ot used	3	3	.000E-02	3			PH2OFL
R021 3	Diffusion coefficient for radon gas (m/sec):	3		3			3		2	
R021 3	in cover material	3 n	ot used	3	2	.000E-06	3		3	DIFCV
R021 3	in foundation material	³ n	ot used	3	3	.000E-07	3		3	DIFFL
R021 3	in contaminated zone soil	³ n	ot used	3	2	.000E-06	3		3	DIFCZ
R021 3	Radon vertical dimension of mixing (m)	3 n	ot used	3	2	.000E+00	3		3	HMIX
R021 3	Average building air exchange rate (1/hr)	3 n	ot used	3	5	.000E-01	3			REXG
R021 3	Height of the building (room) (m)	³ n	ot used	3	2	.500E+00	3			HRM
R021 3	Building interior area factor	³ n	ot used	3	0	.000E+00	3			FAI
R021 3	Building depth below ground surface (m)	3 n	ot used	3	-1	.000E+00	3		3	DMFL
R021 3	Emanating power of Rn-222 gas	3 n	ot used	3	2	.500E-01	3			EMANA(1)
R021 3	Emanating power of Rn-220 gas	3 n	ot used	3	1	.500E-01	3			EMANA(2)
3	•	3		3			3		3	
TITL 3	Number of graphical time points	3	32	3			3		3	NPTS
	Maximum number of integration points for dose	3	1	3			3			LYMAX
TITL 3	Maximum number of integration points for risk	3	5	3			3			KYMAX
ÍÍÍÍÍÏ		ÏÍÍ	111111	ÍÍÏ	ÍÍ	111111111	ĭíííí	1111111111111111111111		1111111111111

Summary of Pathway Selections

Pathway	3	User Selection
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄ	AAAAAAAAAAAAAAAAAA
1 external gamma	3	active
2 inhalation (w/o radon)	3	active
3 plant ingestion	3	active
4 meat ingestion	3	active
5 milk ingestion	3	active
6 aquatic foods	2	active
7 drinking water	3	active
8 soil ingestion	3	active
9 radon	3	suppressed
Find peak pathway doses	3	active
111111111111111111111111111111111111111	ΪÍ	111111111111111111111111111111111111111

Attachn	nent	5	Sheet N	lo. <u>8</u> of 20
Originato	r: <u>S.W.C</u>	lark	Date	
Chk'd By	H. M. Sul	loway	Date	
Calc. No.	0100F-	CA-V0312	Rev. N	0. 0
		01110012		·

IRESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 9
Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation T« Limit = 180 days 1RESRAD, Version 6.3 : 100-F-26-14_0B-BCL.RAD

Initial Soil Concentrations, pCi/g Co-60 Cs-137 1.790E-01 1.430E+00 Thickness: Cover Depth: 0.00 meters 1.070E+00 Ni-63 Sr-90 7.040E+00 3.040E-01 0

Attachment Sheet No. $\underline{9}$ of $\underline{20}$ Originator: S. W. Clark

Chk'd By H. M. Sulloway
Calc. No. 0100F-CA-V0312

Date _

Date Rev. No. __0__

1RESRAD, Version 6.3 Tw Limit = 180 days 10/02/2007 15:05 Page 10 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

0		Wate	xcludes radon)				
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
	mrem/yr fract.	mrem/yr fract.				mrem/yr fract.	mrem/yr fract.
		AAAAAAA AAAAAA		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
		1.213E-06 0.0000		1.713E-02 0.0017	8.124E-04 0.0001	1.862E-04 0.0000	2.219E-04 0.0000
		1.412E-06 0.0000					
		7.317E-06 0.0000					
		1.370E-06 0.0000					
		1.231E-05 0.0000					
		1111111 11111111					
	9.218E+00 0.9188	2.362E-05 0.0000	0.000E+00 0.0000	7.737E-01 0.0771	2.178E-02 0.0022	1.355E-02 0.0014	6.163E-03 0.0006
		2.362E-05 0.0000					

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

0								
0	Water	Fis	:h	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAA AAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fra	ct. mrem/yr	fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAA
Co-60	0.000E+00 0.0	0.000E+00	0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.770E+00 0.1764
Cs-137	0.000E+00 0.0	0.000E+00	0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.068E+00 0.3058
Eu-152	0.000E+00 0.0	000 0.000E+00	0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.541E+00 0.4526
Ni-63	0.000E+00 0.0	000 0.000E+00	0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.037E-02 0.0010
Sr-90	0.000E+00 0.0	000 0.000E+00	0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.435E-01 0.0641
ÍÍÍÍÍÍÍ	1111111111 111	111 111111111	iiiiii	111111111111111	11111111111111111	11111111111111111	1111111 11111111	111111111 111111
Total	0.000E+00 0.0	000 0.000E+00	0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.003E+01 1.0000
0*Sum of		lependent and d						

Attachment 5 Sheet No. 1	10 of 20
Originator: S. W. Clark Date	
Chk'd By H. M. Sulloway Date	
Calc. No. <u>0100F-CA-V0312</u> Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 11 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

0						
	ound Inhalatio			Meat	Milk	Soil
	KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AA AAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
		ract. mrem/yr frac	t. mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ	KA AAAAAA AAAAAAA AA	AAAA AAAAAAAA AAAA	AA AAAAAAAA AAAAA	AAAAAA AAAAA	AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60 1.536E+0	00 0.1617	.0000 0.000E+00 0.00	000 1.501E-02 0.0016	7.122E-04 0.0001	1.632E-04 0.0000	1.945E-04 0.0000
Cs-137 2.855E+0		.0000 0.000E+00 0.00	000 1.242E-01 0.013	9.584E-03 0.0010	5.953E-03 0.0006	3.219E-03 0.0003
Eu-152 4.309E+0	0 0.4537 6.946E-06 0.	.0000 0.000E+00 0.00	000 7.318E-04 0.000°	1.253E-05 0.0000	8.279E-07 0.0000	3.033E-04 0.0000
Ni-63 0.000E+0	00 0.0000 1.360E-06 0.	.0000 0.000E+00 0.00	000 8.962E-03 0.0009	1.117E-04 0.0000	1.034E-03 0.0001	1.858E-04 0.0000
	03 0.0005 1.201E-05 0.	.0000 0.000E+00 0.00	00 6.047E-01 0.0637	1.077E-02 0.0011	6.082E-03 0.0006	2.089E-03 0.0002
	[fifif fillfifif ffff	11 111111111 11111	1111111 1111111	11111111111111111	1111111 111111111
Total 8.704E+0	00 0.9164 2.276E-05 0.	.0000 0.000E+00 0.00	000 7.537E-01 0.0793	2.119E-02 0.0022	1.323E-02 0.0014	5.991E-03 0.0006
0						

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

0			Water D				
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		mrem/yr fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	1.552E+00 0.1634					
Cs-137	0.000E+00 0.0000	2.998E+00 0.3156					
Eu-152	0.000E+00 0.0000	4.310E+00 0.4538					
Ni-63	0.000E+00 0.0000	1.029E-02 0.0011					
sr-90	0.000E+00 0.0000	6,281E-01 0.0661					
1111111				1111111 11111111	1111111 11111111	1111111 11111111	1111111 11111111
Total	0.000E+00 0.0000	9,498E+00 1,0000					
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachment	5	Sheet No. 11	1 of 20
Originator: S. W.	'. Clark	Date	
Chk'd By H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 12 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As mrem/yr and Fraction of Total Dose At t = 3.000E+00 years

0		Wate	r Independent Path	ways (Inhalation e	excludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
		mrem/yr fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	1.180E+00 0.1381	8.171E-07 0.0000	0.000E+00 0.0000	1.154E-02 0.0013	5.473E-04 0.0001	1.254E-04 0.0000	1.494E-04 0.0000
Cs-137	2.725E+00 0.3188	1.316E-06 0.0000	0.000E+00 0.0000	1.186E-01 0.0139	9.147E-03 0.0011	5.681E-03 0.0007	3.072E-03 0.0004
Eu-152	3.883E+00 0.4544	6.259E-06 0.0000	0.000E+00 0.0000	6.594E-04 0.0001	1.129E-05 0.0000	7.460E-07 0.0000	2.733E-04 0.0000
Ni-63	0.000E+00 0.0000	1.339E-06 0.0000	0.000E+00 0.0000	8.827E-03 0.0010	1.100E-04 0.0000	1.018E-03 0.0001	1.830E-04 0.0000
Sr-90			0.000E+00 0.0000		1.026E-02 0.0012		1.990E-03 0.0002
1111111		111111111111111111		111111111111111111		1111111111111111	fifffff fillifit
Total	7.792E+00 0.9118	2.118E-05 0.0000	0.000E+00 0.0000	7.157E-01 0.0837	2.007E-02 0.0023	1.262E-02 0.0015	5.668E-03 0.0007
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+00 years

0 Water Fish Radon Plant Pathways Radon Plant Pathways Radon Plant Meat Milk AALPathway Radon Plant Meat Milk Maxadax Radaxax Radon Plant Meat Milk Maxadax Radon Plant Meat Milk AALPATHWAY Radon Plant Meat Milk Maxadax Radaxax Radaxax Radon Plant Meat Milk Maxadax Radaxax Ra															
Radio- AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0						Water D	ependent P	athways						
Nuclide mrem/yr fract. mrem/yr fract						Rade	on ·	Pla	nt	Meat	t	Mili	<	All Path	hways*
AAAAAAAA AAAAAAA AAAAAAA AAAAAAA AAAAAA	Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Co-60 0.000E+00 0.0000	Nuclide	mrem/yr f	ract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.
Cs-137 0.000E+00 0.0000	ÄÄÄÄÄÄÄ	AAAAAAAA A	ÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Eu-152 0.000E+00 0.0000 0.000E+00 0.000E+00 0.0000 0.000E	Co-60	0.000E+00 0	0.000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	1.193E+00	0.1395
Ni-63 0.000E+00 0.0000 0.000E+00 0.0000E+00 0.0000 0.000E+00 0.0000 0.000E	Cs-137	0.000E+00 0	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	2.861E+00	0.3348
Sr-90 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 5.984E-01 0.0 11111111 1111111 1111111 1111111 111111	Eu-152	0.000E+00 0	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	3.884E+00	0.4545
Sr-90 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 5.984E-01 0.0	Ni-63	0.000E+00 0	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	1.014E-02	0.0012
	Sr-90	0.000E+00 0	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000		
Total 0.000E+00 0.0000 0.000E+00 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 0.000E+00 0.000E+0	iiiiiii	iiiiiiiii i	ÍÍÍÍÍ	111111111	íííííí	111111111	ffffff	111111111	fffffff	111111111	ffffff	111111111	ffifff		
	Total	0.000E+00 0	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000F+00	0.0000	0.000F+00	0.0000		
												******		012 102 00	1.0000

Attachme	nt <u>5</u>	Sheet No	o. 12 of 20
Originator	: S. W. Clark	Date	
Chk'd By_	H. M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev N	0 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 13 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_OB-BCL.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 7.000E+00 years

0	Water Independent Pathways (Inhalation excludes radon)								
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
Nuclide		mrem/yr fract.							
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
	6.968E-01 0.0993	4.824E-07 0.0000	0.000E+00 0.0000	6.811E-03 0.0010	3.231E-04 0.0000	7.404E-05 0.0000	8.824E-05 0.0000		
	2.482E+00 0.3537				8.332E-03 0.0012		2.798E-03 0.0004		
	3.153E+00 0.4494				9.168E-06 0.0000		2.219E-04 0.0000		
Ni-63	0.000E+00 0.0000				1.067E-04 0.0000		1.775E-04 0.0000		
Sr-90	3.808E-03 0.0005				9.310E-03 0.0013		1.806E-03 0.0003		
iiiiiii							iiiiiii iiiiiiii		
Total	6.336E+00 0.9029	1.845E-05 0.0000	0.000E+00 0.0000	6.468E-01 0.0922	1.808E-02 0.0026	1.150E-02 0.0016	5.092E-03 0.0007		
Λ									

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 7.000E+00 years

0			Water D	ependent Pathways	•		
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		mrem/yr fract.					
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.041E-01 0.1003
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.606E+00 0.3714
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.154E+00 0.4495
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	9.837E-03 0.0014
sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.431E-01 0.0774
1111111		iiiiiii iiiiiiii	1111111 11111111	1111111 11111111	fifffff fffffffff	1111111 111111111	11111111111111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.017E+00 1.0000
		ndent and dependent					

 Attachment
 5
 Sheet No. 13 of 20 originator:

 Originator:
 S. W. Clark
 Date

 Chk'd By
 H. M. Sulloway
 Date

 Calc. No.
 0100F-CA-V0312
 Rev. No.
 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 14 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.100E+01 years

			,,				
0		Wate	r Independent Path	ways (Inhalation e	excludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
	mrem/yr fract.						
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	4.114E-01 0.0703	2.849E-07 0.0000	0.000E+00 0.0000	4.022E-03 0.0007	1.908E-04 0.0000	4.372E-05 0.0000	5.210E-05 0.0000
Cs-137	2.261E+00 0.3862	1.092E-06 0.0000	0.000E+00 0.0000	9.839E-02 0.0168	7.590E-03 0.0013	4.714E-03 0.0008	2.549E-03 0.0004
Eu-152	2.561E+00 0.4374	4.128E-06 0.0000	0.000E+00 0.0000	4.348E-04 0.0001	7.445E-06 0.0000	4.919E-07 0.0000	1.802E-04 0.0000
Ni-63	0.000E+00 0.0000	1.261E-06 0.0000	0.000E+00 0.0000	8.308E-03 0.0014	1.035E-04 0.0000	9.584E-04 0.0002	1.722E-04 0.0000
Sr-90	3.457E-03 0.0006	9.428E-06 0.0000			8.450E-03 0.0014		1.639E-03 0.0003
1111111	11111111111111111	11111111111111111		111111111111111	11111111111111111	1111111 11111111	ffffffffff ffffff
Total	5.236E+00 0.8946	1.619E-05 0.0000	0.000E+00 0.0000	5.857E-01 0.1001	1.634E-02 0.0028	1.049E-02 0.0018	4.593E-03 0.0008
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.100E+01 years

	As in city is and indection of folds base At t = 1.100Erol years							
0			Water D	ependent Pathways				
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*	
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.157E-01 0.0710	
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.374E+00 0.4056	
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.561E+00 0.4376	
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	9.543E-03 0.0016	
Sr-90	0.000E+00 0.0000	0.0002 00 0.0000	0.000E+00 0.0000					
iiiiiii		111111111111111111	11111111111111111		1111111111111111	111111111111111111	11111111111111111	
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.854E+00 1.0000	
0*Sum of	all water indeper	ndent and dependent	pathways.					

 Attachment
 5
 Sheet No. 14 of 20

 Originator:
 S. W. Clark
 Date

 Chk'd By
 H. M. Sulloway
 Date

 Calc. No.
 0100F-CA-V0312
 Rev. No.
 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 15 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 4.300E+01 years

0	Water Independent Pathways (Inhalation excludes radon)						
	Ground		Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclia	le mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA A	AAAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA
Co-60	6.078E-03 0.0033	4.208E-09 0.0000	0.000E+00 0.0000	5.941E-05 0.0000	2.818E-06 0.0000	6.458E-07 0.0000	7.696E-07 0.0000
	1.072E+00 0.5793						1.209E-03 0.0007
	4.841E-01 0.2616						3.407E-05 0.0000
Ni-63	0.000E+00 0.0000	9.891E-07 0.0000	0.000E+00 0.0000	6.518E-03 0.0035	8.121E-05 0.0000	7.519E-04 0.0004	1.351E-04 0.0001
Sr-90	1.592E-03 0.0009	4.341E-06 0.0000	0.000E+00 0.0000	2.185E-01 0.1181	3.891E-03 0.0021	2.198E-03 0.0012	7.549E-04 0.0004
	1 111111 1111111 1						
Total	1.564E+00 0.8450	6.633E-06 0.0000	0.000E+00 0.0000	2.718E-01 0.1469	7.575E-03 0.0041	5.186E-03 0.0028	2.133E-03 0.0012
^							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 4.300E+01 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		mrem/yr fract.					
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAA
Co-60	0.000E+00 0.0000	6.141E-03 0.0033					
Cs-137	0.000E+00 0.0000	1.126E+00 0.6083					
Eu-152	0.000E+00 0.0000	4.842E-01 0.2617					
Ni-63	0.000E+00 0.0000	7.487E-03 0.0040					
Sr-90	0.000E+00 0.0000	2.270E-01 0.1227					
111111				111111111111111111	1111111111111111	1111111 111111111	11111111111111111
Total	0.000E+00 0.0000	1.850E+00 1.0000					
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachmer	ıt <u>5</u>	Sheet No. 15 of 20	
Originator:	S. W. Clark	Date	
Chk'd By _I	H. M. Sulloway	Date	
Calc. No	0100F-CA-V0312	Rev. No. 0	

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 16 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_08-BCL.RAD

0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.350E+02 years

0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
	mrem/yr fract.		mrem/yr fract.				
	AAAAAA AAAAAA			AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
	3.318E-08 0.0000				1.539E-11 0.0000		4.202E-12 0.0000
	1.254E-01 0.7653						1.414E-04 0.0009
	4.029E-03 0.0246						2.835E-07 0.0000
	0.000E+00 0.0000						6.726E-05 0.0004
	1.712E-04 0.0010						8.120E-05 0.0005
Total	1.296E-01 0.7910	1.026E-06 0.0000	0.000E+00 0.0000	3.221E-02 0.1966	8.800E-04 0.0054	8.723E-04 0.0053	2.902E-04 0.0018

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.350E+02 years

0			Water D	ependent Pathways	•		
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide			mrem/yr fract.				
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ΑΚΑΚΑ ΚΑΚΑΚΑΚΑ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAA
Co-60	0.000E+00 0.0000	3.353E-08 0.0000					
Cs-137	0.000E+00 0.0000	1.317E-01 0.8037					
Eu-152	0.000E+00 0.0000	4.030E-03 0.0246					
Ni-63	0.000E+00 0.0000	3.728E-03 0.0227					
Sr-90	0.000E+00 0.0000	2.441E-02 0.1490					
1111111		1111111 1111111	1111111111111111	1111111 111111111	11111111111111111	1111111 111111111	111111111 111111
Total	0.000E+00 0.0000	1.639E-01 1.0000					
0*Sum of	all water indepe	ndent and dependent	pathways.				

Attachmer	ıt <u> </u>	Sheet No. :	16 of 20
Originator:	S. W. Clark	Date	
Chk'd By _I	H. M. Sulloway	Date	
Calc. No	0100F-CA-V0312	Rev. No.	0
	OTOGT OFT TOGTE		

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 17 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_OB-BCL.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years

0	Water Independent Pathways (Inhalation excludes radon)						
0	Ground		Radon	Plant	Meat	Milk	Soil
Radio	>- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nucli	de mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄ	KAKAKA KAKAKAKA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	1.208E-17 0.0000	8.365E-24 0.0000	0.000E+00 0.0000	1.181E-19 0.0000	5.603E-21 0.0000	1.284E-21 0.0000	1.530E-21 0.0000
Cs-13	37 2.674E-03 0.6185	1.292E-09 0.0000	0.000E+00 0.0000	1.164E-04 0.0269	8.977E-06 0.0021	5.576E-06 0.0013	3.015E-06 0.0007
Eu-15	62 7.500E-07 0.0002	1.209E-12 0.0000	0.000E+00 0.0000	1.274E-10 0.0000	2.181E-12 0.0000	1.441E-13 0.0000	5.279E-11 0.0000
	0.000E+00 0.0000						
	3.139E-06 0.0007						
ÍÍÍÍÍ		111111 111111111		111111 11111111	1111111 11111111	1111111 11111111	1111111111111111
Total	2.678E-03 0.6194	1.508E-07 0.0000	0.000E+00 0.0000	1.476E-03 0.3415	2.823E-05 0.0065	1.171E-04 0.0271	2.376E-05 0.0055
^							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
	mrem/yr fract.						
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA
Co-60	0.000E+00 0.0000	1.221E-17 0.0000					
Cs-137	0.000E+00 0.0000	2.808E-03 0.6495					
Eu-152	0.000E+00 0.0000	7.502E-07 0.0002					
Ni-63	0.000E+00 0.0000	1.067E-03 0.2468					
Sr-90	0.000E+00 0.0000	4.477E-04 0.1035					
1111111	1111111 11111111	11111111111111111	1111111 11111111	iiiiiii liiiiiiii	1111111 11111111	1111111 11111111	11111111111111111
Total	0.000E+00 0.0000	4.324E-03 1.0000					
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachme	nt5	Sheet No. <u>17</u> of 20
Originato	r: S. W. Clark	Date
Chk'd By_	H. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 18 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

		rio in cin	// und ridecton o	I TOTAL DOSC AL L	- 1.000L-03 years		
0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		mrem/yr fract.		mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAA	AAAAAA AAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
Cs-137	2.174E-10 0.0000	1.050E-16 0.0000	0.000E+00 0.0000	9.461E-12 0.0000	7.299E-13 0.0000	4.533E-13 0.0000	2.451E-13 0.0000
		2.734E-16 0.0000					
Ni-63	0.000E+00 0.0000	6.991E-10 0.0001	0.000E+00 0.0000	4.607E-06 0.8705	5.740E-08 0.0108	5.314E-07 0.1004	9.549E-08 0.0180
		3.672E-16 0.0000					6.385E-14 0.0000
fffffff	1111111 11111111	1111111 11111111	1111111 11111111	1111111 11111111	1111111 11111111	1111111 11111111	1111111111111111
		6.991E-10 0.0001					

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		mrem/yr fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAA
Co-60	0.000E+00 0.0000						
Cs-137	0.000E+00 0.0000	2.283E-10 0.0000					
Eu-152	0.000E+00 0.0000	1.205E-15 0.0000					
Ni-63	0.000E+00 0.0000	5.292E-06 1.0000					
Sr-90	0.000E+00 0.0000	1.920E-11 0.0000					
1111111	1111111111111111	1111111111111111	1111111111111111	111111111111111	11111111111111111	1111111 11111111	11111111111111111
Total	0.000E+00 0.0000	5.292E-06 1.0000					
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachment	5	Sheet No. 18	of 20
Originator: S. W.	Clark	Date	
Chk'd By H. M. S	ulloway	Date	
Calc. No0100	F-CA-V0312	Rev. No	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 19 Summary: 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File: 100-F-26-14_OB-BCL.RAD

Dose/Source Ratios Summed Over All Pathways 0 Parent Product Thread (i) (j) Fraction Co-60 Co-60 1.000E+00 2.146E+00 2.096E+00 2.001E+00 1.823E+00 1.660E+00 7.872E-01 9.210E-02 1.964E-03 1.596E-10 3.059E+00 2.904E+00 2.617E+00 2.125E+00 1.725E+00 3.262E-01 2.714E-03 5.054E-07 7.570E-23 1.185E+00 1.125E+00 1.014E+00 8.230E-01 6.683E-01 1.264E-01 1.051E-03 1.958E-07 2.932E-23 Cs-137+D 0Cs-137+D 1.000E+00 0Eu-152 Eu-152 7.208E-01 0Eu-152 Eu-152 Gd-152 2.792E-01 Eu-152 2.792E-01 Eu-152 äDSR(j) ONi-63 Osr-90+D Ni-63 Sr-90+D 1.000E+00 1.000F+00 111111111 1111111111 111111111

Single Radionuclide Soil Guidelines G(i,t) in pCi/g Basic Radiation Dose Limit = 1.500E+01 mrem/yr

	Basic Radiation Dose Limit = 1.500E+01 mrem/yr												
ONuclide						•							
(1)	t= 0.000E+00	1.000E+00	3.000E+00	7.000E+00	1.100E+01	4.300E+01	1.350E+02	3.000E+02	1.000E+03				
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ				
Co-60	1.517E+00	1.730E+00	2.252E+00	3.813E+00	6.458E+00	4.372E+02	8.008E+07	*1.132E+15	*1.132E+15				
Cs-137	6.990E+00	7.155E+00	7.497E+00	8.230E+00	9.035E+00	1.906E+01	1.629E+02	7.639E+03	9.396E+10				
Eu-152	3.535E+00	3.724E+00	4.132E+00	5.089E+00	6.266E+00	3.315E+01	3.983E+03	2.139E+07	*1.765E+14				
Ni-63	1.018E+04	1.026E+04	1.041E+04	1.074E+04	1.107E+04	1.410E+04	2.833E+04	9.896E+04	1.996E+07				
Sr-90	7.086E+00	7.260E+00	7.621E+00	8.396E+00	9.251E+00	2.009E+01	1.868E+02	1.019E+04	2.375E+11				
1111111	11111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111	ííííííííí				
*At spec	ific activity	limit											
0													

Summed Dose/Source Ratios DSR(i,t) in (mrem/yr)/(pCi/g) and Single Radionuclide Soil Guidelines G(i,t) in pCi/g at tmin = time of minimum single radionuclide soil guideline
and at tmax = time of maximum total dose = 0.000E+00 years

de Initial tmin DSR(i,tmin) G(i,tmin) DSR(i,tmax) G(i,tmax)

The DSR includes contributions from associated (half-life ó 180 days) daughters.

ONuclide Initial (pCi/g) Co-60 Cs-137 9.891E+00 2.146E+00 4.244E+00 1.790E-01 0.000E+00 1.517E+00 1.517E+00 9.891E+00 1.430E+00 0.000E+00 6.990E+00 2.146E+00 6.990E+00 3.535E+00 1.018E+04 Eu-152 1.070E+00 0.000E+00 4.244E+00 3.535E+00 1.018E+04 Ni-63 7.040E+00 0.000E+00 1.473E-03 1.473E-03 Sr-90 3.040E-01 0.000E+00 2.117E+00 7.086E+00 2.117E+00 fffffffff ffffffff 7.086E+00 fffffffff

Attachment	5	Sheet No. 19 of	20
Originator: S. W.	'. Clark	Date	
Chk'd By H. M.	Sulloway	Date	
Calc. No010	0F-CA-V0312	Rev. No. 0	

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 20 Summary : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Individual Nuclide Dose Summed Over All Pathways Parent Nuclide and Branch Fraction Indicated

UNUCL	ide Parent	THF(1)					DOSE	(j,t), mrer	n/yr			
(j)	(i)		t=	0.000E+00	1.000E+00	3.000E+00	7.000E+00	1.100E+01	4.300E+01	1.350E+02	3.000E+02	1.000E+03
ÄÄÄÄÄ	AAAAAAA	AAAAAAAA		ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ
Co-60	Co-60	1.000E+00		1.770E+00	1.552E+00	1.193E+00	7.041E-01	4.157E-01	6.141E-03	3.353E-08	1.221E-17	0.000E+00
0Cs-13	37 Cs-137	1.000E+00		3.068E+00	2.998E+00	2.861E+00	2.606E+00	2.374E+00	1.126E+00	1.317E-01	2.808E-03	2.283E-10
0Eu-15	52 Eu-152	7.208E-01		3.273E+00	3.107E+00	2.800E+00	2.274E+00	1.846E+00	3.490E-01	2.904E-03	5.408E-07	8.100E-23
Eu-15	2 Eu-152	2.792E-01		1.268E+00	1.203E+00	1.084E+00	8.806E-01	7.151E-01	1.352E-01	1.125E-03	2.095E-07	3.137E-23
Eu-15	2 äDOSE(j)		4.541E+00	4.310E+00	3.884E+00	3.154E+00	2.561E+00	4.842E-01	4.030E-03	7.502E-07	1.124E-22
0Gd-15	2 Eu-152	2.792E-01		0.000E+00	6.194E-17	1.765E-16	3.729E-16	5.323E-16	1.090E-15	1.218E-15	1.217E-15	1.205E-15
ON i - 63	Ni-63	1.000E+00		1.037E-02	1.029E-02	1.014E-02	9.837E-03	9.543E-03	7.487E-03	3.728E-03	1.067E-03	5.292E-06
0Sr-90	Sr-90	1.000E+00		6.435E-01	6.281E-01	5.984E-01	5.431E-01	4.929E-01	2.270E-01	2.441E-02	4.477E-04	1.920E-11
iiiii	1111111 111	iiiiiiiii		111111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111
THEC	i) is the t	hread fract	tio	n of the pa	arent nucl	ide.						

Individual Nuclide Soil Concentration Parent Nuclide and Branch Fraction Indicated

ONuclide	Parent	THF(i)					S(j,t), pCi/9	3				
(j)	(i)		t=	0.000E+00	1.000E+00	3.000E+00	7.000E+00	1.100E+01	4.300E+01	1.350E+02	3.000E+02	1.000E+03	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	
Co-60	Co-60	1.000E+00		1.790E-01	1.569E-01	1.206E-01	7.119E-02	4.203E-02	6.209E-04	3.390E-09	1.234E-18	0.000E+00	
0Cs-137	Cs-137	1.000E+00		1.430E+00	1.397E+00	1.333E+00	1.215E+00	1.106E+00	5.246E-01	6.138E-02	1.309E-03	1.064E-10	
0Eu-152	Eu-152	7.208E-01		7.713E-01	7.321E-01	6.597E-01	5.357E-01	4.350E-01	8.225E-02	6.844E-04	1.274E-07	1.909E-23	
Eu-152	Eu-152	2.792E-01		2.987E-01	2.836E-01	2.556E-01	2.075E-01	1.685E-01	3.186E-02	2.651E-04	4.936E-08	7.393E-24	
Eu-152	äS(j):			1.070E+00	1.016E+00	9.153E-01	7.433E-01	6.035E-01	1.141E-01	9.495E-04	1.768E-07	2.648E-23	
0Gd-152	Eu-152	2.792E-01		0.000E+00	1.868E-15	5.325E-15	1.125E-14	1.606E-14	3.289E-14	3.675E-14	3.670E-14	3.636E-14	
ONi-63	Ni-63	1.000E+00		7.040E+00	6.987E+00	6.882E+00	6.676E+00	6.477E+00	5.082E+00	2.530E+00	7.242E-01	3.592E-03	
0Sr-90	sr-90	1.000E+00		3.040E-01	2.967E-01	2.827E-01	2.566E-01	2.329E-01	1.072E-01	1.153E-02	2.115E-04	9.069E-12	
1111111	1111111	111111111		111111111	111111111	111111111	111111111	111111111	1111111111	111111111	ffffffffff	111111111	
THF(i) i	is the th	read fract	ior	of the pa	arent nucl	ide.							
ORESCALC.	FXF exec	cution time	=	5.91 se	econds								

 Attachment
 5
 Sheet No. 20 of 20

 Originator:
 S. W. Clark
 Date

 Chk'd By
 H. M. Sulloway
 Date

 Calc. No.
 0100F-CA-V0312
 Rev. No.
 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 1
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_0B-BCL.RAD

Cancer Risk Slope Factors	
Amount of Intake Quantities and Excess Cancer Risks	
Time= 0.000E+00	4
Time= 1.000E+00	6
Time= 3.000E+00	8
Time= 7.000E+00	10
Time= 1.100E+01	12
Time= 4.300E+01	14
Time= 1.350E+02	16
Time= 3.000E+02	18
Time= 1.000E+03	20

Attachment 6 Sheet No. 1, of 21
Originator: S. W. Clark Date / 3 / 67
Chk'd By H. M. Sulloway / 1/11
Calc. No. 0100F-CA-V0312 Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 2
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_0B-BCL.RAD

Cancer Risk Slope Factors Summary Table Risk Library: HEAST 2001 Morbidity

0	1 KISK EIDIGIY. HEAST 2001 HOLD	3		3	Base	3 Param	
Menu		3	out i circ				
			vatue	3		Nam	
AAAAA	18888888888888888888888888888888888888	١AA	AAAAAAAAA				AAAAAA
	Ground external radiation slope factors, 1/yr per (pCi/g):			3		3	
Sf-1	3 Co-60		1.24E-05				1,1)
Sf-1	³ Cs-137+D		2.55E-06			3 SLPF(2,1)
Sf-1	³ Eu-152		5.30E-06			3 SLPF(3,1)
Sf-1	³ Gd-152	3	0.00E+00	3	0.00E+00	3 SLPF(5,1)
Sf-1	³ Ni-63	3	0.00E+00	3	0.00E+00	3 SLPF(6,1)
Sf-1	³ Sr-90+D	3	1.96E-08	2	4.82E-10	3 SLPF(7,1)
	3	3		3		3	•
Sf-2	Inhalation, slope factors, 1/(pCi):	3		3		3	
	3 Co-60	3	3.58E-11	3	3.58E-11	3 SLPF(1,2)
Sf-2	³ Cs-137+D		1.19E-11			3 SLPF(2,2)
Sf-2	³ Eu-152		9.10E-11				3,2)
	³ Gd-152		9.10E-09				5,2)
	3 Ni-63		5.77E-12			3 SLPF(6,2)
	3 Sr-90+D					3 SLPF(
0, 2	3	3		3		3	7,2)
Cf-3	Food ingestion, slope factors, 1/(pCi):	3		3		3	
	3 Co-60	,	2 275 14				4 75
	3 Cs-137+D		2.23E-11			3 SLPF(1,3)
			3.74E-11				2,3)
	3 Eu-152		8.70E-12				3,3)
	³ Gd-152		3.85E-11				5,3)
	³ Ni-63		9.51E-13			3 SLPF(6,3)
Sf-3	2 SL-80+D		9.53E-11				7,3)
		3		3		3	
	Water ingestion, slope factors, 1/(pCi):	3		3		3	
	3 Co-60		1.57E-11			3 SLPF(1,4)
	³ Cs-137+D		3.04E-11			3 SLPF(2,4)
	³ Eu-152		6.07E-12			3 SLPF(3,4)
	³ Gd-152	3	2.97E-11	3	2.97E-11	3 SLPF(5,4)
Sf-3	3 Ni-63	3	6.70E-13	3	6.70E-13	3 SLPF(6,4)
Sf-3	3 Sr-90+D	3	7.40E-11	3	5.59E-11	3 SLPF(7.4)
	2	3		3		3	•
Sf-3	3 Soil ingestion, slope factors, 1/(pCi):	3		3		3	
Sf-3	3 Co-60	3	4.03E-11	3	4.03E-11	3 SLPF(1,5)
Sf-3	³ Cs-137+D		4.33E-11			3 SLPF(2,5)
Sf-3	³ Eu-152		1.62E-11			3 SLPF(3,5)
Sf-3	³ Gd-152		6.29E-11			3 SLPF(5,5)
Sf-3	3 Ni-63		1.79E-12			3 SLPF(6,5)
Sf-3	3 Sr-90+D		1.44E-10			3 SLPF(7,5)
0, 3	2 21 70.0	3		3	7. TOL 11	3 SLPF(,,,,

*Base Case means Default.Lib w/o Associate Nuclide contributions.

Attachm	ent6	Sheet No.	2 of 21
Originator	: S. W. Clark	Date	
Chk'd By _	H. M. Sulloway	Date	
Calc. No.	0100F-CA-V0	312 Rev. No.	0

1RESRAD, Version 6.3 T « Limit = 180 days 10/02/2007 15:05 Page 3
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_08-BCL.RAD

		Risk S	Slope and En	vironmental	Transport	Factors for	the Ground	Pathway		
ONuclide	Slope(i)*			ETFG(i,t) At Tim	e in Years	(dimension	less)		
(i)	t≕	0.000E+00	1.000E+00	3.000E+00	7.000E+00	1.100E+01	4.300E+01	1.350E+02	3.000E+02	1.000E+03
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ
Ba-137m	2.690E-06	5.990E-01	5.990E-01	5.990E-01	5.990E-01	5.990E-01	5.990E-01	5.990E-01	5.990E-01	5.990E-01
Co-60	1.240E-05	6.037E-01	6.037E-01	6.037E-01	6.037E-01	6.037E-01	6.037E-01	6.037E-01	6.037E-01	6.037E-01
Cs-137	5.320E-10	6.171E-01	6.171E-01	6.171E-01	6.171E-01	6.171E-01	6.171E-01	6.171E-01	6.171E-01	6.171E-01
Eu-152	5.300E-06	6.057E-01	6.057E-01	6.057E-01	6.057E-01	6.057E-01	6.057E-01	6.057E-01	6.057E-01	6.057E-01
Gd-152	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Ni-63	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sr-90	4.820E-10	6.196E-01	6.196E-01	6.196E-01	6.196E-01	6.196E-01	6.196E-01	6.196E-01	6.196E-01	6.196E-01
Y-90	1.910E-08	6.026E-01	6.026E-01	6.026E-01	6.026E-01	6.026E-01	6.026E-01	6.026E-01	6.026E-01	6.026E-01
1111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111	111111111
* - Unit	s are 1/yr p	er (pCi/g)	at infinite	depth and	area. Mult	iplication	by ETFG(i,t) converts	to site con	ditions.

 Attachment
 6
 Sheet No. 3 of 21

 Originator:
 S. W. Clark
 Date

 Chk'd By
 H. M. Sulloway
 Date

 Calc. No.
 0100F-CA-V0312
 Rev. No.
 0

1RESRAD, Version 6.3 T \times Limit = 180 days 10/02/2007 15:05 Page 4 Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As pCi/yr at t= 0.000E+00 years

RadioRa

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

			. or . or . or . or	ac c 0.000m.00 /c	410	
0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	1.002E-05 0.0830	1.484E-12 0.0000	1.062E-07 0.0009	5.039E-09 0.0000	1.155E-09 0.0000	2.487E-09 0.0000
Cs-137	4.705E-05 0.3895	1.136E-11 0.0000	2.052E-06 0.0170	1.583E-07 0.0013	9.835E-08 0.0008	6.156E-08 0.0005
Eu-152	5.215E-05 0.4317	4.575E-11 0.0000	1.571E-08 0.0001	2.690E-10 0.0000	1.778E-11 0.0000	1.213E-08 0.0001
Gd-152	0.000E+00 0.0000	1.537E-22 0.0000	2.336E-21 0.0000	3.999E-23 0.0000	1.057E-24 0.0000	1.582E-21 0.0000
Ni-63	0.000E+00 0.0000	3.373E-11 0.0000	3.994E-07 0.0033	4.976E-09 0.0000	4.607E-08 0.0004	1.558E-08 0.0001
Sr-90	7.653E-08 0.0006	2.274E-11 0.0000	8.238E-06 0.0682	1.467E-07 0.0012	8.285E-08 0.0007	4.309E-08 0.0004
1111111		1111111111 111111			111111111111111	11111111111111111
Total	1.093E-04 0.9049	1.151E-10 0.0000	1.081E-05 0.0895	3.153E-07 0.0026	2.284E-07 0.0019	1.349E-07 0.0011

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 5
Intrisk: 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_0B-BCL.RAD

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.					
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	1.014E-05 0.0839				
Cs-137	0.000E+00 0.0000	4.942E-05 0.4091				
Eu-152	0.000E+00 0.0000	5.218E-05 0.4320				
Gd-152	0.000E+00 0.0000	4.112E-21 0.0000				
Ni-63	0.000E+00 0.0000	4.660E-07 0.0039				
Sr-90	0.000E+00 0.0000	8.587E-06 0.0711				
iiiiiii	1111111 11111111		1111111 111111111	1111111 11111111	1111111 11111111	1111111 11111111
Total	0.000E+00 0.0000	1.208E-04 1.0000				

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p)

and Fraction of Total Risk at t= 0.000E+00 years Water Independent Pathways (Inhalation excludes radon) risk fract. risk fract. AAAAAA AAAAAA 1.002E-05 0.0830 1.484E-12 0.0000 Co-60 0.000E+00 0.0000 5.039E-09 0.0000 1.583E-07 0.0013 1.155E-09 0.0000 9.835E-08 0.0008 2.487E-09 0.0000 6.156E-08 0.0005 1.062E-07 0.0009 Cs-137 4.705E-05 0.3895 1.136E-11 0.0000 0.000E+00 0.0000 2.052E-06 0.0170 Eu-152 5.215E-05 0.4317 Ni-63 0.000E+00 0.0000 4.575E-11 0.0000 3.373E-11 0.0000 0.000E+00 0.0000 1.571E-08 0.0001 3.994E-07 0.0033 2.690E-10 0.0000 1.778E-11 0.0000 1.213E-08 0.0001 0.000E+00 0.0000 4.976E-09 0.0000 4.607E-08 0.0004 1.558E-08 0.0001 Sr-90 7.653E-08 0.0006 0.000E+00 0.0000 8.238E-06 0.0682 1.467E-07 0.0012 8.285E-08 0.0007 4.309E-08 0.0004 1111111111 111111 1111111 1111111 1111111111111111 1111111 11111111 iiiiii iiiiiiii 1.093E-04 0.9049 1.151E-10 0.0000 0.000E+00 0.0000 Total 1.081E-05 0.0895 3.153E-07 0.0026 2.284E-07 0.0019 1.349E-07 0.0011

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p)
and Fraction of Total Risk at t= 0.000E+00 years

Water Dependent Pathways

Radio-	Water ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Fish XXXXXXXXXXXXXXXXX	Radon AAAAAAAAAAAAAAA	Plant AAAAAAAAAAAAAAAA	Meat AAAAAAAAAAAAA	Milk AAAAAAAAAAAAAA	All pathways
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	ΑΧΚΚΚΑ ΚΚΚΚΚΚΚ	ΑΚΚΚΚ ΚΚΚΚΚΚΚΚ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.014E-05 0.0839
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.942E-05 0.4091
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.218E-05 0.4320
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.660E-07 0.0039
Sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.587E-06 0.0711
1111111		1111111111 111111		111111111111111111111111111111111111111	1111111111111111	1111111 11111111	111111111111111111111111111111111111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.208E-04 1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachm	nent6		Sheet No.	5 of 21
Originato	r: S. W. Clark		Date	
Chk'd By	H. M. Sullowa	y.	Date	
Calc. No.	0100F-CA-\	/0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 6
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_0B-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As pCi/yr at t= 1.000E+00 years

	Water Independent Pathways (Inhalation w/o radon)										
Radio-	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	4.855E-03	5.581E+02	2.648E+01	6.067E+00	7.230E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.979E+02
Cs-137	4.323E-02	2.485E+03	1.917E+02	1.191E+02	6.437E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.860E+03
Eu-152	3.143E-02	1.129E+02	1.934E+00	1.278E-01	4.680E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.618E+02
Gd-152	5.781E-17	2.077E-13	3.556E-15	9.437E-17	8.609E-14	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.974E-13
Ni-63	2.162E-01	1.553E+04	1.935E+02	1.792E+03	3.219E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.784E+04
Sr-90	9.182E-03	3.958E+03	7.046E+01	3.980E+01	1.367E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.082E+03
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	ffffffffff
* Sum of	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and wa	ter-depender	nt water, f	ish, plant,	meat, milk	pathways	, ,					
0					•						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

	and reaction of focat kisk at t- 1.000L700 years								
0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)				
0	Ground	Inhalation	Plant	Meat	Milk	Soil			
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ			
Nuclide	risk fract.	risk fract.	risk 'fract.	risk fract.	risk fract.	risk fract.			
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAA			
Co-60	8.787E-06 0.0761	1.300E-12 0.0000	9.311E-08 0.0008	4.417E-09 0.0000	1.012E-09 0.0000	2.180E-09 0.0000			
Cs-137	4.596E-05 0.3978	1.110E-11 0.0000	2.005E-06 0.0174	1.547E-07 0.0013	9.608E-08 0.0008	6.015E-08 0.0005			
Eu-152	4.950E-05 0.4284	4.343E-11 0.0000	1.492E-08 0.0001	2.554E-10 0.0000	1.687E-11 0.0000	1.151E-08 0.0001			
Gd-152	0.000E+00 0.0000	1.617E-22 0.0000	2.457E-21 0.0000	4.207E-23 0.0000	1.112E-24 0.0000	1.664E-21 0.0000			
Ni-63	0.000E+00 0.0000	3.347E-11 0.0000	3.964E-07 0.0034	4.938E-09 0.0000	4.572E-08 0.0004	1.546E-08 0.0001			
Sr-90	7.469E-08 0.0006	2.220E-11 0.0000	8.041E-06 0.0696	1.432E-07 0.0012	8.087E-08 0.0007	4.206E-08 0.0004			
1111111	11111111111111111	1111111 11111111	1111111 11111111	1111111 11111111	1111111 11111111	11111111111111111			
Total	1.043E-04 0.9029	1.115E-10 0.0000	1.055E-05 0.0913	3.075E-07 0.0027	2.237E-07 0.0019	1.314E-07 0.0011			

Attachmen	t6	Sheet No. 6	of 21
Originator: 5	S. W. Clark	Date	
Chk'd By H.	M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 7 Intrisk: 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

Water Dependent Pathways

Radio-	Water AAAAAAAAAAAAAA	Fish ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat AAAAAAAAAAAAAAA	Milk AAAAAAAAAAAAAA	All Pathways**
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.888E-06 0.0769
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.828E-05 0.4179
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.953E-05 0.4287
Gd-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.326E-21 0.0000
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.625E-07 0.0040
Sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.382E-06 0.0725
iiiiiii	11111111111111111	11111111111111111	111111111111111111111111111111111111111	111111111111111111	1111111 11111111	1111111111111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.155E-04 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

0

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years
Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation		Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		risk fract.					
	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
		1.110E-11 0.0000					6.015E-08 0.0005
Eu-152	4.950E-05 0.4284	4.343E-11 0.0000	0.000E+00 0.0000	1.492E-08 0.0001	2.554E-10 0.0000	1.687E-11 0.0000	1.151E-08 0.0001
Ni-63	0.000E+00 0.0000	3.347E-11 0.0000	0.000E+00 0.0000	3.964E-07 0.0034	4.938E-09 0.0000	4.572E-08 0.0004	1.546E-08 0.0001
Sr-90		2.220E-11 0.0000					4.206E-08 0.0004
iiiiiii		iiiiiii iiiiiiii	1111111 11111111		11111111111111111	1111111 11111111	fifffff fiffffff
Total	1.043E-04 0.9029	1.115E-10 0.0000	0.000E+00 0.0000	1.055E-05 0.0913	3.075E-07 0.0027	2.237E-07 0.0019	1.314E-07 0.0011
n							

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAA	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.888E-06 0.0769
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.828E-05 0.4179
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.953E-05 0.4287
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.625E-07 0.0040
Sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.382E-06 0.0725
1111111	111111111111111111	1111111111111111	11111111111111111	1111111 11111111	1111111111111111	1111111 111111111	11111111111111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.1555-04 1 0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachme	nt <u>6</u>	Sheet No.	7 of 21
Originator:	S. W. Clark	Date	
Chk'd By _H	H. M. Sulloway	Date	
Calc. No	0100F-CA-V03	312 Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 8
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_0B-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 3.000E+00 years

	Water Independent Pathways (Inhalation w/o radon)										
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	3.731E-03	4.289E+02	2.034E+01	4.662E+00	5.556E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.594E+02
Cs-137	4.126E-02	2.371E+03	1.829E+02	1.136E+02	6.144E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.729E+03
Eu-152	2.832E-02	1.018E+02	1.742E+00	1.151E-01	4.217E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.458E+02
Gd-152	1.648E-16	5.920E-13	1.014E-14	2.683E-16	2.454E-13	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	8.478E-13
Ni-63	2.130E-01	1.530E+04	1.906E+02	1.765E+03	3.171E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.757E+04
sr-90	8.747E-03	3.770E+03	6.713E+01	3.792E+01	1.303E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.889E+03
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii
* Sum of	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and wa	and water-dependent water, fish, plant, meat, milk pathways										
0				•	,						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+00 years

	and tradefor of focal kisk at t- 5:000E-00 years							
0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)			
0	Ground	Inhalation	Plant	Meat	Milk	Soil		
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.		
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		
Co-60	6.752E-06 0.0637	9.993E-13 0.0000	7.155E-08 0.0007	3.394E-09 0.0000	7.777E-10 0.0000	1.675E-09 0.0000		
Cs-137	4.387E-05 0.4139	1.059E-11 0.0000	1.914E-06 0.0181	1.476E-07 0.0014	9.170E-08 0.0009	5.740E-08 0.0005		
Eu-152	4.461E-05 0.4209	3.913E-11 0.0000	1.344E-08 0.0001	2.301E-10 0.0000	1.521E-11 0.0000	1.037E-08 0.0001		
Gd-152	0.000E+00 0.0000	1.764E-22 0.0000	2.682E-21 0.0000	4.592E-23 0.0000	1.214E-24 0.0000	1.816E-21 0.0000		
Ni-63	0.000E+00 0.0000	3.297E-11 0.0000	3.904E-07 0.0037	4.864E-09 0.0000	4.503E-08 0.0004	1.523E-08 0.0001		
Sr-90	7.116E-08 0.0007	2.115E-11 0.0000	7.661E-06 0.0723	1.364E-07 0.0013	7.704E-08 0.0007	4.007E-08 0.0004		
ÍÍÍÍÍÍÍ	1111111 11111111	111111 111111111	11111111111111111	1111111 11111111	1111111 11111111	1111111 11111111		
Total	9.530E-05 0.8992	1.048E-10 0.0000	1.005E-05 0.0948	2.925E-07 0.0028	2.146E-07 0.0020	1.248E-07 0.0012		

Attachme	nt <u>6</u>	Sheet N	No. 8 of 21
Originator:	S. W. Clark	Date	
Chk'd By _F	I. M. Sulloway	Date	
Calc. No.	0100F-CA-V031	2 Rev. N	lo. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 9
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_08-BCL.RAD

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAA
Nuclide	risk fract.	risk fract.				
ÄÄÄÄÄÄÄ	AAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA
Co-60	0.000E+00 0.0000	6.829E-06 0.0644				
Cs-137	0.000E+00 0.0000	4.608E-05 0.4348				
Eu-152	0.000E+00 0.0000	4.463E-05 0.4211				
Gd-152	0.000E+00 0.0000	4.721E-21 0.0000				
Ni-63	0.000E+00 0.0000	4.556E-07 0.0043				
Sr-90	0.000E+00 0.0000	7.985E-06 0.0753				
1111111	1111111111	1111111111 111111	1111111111111111		111111111111111	1111111111111111
Total	0.000E+00 0.0000	1.060E-04 1.0000				

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+00 years Water Independent Pathways (Inhalation excludes radon) und Inhalation Radon Plant Meat Milk

U	Ground	innatation	Radon	Plant	meat	MILK	SOIL
	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide		risk fract.					
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAAA AAAAA	AAAAAAA AAAAA	AAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄ	AAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	6.752E-06 0.0637	9.993E-13 0.0000	0.000E+00 0.0000	7.155E-08 0.0007	3.394E-09 0.0000	7.777E-10 0.0000	1.675E-09 0.0000
Cs-137	4.387E-05 0.4139	1.059E-11 0.0000	0.000E+00 0.0000	1.914E-06 0.0181	1.476E-07 0.0014	9.170E-08 0.0009	5.740E-08 0.0005
Eu-152	4.461E-05 0.4209	3.913E-11 0.0000	0.000E+00 0.0000	1.344E-08 0.0001	2.301E-10 0.0000	1.521E-11 0.0000	1.037E-08 0.0001
Ni-63	0.000E+00 0.0000	3.297E-11 0.0000	0.000E+00 0.0000	3.904E-07 0.0037	4.864E-09 0.0000	4.503E-08 0.0004	1.523E-08 0.0001
Sr-90	7.116E-08 0.0007	2.115E-11 0.0000	0.000E+00 0.0000	7.661E-06 0.0723	1.364E-07 0.0013	7.704E-08 0.0007	4.007E-08 0.0004
iiiiiii	111111111111111111111111111111111111111	11111111111111111	11111111111111111	111111 111111111	1111111 11111111	1111111 11111111	1111111 11111111
Total	9.530E-05 0.8992	1.048E-10 0.0000	0.000E+00 0.0000	1.005E-05 0.0948	2.925E-07 0.0028	2.146E-07 0.0020	1.248E-07 0.0012
0							

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+00 years

Water Dependent Pathways

Radio-	Water AAAAAAAAAAAAAA	Fish AAAAAAAAAAAAAAA	Radon XXXXXXXXXXXXXXXX	Plant AAAAAAAAAAAAAAA	Meat AAAAAAAAAAAAAAA	Milk AAAAAAAAAAAAAAA	All pathways
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAA		AAAAAAAA AAAAA	AAAAAAAA AAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAA	AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.829E-06 0.0644
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000		0.000E+00 0.0000	4.608E-05 0.4348
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000		0.000E+00 0.0000	4.463E-05 0.4211
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.556E-07 0.0043
Sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.985E-06 0.0753
1111111						11111111111111111	iiiiiiii iiiiiii
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.060E-04 1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachmer	nt6	Sheet N	o. 9 of 21
Originator: _	S. W. Clark	Date	
Chk'd By H	. M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev. No	. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 10 Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_OB-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 7.000E+00 years

		Water Independent Pathways (Inhalation w/o radon) MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA									
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	AAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide			Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	2.203E-03	2.532E+02	1.201E+01	2.752E+00	3.280E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.713E+02
Cs-137	3.759E-02	2.160E+03	1.666E+02	1.035E+02	5.597E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.486E+03
Eu-152	2.300E-02	8.263E+01	1.415E+00	9.348E-02	3.425E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.184E+02
Gd-152	3.480E-16	1.250E-12	2.141E-14	5.661E-16	5.183E-13	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.791E-12
Ni-63	2.066E-01	1.484E+04	1.849E+02	1.712E+03	3.076E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.705E+04
Sr-90	7.939E-03	3.422E+03	6.093E+01	3.442E+01	1.182E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.529E+03
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii	1111111111
* Sum c	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and w	and water-dependent water, fish, plant, meat, milk pathways										
^	•	-		-							

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 7.000E+00 years

	and Fraction of lotal RISK at t= 7.000E+00 years										
0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)						
0	Ground	Inhalation	Plant	Meat	Milk	Soil					
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAA					
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.					
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ					
Co-60	3.987E-06 0.0443	5.900E-13 0.0000	4.224E-08 0.0005	2.004E-09 0.0000	4.592E-10 0.0000	9.890E-10 0.0000					
Cs-137	3.996E-05 0.4443	9.651E-12 0.0000	1.743E-06 0.0194	1.345E-07 0.0015	8.353E-08 0.0009	5.229E-08 0.0006					
Eu-152	3.622E-05 0.4028	3.178E-11 0.0000	1.091E-08 0.0001	1.869E-10 0.0000	1.235E-11 0.0000	8.423E-09 0.0001					
Gd-152	0.000E+00 0.0000	2.017E-22 0.0000	3.067E-21 0.0000	5.251E-23 0.0000	1.388E-24 0.0000	2.076E-21 0.0000					
Ni-63	0.000E+00 0.0000	3.199E-11 0.0000	3.787E-07 0.0042	4.719E-09 0.0001	4.369E-08 0.0005	1.478E-08 0.0002					
sr-90	6.458E-08 0.0007			1.238E-07 0.0014							
iiiiiii				1111111111 111111	1111111 11111111	1111111111 111111					
Total	8.023E-05 0.8921	9.320E-11 0.0000	9.128E-06 0.1015	2.652E-07 0.0029	1.976E-07 0.0022	1.128E-07 0.0013					

Attachme	ent6	Sheet No. 10 of 21
Originato	r: S. W. Clark	Date
Chk'd By	H. M. Sulloway	Date
Calc. No.	0100F-CA-V03	12 Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 11 Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation : 100-F-26-14_0B-BCL.RAD

> Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 7.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.					
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	4.032E-06 0.0448				
Cs-137	0.000E+00 0.0000	4.197E-05 0.4667				
Eu-152	0.000E+00 0.0000	3.624E-05 0.4030				
Gd-152	0.000E+00 0.0000	5.399E-21 0.0000				
Ni-63	0.000E+00 0.0000	4.419E-07 0.0049				
Sr-90	0.000E+00 0.0000	7.247E-06 0.0806				
ÍÍÍÍÍÍÍ			1111111111 111111	11111111111111111		1111111111 111111
Total	0.000E+00 0.0000	8.994E-05 1.0000				

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways 0

Total 8.023E-05 0.8921 9.320E-11 0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p)

and Fraction of Total Risk at t= 7.000E+00 years Water Independent Pathways (Inhalation excludes radon) n Radon Plant Meat Inhalation 3.987E-06 0.0443 3.996E-05 0.4443 5.900E-13 0.0000 9.651E-12 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 4.224E-08 0.0005 1.743E-06 0.0194 2.004E-09 0.0000 1.345E-07 0.0015 4.592E-10 0.0000 8.353E-08 0.0009 Co-60 9.890E-10 0.0000 Cs-137 5.229E-08 0.0006 Eu-152 3.622E-05 0.4028 3.178E-11 0.0000 0.000E+00 0.0000 1.091E-08 0.0001 1.869E-10 0.0000 1.235E-11 0.0000 8.423E-09 0.0001 3.199E-11 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 3.787E-07 0.0042 6.953E-06 0.0773 [[[[[[[[]]]]]]] Ni-63 0.000F+00 0.0000 4.719E-09 0.0001 1.238E-07 0.0014 4.369E-08 0.0005 6.992E-08 0.0008 1.478E-08 0.0002 6.458E-08 0.0007 1.919E-11 0.0000 3.637E-08 0.0004 iiiiiiii iiiiii 111111 111111111 111111 1111111 11111111 1111111 1111111 1111111 11111111 iffifff fiffffff

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 7.000E+00 years

9.128E-06 0.1015 2.652E-07 0.0029

0.000E+00 0.0000

Water Dependent Pathways

Radio-	Water	Fish	Radon	Plant	Meat AAAAAAAAAAAAAA	Milk AAAAAAAAAAAAAA	All pathways
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.032E-06 0.0448
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.197E-05 0.4667
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.624E-05 0.4030
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.419E-07 0.0049
sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.247E-06 0.0806
iiiiiii			fifffff fiffffff	1111111 11111111	1111111 111111111	111111111111111111	iiiiiiii iiiiiii
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.994E-05 1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment _	66	_ Sheet No. 11 of 21
Originator: S	S. W. Clark	Date
Chk'd By H.	M. Sulloway	Date
Calc. No. (0100F-CA-V0312	Rev. No. 0

1.976E-07 0.0022

1.128E-07 0.0013

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 12
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_0B-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.100E+01 years

	Water Independent Pathways (Inhalation w/o radon)										
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	AAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAA	KAKAKAKAKA	ÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	1.301E-03	1.495E+02	7.092E+00	1.625E+00	1.937E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.602E+02
Cs-137	3.424E-02	1.968E+03	1.518E+02	9.429E+01	5.098E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.265E+03
Eu-152	1.868E-02	6.710E+01	1.149E+00	7.591E-02	2.781E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	9.614E+01
Gd-152	4.968E-16	1.785E-12	3.056E-14	8.080E-16	7.398E-13	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.556E-12
Ni-63	2.004E-01	1.440E+04	1.794E+02	1.661E+03	2.984E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.654E+04
sr-90		3.106E+03	J. J. D. C.			0.000E+00					
iiiiiii	1111111111	1111111111	11111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111
* Sum of	all ingesti	ion pathways	s, i.e. wat	er independ	ent plant, i	meat, milk,	soil				
and wa	and water-dependent water, fish, plant, meat, milk pathways										
0											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.100E+01 years

0	Water Independent Pathways (Inhalation excludes radon)									
0	Ground	Inhalation	Plant	Meat	Milk	Soil				
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.				
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				
Co-60	2.354E-06 0.0305	3.484E-13 0.0000	2.494E-08 0.0003	1.183E-09 0.0000	2.711E-10 0.0000	5.839E-10 0.0000				
Cs-137	3.640E-05 0.4724	8.792E-12 0.0000	1.588E-06 0.0206	1.225E-07 0.0016	7.609E-08 0.0010	4.763E-08 0.0006				
Eu-152	2.941E-05 0.3817	2.580E-11 0.0000	8.863E-09 0.0001	1.518E-10 0.0000	1.003E-11 0.0000	6.840E-09 0.0001				
Gd-152	0.000E+00 0.0000	2.223E-22 0.0000	3.379E-21 0.0000	5.785E-23 0.0000	1.529E-24 0.0000	2.288E-21 0.0000				
Ni-63	0.000E+00 0.0000	3.103E-11 0.0000	3.674E-07 0.0048	4.578E-09 0.0001	4.238E-08 0.0006	1.433E-08 0.0002				
Sr-90	5.862E-08 0.0008	1.742E-11 0.0000	6.310E-06 0.0819	1.124E-07 0.0015	6.346E-08 0.0008	3.301E-08 0.0004				
fififit	1111111 11111111	1111111111111111		1111111 111111111	111111111111111	11111111111111111				
Total	6.823E-05 0.8855	8.339E-11 0.0000	8.300E-06 0.1077	2,408E-07 0,0031	1-822F-07 0-0024	1-024F-07 0-0013				

Attachment	6	Sheet No. 12	2 of 21
Originator: S. W	/. Clark	Date	
Chk'd By H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 13 Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.100E+01 years

Water Dependent Pathways

Water Radio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Fish XXXXXXXXXXXXXXXXXX	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Milk ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	All Pathways** ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAA AAAAAAA AAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.381E-06 0.0309
Cs-137 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.824E-05 0.4962
Eu-152 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.943E-05 0.3819
Gd-152 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.948E-21 0.0000
Ni-63 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.287E-07 0.0056
Sr-90 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.578E-06 0.0854
1111111 1111111111 111111	1111111 1111111	1111111 11111111	1111111 11111111	1111111 11111111	1111111 111111111
Total 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.705E-05 1.0000

 $\star\star$ Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways 0

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.100E+01 years

Water Independent Pathways (Inhalation excludes radon)

Nuclide risk fract. risk fract. risk fract. risk fract. risk fract. AAAAAAAAA AAAAAA 2.494E-08 0.0003 risk fract. XXXXXXXXX XXXXX risk fract. 2.354E-06 0.0305 Co-60 3.484E-13 0.0000 0.000E+00 0.0000 1.183E-09 0.0000 2.711E-10 0.0000 5.839E-10 0.0000 4.763E-08 0.0006 8.792E-12 0.0000 2.580E-11 0.0000 3.103E-11 0.0000 Cs-137 3.640E-05 0.4724 0.000E+00 0.0000 1.588E-06 0.0206 1.225E-07 0.0016 7.609E-08 0.0010 Eu-152 2.941E-05 0.3817 0.000E+00 0.0000 8.863E-09 0.0001 3.674E-07 0.0048 1.518E-10 0.0000 4.578E-09 0.0001 1.003E-11 0.0000 6.840E-09 0.0001 Ni-63 0.000E+00 0.0000 0.000E+00 0.0000 4.238E-08 0.0006 1.433E-08 0.0002 3.301E-08 0.0004 Sr-90 5.862E-08 0.0008 1.742E-11 0.0000 0.000E+00 0.0000 6.310E-06 0.0819 1.124E-07 0.0015 6.346E-08 0.0008 1111111111 111111 1111111 11111111 11111111111111111 1111111111111111 iiiiiii iiiiiii Total 6.823E-05 0.8855 8.339E-11 0.0000 0.000E+00 0.0000 8.300E-06 0.1077 2,408E-07 0,0031 1.822E-07 0.0024 1.024E-07 0.0013

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t = 1.100E+01 years

Water Dependent Pathways

Radio-	Water AAAAAAAAAAAAAAA	Fish AAAAAAAAAAAAAAA	Radon AAAAAAAAAAAAAAA	Plant AAAAAAAAAAAAAAAA	Meat ХХХХХХХХХХХХХХХ	Milk XXXXXXXXXXXXXX	All pathways
Nuclide XXXXXX	risk fract.	risk fract.	risk fract.	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.381E-06 0.0309
Cs-137 Eu-152	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	3.824E-05 0.4962 2.943E-05 0.3819
Ni-63 Sr-90	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	4.287E-07 0.0056 6.578E-06 0.0854
1111111			1111111 11111111	111111 11111111	1111111111111111	1111111 11111111	1111111 11111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.705E-05 1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachmen	t6	Sheet No. 13 of 21	
Originator:	S. W. Clark	Date	
Chk'd By _F	ł. M. Sulloway	Date	
Calc. No.	0100F-CA-V0312	Rev. No. 0	

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 14
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_OB-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 4.300E+01 years

	Water Independent Pathways (Inhalation w/o radon)										
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	AAAAAAAAAA	KAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	1.921E-05	2.209E+00	1.048E-01	2.401E-02	2.861E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.366E+00
Cs-137	1.623E-02	9.329E+02	7.197E+01	4.470E+01	2.417E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.074E+03
Eu-152	3.531E-03	1.269E+01	2.172E-01	1.435E-02	5.258E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.818E+01
Gd-152	1.018E-15	3.657E-12	6.262E-14	1.655E-15	1.516E-12	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.237E-12
Ni-63	1.572E-01	1.130E+04	1.407E+02	1.303E+03	2.341E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.297E+04
sr-90	3.318E-03	1.430E+03	2.546E+01	1.438E+01	4.941E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.475E+03
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	ffffffffff	1111111111	1111111111	1111111111	ffiffiffff	1111111111
* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil											
and wa	ter-depender	nt water, f	ish, plant,	meat, milk	pathways						
^											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.300E+01 years

0	Water Independent Pathways (Inhalation excludes radon)								
0	Ground	Inhalation	Plant	Meat	Milk	Soil			
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ			
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.			
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ			
Co-60	3.477E-08 0.0013	5.146E-15 0.0000	3.685E-10 0.0000	1.748E-11 0.0000	4.005E-12 0.0000	8.626E-12 0.0000			
Cs-137	1.726E-05 0.6370	4.168E-12 0.0000	7.529E-07 0.0278	5.809E-08 0.0021	3.608E-08 0.0013	2.258E-08 0.0008			
Eu-152	5.561E-06 0.2053	4.878E-12 0.0000	1.676E-09 0.0001	2.869E-11 0.0000	1.896E-12 0.0000	1.293E-09 0.0000			
Gd-152	0.000E+00 0.0000	2.942E-22 0.0000	4.472E-21 0.0000	7.657E-23 0.0000	2.024E-24 0.0000	3.028E-21 0.0000			
Ni-63	0.000E+00 0.0000	2.435E-11 0.0000	2.883E-07 0.0106	3.592E-09 0.0001	3.325E-08 0.0012	1.125E-08 0.0004			
Sr-90	2.699E-08 0.0010	8.021E-12 0.0000	2.906E-06 0.1072	5.173E-08 0.0019	2.922E-08 0.0011	1.520E-08 0.0006			
1111111	1111111111111111	1111111 11111111	1111111 11111111	111111111111111111	1111111 11111111	1111111 11111111			
Total	2.288E-05 0.8446	4.142E-11 0.0000	3.949E-06 0.1458	1.135E-07 0.0042	9.856E-08 0.0036	5.033E-08 0.0019			

Attachme	ent <u> </u>	Sheet No. <u>14</u> of 21
Originato	r: S.W. Clark	Date
Chk'd By	H. M. Sulloway	Date
Calc. No.	0100F-CA-V031	2 Rev. No. 0

T« Limit = 180 days 1RESRAD, Version 6.3 10/02/2007 15:05 Page 15 Intrisk: 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation : 100-F-26-14_OB-BCL.RAD

> Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.300E+01 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.				
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.517E-08 0.0013
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.813E-05 0.6691
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.564E-06 0.2054
Gd-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	7.873E-21 0.0000
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.364E-07 0.0124
sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.029E-06 0.1118
1111111	11111111111111111	111111111111111111		11111111111111111	1111111 111111111	1111111 11111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.709E-05 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways 0

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p)

and Fraction of Total Risk at t= 4.300E+01 years Water Independent Pathways (Inhalation excludes radon) Nuclide risk fract. risk fract. risk fract. AAAAAAAAA AAAAAA 3.685E-10 0.0000 risk AAAAAA AAAAAA AAAAAAAA AAAAA Co-60 3.477E-08 0.0013 Cs-137 1.726E-05 0.6370 5.146E-15 0.0000 0.000E+00 0.0000 1.748E-11 0.0000 4.005E-12 0.0000 8.626E-12 0.0000 2.258E-08 0.0008 4.168E-12 0.0000 4.878E-12 0.0000 0.000E+00 0.0000 7.529E-07 0.0278 5.809E-08 0.0021 3.608E-08 0.0013 Eu-152 5.561E-06 0.2053 0.000E+00 0.0000 1.676E-09 0.0001 2.883E-07 0.0106 2.869E-11 0.0000 3.592E-09 0.0001 1.896E-12 0.0000 1.293E-09 0.0000 Ni-63 0.000E+00 0.0000 2.435E-11 0.0000 0.000E+00 0.0000 3.325E-08 0.0012 1.125E-08 0.0004 Sr-90 2.699E-08 0.0010 8.021E-12 0.0000 fiffiffit fiffiff 2.906E-06 0.1072 0.000E+00 0.0000 5.173E-08 0.0019 1.520E-08 0.0006 2.922E-08 0.0011 111111111 111111 fffffffffffffffffff 1111111 111111111 11111111111111111 4.142E-11 0.0000 Total 2.288E-05 0.8446 0.000E+00 0.0000 1.135E-07 0.0042 3.949E-06 0.1458 9.856E-08 0.0036 5.033E-08 0.0019

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.300E+01 years

Water Dependent Pathways

Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Nuclide risk fract.	risk fract.	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract.	rīsk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	risk fract. ÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄ
Co-60 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.517E-08 0.0013
Cs-137 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.813E-05 0.6691
Eu-152 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.564E-06 0.2054
Ni-63 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.364E-07 0.0124
Sr-90 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	
111111 11111111 111111 Total 0.000E+00 0.0000	0.000E+00 0.0000 0.000E+00 0.0000	111111111 111111 0.000E+00 0.0000	111111111 111111 0.000E+00 0.0000	0.000E+00 0.0000 1111111111 111111 0.000E+00 0.0000	111111111 111111 0.000F+00 0.0000	3.029E-06 0.1118 iiiiiiiii iiiiii 2.709E-05 1.0000

***CNRSI(i.p.t) includes contribution from decay daughter radionuclides

Attachment _	6	_ Sheet No. 15	of 21
Originator: S	. W. Clark	Date	
Chk'd By H. I	M. Sulloway	Date	
Calc. No. 0	100F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 16 Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.350E+02 years

Water Independent Pathways (Inhalation w/o radon)							r Dependent				
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	KAAAAAAAAAA	, KAKKKKKKK	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	KAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ
Co-60	1.049E-10	1.206E-05	5.720E-07	1.311E-07	1.562E-07	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.292E-05
Cs-137	1.899E-03	1.092E+02	8.421E+00	5.230E+00	2.828E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.256E+02
Eu-152	2.938E-05	1.056E-01	1.808E-03	1.194E-04	4.375E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.512E-01
Gd-152	1.137E-15	4.085E-12	6.995E-14	1.849E-15	1.693E-12	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.850E-12
Ni-63	7.829E-02	5.624E+03	7.007E+01	6.488E+02	1.166E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	6.460E+03
sr-90	3.569E-04	1.538E+02	2.739E+00	1.547E+00	5.314E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.587E+02
1111111	1111111111	fffffffffff	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii	1111111111
* Sum of	all ingest	ion pathway:	s, i.e. wat	er independ	ent plant,	meat, milk,	soil				
and wa	ter-depender	nt water, f	ish, plant,	meat, milk	pathways						
0											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.350E+02 years

0	Water Independent Pathways (Inhalation excludes radon)									
0	Ground	Inhalation	Plant	Meat	Milk	Soil				
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.				
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				
Co-60	1.899E-13 0.0000	2.810E-20 0.0000	2.012E-15 0.0000	9.543E-17 0.0000	2.187E-17 0.0000	4.710E-17 0.0000				
Cs-137	2.019E-06 0.7590	4.877E-13 0.0000	8.809E-08 0.0331	6.796E-09 0.0026	4.221E-09 0.0016	2.642E-09 0.0010				
Eu-152	4.628E-08 0.0174	4.060E-14 0.0000	1.394E-11 0.0000	2.388E-13 0.0000	1.578E-14 0.0000	1.076E-11 0.0000				
Gd-152	0.000E+00 0.0000	3.105E-22 0.0000	4.720E-21 0.0000	8.081E-23 0.0000	2.136E-24 0.0000	3.196E-21 0.0000				
Ni-63	0.000E+00 0.0000	1.212E-11 0.0000	1.435E-07 0.0539	1.788E-09 0.0007	1.656E-08 0.0062	5.599E-09 0.0021				
Sr-90	2.903E-09 0.0011	8.628E-13 0.0000	3.126E-07 0.1175	5.565E-09 0.0021	3.143E-09 0.0012	1.635E-09 0.0006				
1111111	1111111 11111111		1111111 11111111	1111111 11111111	11111111111111111	11111111111111111				
Total	2.068E-06 0.7774	1.351E-11 0.0000	5.442E-07 0.2045	1.415E-08 0.0053	2.392E-08 0.0090	9.887E-09 0.0037				

Attachmen	t6	Sheet No. 16 of 21
Originator:	S. W. Clark	Date
Chk'd By _F	I. M. Sulloway	Date
Calc. No	0100F-CA-V0312	Rev. No. 0

T« Limit = 180 days 10/02/2007 15:05 Page 17 1RESRAD, Version 6.3 Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation : 100-F-26-14_OB-BCL.RAD

> Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.350E+02 years

Water Dependent Pathways

Water	Fish	Plant	Meat	Milk	All Pathways**
Radio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAA AAAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.920E-13 0.0000
Cs-137 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.121E-06 0.7972
Eu-152 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.630E-08 0.0174
Gd-152 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.309E-21 0.0000
Ni-63 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.675E-07 0.0629
Sr-90 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.258E-07 0.1225
			1111111111 111111	11111111111111111	
Total 0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.661E-06 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p)

isk CNRSI(i,p,t)*** for initially EASSELL STATE and Fraction of Total Risk at t= 1.350E+02 years Water Independent Pathways (Inhalation excludes radon)

- Radon Plant Meat 9.543E-17 0.0000 6.796E-09 0.0026 2.187E-17 0.0000 4.221E-09 0.0016 4.710E-17 0.0000 Cs-137 2.019E-06 0.7590 4.877E-13 0.0000 0.000E+00 0.0000 8.809E-08 0.0331 2.642E-09 0.0010 Eu-152 4.628E-08 0.0174 Ni-63 0.000E+00 0.0000 4.060E-14 0.0000 1.212E-11 0.0000 0.000E+00 0.0000 0.000E+00 0.0000 1.394E-11 0.0000 2.388E-13 0.0000 1.788E-09 0.0007 1.578E-14 0.0000 1.076E-11 0.0000 1.435E-07 0.0539 1.656E-08 0.0062 5.599E-09 0.0021 Sr-90 2.903E-09 0.0011 3.126E-07 0.1175 8.628E-13 0.0000 0.000E+00 0.0000 5.565E-09 0.0021 143E-09 0.0012 1.635E-09 0.0006 1111111111111111 1111111111111111 1111111 11111111 1111111 11111111 1.351E-11 0.0000 2.068E-06 0.7774 0.000E+00 0.0000 Total 5.442E-07 0.2045 1.415E-08 0.0053 2.392E-08 0.0090 9.887E-09 0.0037

> Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.350E+02 years

Water Dependent Pathways

Radio-	Water AAAAAAAAAAAAAA	Fish AAAAAAAAAAAAAAAA	Radon XXXXXXXXXXXXXXXXX	Plant AAAAAAAAAAAAAAA	Meat ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Milk AAAAAAAAAAAAA	All pathways
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	***************************************	AAAAAAA AAAAA	AAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.920E-13 0.0000
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.121E-06 0.7972
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.630E-08 0.0174
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1.675E-07 0.0629
Sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.258E-07 0.1225
1111111					11111111111111111	1111111 111111111	iiiiiii iiiiiiiiiii
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.661E-06 1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachmer	nt6	_ Sheet No. <u>17</u> of 21
Originator:	S. W. Clark	Date
Chk'd By _	H. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 18
Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_OB-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 3.000E+02 years

	Water Independent Pathways (Inhalation w/o radon)										
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	3.820E-20	4.390E-15	2.083E-16	4.772E-17	5.688E-17	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.703E-15
Cs-137	4.049E-05	2.327E+00	1.795E-01	1.115E-01	6.030E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.679E+00
Eu-152	5.471E-09	1.965E-05	3.365E-07	2.224E-08	8.146E-06	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.816E-05
Gd-152	1.136E-15	4.080E-12	6.986E-14	1.846E-15	1.691E-12	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.843E-12
Ni-63	2.241E-02	1.610E+03	2.006E+01	1.857E+02	3.337E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.849E+03
sr-90	6.544E-06	2.821E+00	5.022E-02	2.837E-02	9.745E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.909E+00
fffffff			1111111111					1111111111	1111111111	ifififififi	ififififff
	* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil										
and wa	ter-depender	nt water, f	ish, plant,	meat, milk	pathways						
0											

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

	and reaction of lotal kisk at t= 5.000E+02 years									
0	Water Independent Pathways (Inhalation excludes radon)									
0	Ground	Inhalation	Plant	Meat	Milk	Soil				
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.				
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ				
Co-60	6.913E-23 0.0000	3.419E-30 0.0000	7.325E-25 0.0000	3.475E-26 0.0000	7.962E-27 0.0000	1.715E-26 0.0000				
Cs-137	4.305E-08 0.4342	1.040E-14 0.0000	1.878E-09 0.0189	1.449E-10 0.0015	9.000E-11 0.0009	5.634E-11 0.0006				
Eu-152	8.616E-12 0.0001	7.558E-18 0.0000	2.596E-15 0.0000	4.445E-17 0.0000	2.937E-18 0.0000	2.004E-15 0.0000				
Gd-152	0.000E+00 0.0000	3.100E-22 0.0000	4.711E-21 0.0000	8.067E-23 0.0000	2.132E-24 0.0000	3.190E-21 0.0000				
Ni-63	0.000E+00 0.0000	3.470E-12 0.0000	4.109E-08 0.4144	5.119E-10 0.0052	4.740E-09 0.0478	1.603E-09 0.0162				
Sr-90	5.324E-11 0.0005	1.582E-14 0.0000	5.731E-09 0.0578	1.020E-10 0.0010	5.764E-11 0.0006	2.998E-11 0.0003				
1111111		1111111111 111111		1111111111111111	1111111111111111	111111 11111111				
Total	4.311E-08 0.4349	3.496E-12 0.0000	4.870E-08 0.4911	7.588E-10 0.0077	4.887E-09 0.0493	1.689E-09 0.0170				

Attachment	6	_ Sheet No. 18	B of 21
Originator: S.	W. Clark	Date	
Chk'd By H. M	. Sulloway	Date	
Calc. No. 01	00F-CA-V0312	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 19
Intrisk: 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAA AAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΑΑΑΑΑΑ ΑΑΑΑΑΑ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	6.992E-23 0.0000
Cs-137	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.522E-08 0.4561
Eu-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.620E-12 0.0001
Gd-152	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.294E-21 0.0000
Ni-63	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	4.794E-08 0.4836
Sr-90	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.974E-09 0.0603
fffffff			11111111111111111		11111111111111111	1111111111111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	9.915E-08 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

Water Independent Pathways (Inhalation excludes radon) Inhalation Ground Radon Plant Soil Nuclide risk fract. risk fract. risk fract. ÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄ risk fract. Co-60 6.913E-23 0.0000 Cs-137 4.305E-08 0.4342 3.419E-30 0.0000 0.000E+00 0.0000 1.040E-14 0.0000 0.000E+00 0.0000 7.325E-25 0.0000 3.475E-26 0.0000 7.962E-27 0.0000 1.715E-26 0.0000 1.878E-09 0.0189 2.596E-15 0.0000 1.449E-10 0.0015 4.445E-17 0.0000 9.000E-11 0.0009 2.937E-18 0.0000 5.634E-11 0.0006 Eu-152 8.616E-12 0.0001 7.558E-18 0.0000 0.000E+00 0.0000 2.004E-15 0.0000 Ni-63 0.000E+00 0.0000 4.109E-08 0.4144 5.119E-10 0.0052 4.740E-09 0.0478 1.603E-09 0.0162 sr-90 5.324E-11 0.0005
iiiiiii iiiiiiiii iiiiii 5.731E-09 0.0578 fiffiffiff fiffif 1.020E-10 0.0010 5.764E-11 0.0006 2.998E-11 0.0003 Total 4.311E-08 0.4349 3.496E-12 0.0000 0.000E+00 0.0000 4.870E-08 0.4911 7.588E-10 0.0077 4.887E-09 0.0493 1.689E-09 0.0170

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide	risk fract.						
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000	6.992E-23 0.0000					
Cs-137	0.000E+00 0.0000	4.522E-08 0.4561					
Eu-152	0.000E+00 0.0000	8.620E-12 0.0001					
Ni-63	0.000E+00 0.0000	4.794E-08 0.4836					
sr-90	0.000E+00 0.0000	5.974E-09 0.0603					
fififi			11111111111111111		1111111111111111	111111111111111111111111111111111111111	1111111 11111111
Total	0.000E+00 0.0000	9.915E-08 1.0000					

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment	6	Sheet No. 19 of 21
Originator: S. W.	l. Clark	Date
Chk'd By H. M.	Sulloway	Date
Calc. No010	0F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 20 Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As pCi/yr at t= 1.000E+03 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ											
Radio-	ÄÄÄÄÄÄÄÄÄÄÄ	AÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	KAAAAAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	(AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	Total
Nuclide	Inhalation		Meat	Milk	Soil	Water	Fish	Plant	Meat	Milk	Ingestion*
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Cs-137	3.292E-12	1.892E-07	1.460E-08	9.067E-09	4.902E-09	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.178E-07
Eu-152	8.194E-25	2.944E-21	5.041E-23	3.331E-24	1.220E-21	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.218E-21
Gd-152	1.125E-15	4.043E-12	6.922E-14	1.829E-15	1.675E-12	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.789E-12
Ni-63	1.111E-04	7.984E+00	9.947E-02	9.210E-01	1.655E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	9.170E+00
sr-90	2.806E-13					0.000E+00					
1111111	1111111111	iiiiiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	11111111111	1111111111	1111111111	1111111111
* Sum of	all ingest	ion pathway:	s, i.e. wate	er independe	ent plant, r	neat, milk,	soil				
and wa	and water-dependent water, fish, plant, meat, milk pathways										

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years

0		Wate	r Independent Path	ways (Inhalation e	xcludes radon)	
0	Ground	Inhalation	Plant		Milk	Soil
Radio-	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide		risk fract.				
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000		0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
Cs-137	3.500E-15 0.0000	8.454E-22 0.0000	1.527E-16 0.0000	1.178E-17 0.0000	7.317E-18 0.0000	4.580E-18 0.0000
Eu-152	1.291E-27 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
Gd-152	0.000E+00 0.0000	3.071E-22 0.0000	4.668E-21 0.0000	7.993E-23 0.0000	2.113E-24 0.0000	3.161E-21 0.0000
Ni-63	0.000E+00 0.0000		2.037E-10 0.8569	2.538E-12 0.0107	2.350E-11 0.0989	7.949E-12 0.0334
Sr-90	2.283E-18 0.0000	6.785E-22 0.0000	2.458E-16 0.0000	4.376E-18 0.0000	2.472E-18 0.0000	1.286E-18 0.0000
111111					1111111111111111	11111111111111111
Total	3.503E-15 0.0000	1.721E-14 0.0001	2.037E-10 0.8569	2.538E-12 0.0107	2.350E-11 0.0989	7.949E-12 0.0334

Attachme	nt6	Sheet No	. 20 of 21
Originator	: S. W. Clark	Date	
Chk'd By_	H. M. Sulloway	Date	
Calc. No.	0100F-CA-V0	312 Rev. No	0. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 21 Intrisk : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_08-BCL.RAD

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years

Water Dependent Pathways

Radio- Ä	Water NAAAAAAAAAAA	Fish	Plant ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Meat ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Milk	All Pathways**
					AAAAAAAAAAAAAA	AAAAAAAAAAAAAAA
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ Ä	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60 0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
Cs-137 0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	3.677E-15 0.0000
Eu-152 0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	1,291E-27 0,0000
Gd-152 0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	8.218E-21 0.0000
Ni-63 0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.378E-10 1.0000
Sr-90 0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.562E-16 0.0000
ililili i			1111111 111111111	1111111 11111111		1111111 11111111
Total 0	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	2.378E-10 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways 0

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p)
and Fraction of Total Risk at t= 1.000E+03 years
Water Independent Pathways (Inhalation excludes radon)
und Inhalation Radon Plant Meat Milk

U		wate	i independent rath	ways (Illinatation e	Actudes Fadon)		
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide	risk fract.						
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000						
Cs-137	3.500E-15 0.0000	8.454E-22 0.0000	0.000E+00 0.0000	1.527E-16 0.0000	1.178E-17 0.0000	7.317E-18 0.0000	4.580E-18 0.0000
Eu-152	1.291E-27 0.0000	3.071E-22 0.0000	0.000E+00 0.0000	4.668E-21 0.0000	7.993E-23 0.0000	2.113E-24 0.0000	3.161E-21 0.0000
Ni-63	0.000E+00 0.0000	1.721E-14 0.0001	0.000E+00 0.0000	2.037E-10 0.8569	2.538E-12 0.0107	2.350E-11 0.0989	7.949E-12 0.0334
	2.283E-18 0.0000				4.376E-18 0.0000		1.286E-18 0.0000
iiiiiii	1111111 11111111	11111111111111111	1111111111111111	1111111 11111111	1111111111111111	1111111 11111111	1111111111111111
Total	3.503E-15 0.0000	1.721E-14 0.0001	0.000E+00 0.0000	2.037E-10 0.8569	2.538E-12 0.0107	2.350E-11 0.0989	7.949E-12 0.0334
Λ							

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ						
Nuclide	risk fract.						
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΑΚΚΚΚ ΚΚΚΚΚΚΚΚ	AAAAAA AAAAAA	AAAAAA AAAAAA	ΑΑΑΑΑ ΑΑΑΑΑΑ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00 0.0000						
Cs-137	0.000E+00 0.0000	3.677E-15 0.0000					
Eu-152	0.000E+00 0.0000	8.218E-21 0.0000					
Ni-63	0.000E+00 0.0000	2.378E-10 1.0000					
Sr-90	0.000E+00 0.0000	2.562E-16 0.0000					
1111111	1111111 11111111	1111111 11111111	1111111111111111111	11111111111111111	1111111 11111111	1111111 11111111	111111 111111111
Total	0.000E+00 0.0000	2.378E-10 1.0000					

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment _	6	_ Sheet No. 21 of 21
Originator: S.	. W. Clark	Date
Chk'd By H. N	M. Sulloway	Date
Calc No 0	100F-CA-V0312	Rev No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 1 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Concentration of radionuclides in different media Time= 0.000E+00 Time= 1.000E+00 Time= 3.000E+00 Time= 7.000E+00 Time= 7.000E+01 Time= 4.300E+01 Time= 1.350E+02 Time= 3.000E+02 Time= 1.000E+03

Attachment 7 Sheet No. 1 of 10 Originator: S. W. Clark Date (a/3/67) Chk'd By H. M. Sulloway M. Date 10/3/07 Calc. No. 0100F-CA-V0312 Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 2 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_OB-BCL.RAD

Concentration of radionuclides in environmental media at t = 0.000E+00 years

	Contaminat-	Surface	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	1.790E-01	1.790E-01	1.724E-06	0.000E+00	0.000E+00	
Cs-137	1.430E+00	1.430E+00	1.378E-05	0.000E+00	0.000E+00	
Eu-152	1.070E+00	1.070E+00	1.031E-05	0.000E+00	0.000E+00	
Gd-152	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
Ni-63	7.040E+00	7.040E+00	6.782E-05	0.000E+00	0.000E+00	
Sr-90	3.040E-01	3.040E-01	2.929E-06	0.000E+00	0.000E+00	
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	

^{*}The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 0.000E+00 years*

	Drinking Water	Nonleafy Vegetable	Leafy Vegetable	Fodder Meat	Fodder Milk	Meat	Milk	Fish	Crustacea
Radio-	ÄÄÄÄÄÄÄÄÄÄ			AAAAAAAAA		ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	1.432E+01	1.432E+01	1.432E+01	1.432E+01	2.127E+01	1.754E+00	0.000E+00	0.000E+00
Cs-137	0.000E+00	5.720E+01	5.720E+01	5.720E+01	5.720E+01	1.381E+02	3.089E+01	0.000E+00	0.000E+00
Eu-152	0.000E+00	2.676E+00	2.678E+00	2.678E+00	2.678E+00	1.434E+00	3.411E-02	0.000E+00	0.000E+00
Gd-152	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Ni-63	0.000E+00	3.520E+02	3.520E+02	3.520E+02	3.520E+02	1.373E+02	4.576E+02	0.000E+00	0.000E+00
Sr-90	0.000E+00	9.120E+01	9.120E+01	9.120E+01	9.120E+01	5.083E+01	1.034E+01	0.000E+00	0.000E+00
iiiiiii	1111111111	1111111111	iiiiiiiiii	1111111111	1111111111	ffifffffff	1111111111	1111111111	1111111111
*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.									
For liv	estock fodd	er, consump	tion time i	s t minus m	eat or milk	storage tip	ne.		

Attachm	nent	7	Sheet	t No.	2 of 10
Originato	r: S. W. Clark		Date		
Chk'd By	H. M. Sullowa	ΒV	 Date		
Calc No	0100F-CA-	V0312	Ray	No	Λ

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 3 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Concentration of radionuclides in environmental media at t = 1.000E+00 years

Contaminat- Surface Air Par-Well Surface ted Zone Soil* ticulate Water Water Radio-Nuclide pCi/g pCi/g pCi/m**3 pCi/L pCi/L 1.569E-01 1.569E-01 1.512E-06 0.000E+00 0.000E+00 1.397E+00 1.397E+00 1.346E-05 0.000E+00 0.000E+00 Co-60 Cs-137 Eu-152 Gd-152 1.016E+00 1.868E-15 1.016E+00 9.786E-06 1.868E-15 1.800E-20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 Ni-63 6.987E+00 6.987E+00 6.731E-05 0.000E+00 0.000E+00 Sr-90 2.967E-01 2.967E-01 2.859E-06 0.000E+00 0.000E+00

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 1.000E+00 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea	
	Water	Vegetable		Meat	Milk					
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	0.000E+00	1.255E+01	1.255E+01	1.264E+01	1.256E+01	1.864E+01	1.538E+00	0.000E+00	0.000E+00	
Cs-137	0.000E+00	5.588E+01	5.588E+01	5.596E+01	5.589E+01	1.350E+02	3.018E+01	0.000E+00	0.000E+00	
Eu-152	0.000E+00	2.540E+00	2.542E+00	2.549E+00	2.543E+00	1.361E+00	3.238E-02	0.000E+00	0.000E+00	
Gd-152	0.000E+00	4.672E-15	4.675E-15	4.426E-15	4.663E-15	2.504E-15	2.392E-17	0.000E+00	0.000E+00	
Ni-63	0.000E+00	3.494E+02	3.494E+02	3.495E+02	3.494E+02	1.363E+02	4.542E+02	0.000E+00	0.000E+00	
sr-90	0.000E+00	8.902E+01	8.902E+01	8.914E+01	8.903E+01	4.962E+01	1.009E+01	0.000E+00	0.000E+00	
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	
*Concent	rations are	at consump	tion time a	nd include i	radioactive	decay and	ingrowth du	ring storag	e time.	
For liv	For livestock fodder, consumption time is t minus meat or milk storage time.									

Attachm	ent7	Sheet No. 3 of 10
Originator	: S. W. Clark	Date
Chk'd By_	H. M. Sulloway	Date
Calc. No.	0100F-CA-V0312	Rev. No. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 4 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Concentration of radionuclides in environmental media at t = 3.000E+00 years

	Contaminat	 Surface 	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	1.206E-01	1.206E-01	1.162E-06	0.000E+00	0.000E+00	
Cs-137	1.333E+00	1.333E+00	1.285E-05	0.000E+00	0.000E+00	
Eu-152	9.153E-01	9.153E-01	8.818E-06	0.000E+00	0.000E+00	
Gd-152	5.325E-15	5.325E-15	5.130E-20	0.000E+00	0.000E+00	
Ni-63	6.882E+00	6.882E+00	6.630E-05	0.000E+00	0.000E+00	
Sr-90	2.827E-01	2.827E-01	2.723E-06	0.000E+00	0.000E+00	
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 3.000E+00 years*

	Drinking Water	Nonleafy Vegetable	Leafy Vegetable	Fodder Meat	Fodder Milk	Meat	Milk	Fish	Crustacea
Radio-	AAAAAAAA		AAAAAAAAA			AAAAAAAAA	AAAAAAAAA	*****	AAAAAAAAA
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	9.646E+00	9.646E+00	9.716E+00	9.650E+00	1.432E+01	1.182E+00	0.000E+00	0.000E+00
Cs-137	0.000E+00	5.334E+01	5.334E+01	5.341E+01	5.334E+01	1.288E+02	2.880E+01	0.000E+00	0.000E+00
Eu-152	0.000E+00	2.289E+00	2.291E+00	2.297E+00	2.291E+00	1.227E+00	2.918E-02	0.000E+00	0.000E+00
Gd-152	0.000E+00	1.332E-14	1.333E-14	1.310E-14	1.332E-14	7.138E-15	6.800E-17	0.000E+00	0.000E+00
Ni-63	0.000E+00	3.441E+02	3.441E+02	3.443E+02	3.441E+02	1.342E+02	4.473E+02	0.000E+00	0.000E+00
Sr-90	0.000E+00	8.481E+01	8.481E+01	8.492E+01	8.482E+01	4.727E+01	9.612E+00	0.000E+00	0.000E+00
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii
*Concent	*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.								
For liv	estack fodd	er consumn	tion time is	e t minus m	eat or milk	storage tir	no.		

Attachme	ent7	Sheet N	lo. 4 of 10
Originator	: S. W. Clark	Date	
Chk'd By _	H. M. Sulloway	Date	
Calc. No.	0100F-CA-V031	2 Rev. N	0. 0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 5 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Concentration of radionuclides in environmental media at t = 7.000E+00 years

			4 7 m B			
	Contaminat-	Surface	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	7.119E-02	7.119E-02	6.858E-07	0.000E+00	0.000E+00	
Cs-137	1.215E+00	1.215E+00	1.170E-05	0.000E+00	0.000E+00	
Eu-152	7.433E-01	7.433E-01	7.161E-06	0.000E+00	0.000E+00	
Gd-152	1.125E-14	1.125E-14	1.084E-19	0.000E+00	0.000E+00	
Ni-63	6.676E+00	6.676E+00	6.432E-05	0.000E+00	0.000E+00	
Sr-90	2.566E-01	2.566E-01	2.472E-06	0.000E+00	0.000E+00	
1111111	1111111111	1111111111	1111111111	fifififfff	ffffffffff	

^{*}The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 7.000E+00 years*

	Drinking Water	Nonleafy Vegetable	Leafy Vegetable	Fodder Meat	Fodder Milk	Meat	Milk	Fish	Crustacea
Radio-	AAAAAAAA					ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAAA
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	5.695E+00	5.695E+00	5.737E+00	5.698E+00	8.458E+00	6.977E-01	0.000E+00	0.000E+00
Cs-137	0.000E+00	4.859E+01	4.859E+01	4.865E+01	4.859E+01	1.173E+02	2.624E+01	0.000E+00	0.000E+00
Eu-152	0.000E+00	1.859E+00	1.860E+00	1.866E+00	1.860E+00	9.962E-01	2.370E-02	0.000E+00	0.000E+00
Gd-152	0.000E+00	2.812E-14	2.815E-14	2.797E-14	2.814E-14	1.508E-14	1.435E-16	0.000E+00	0.000E+00
Ni-63	0.000E+00	3.338E+02	3.338E+02	3.340E+02	3.338E+02	1.302E+02	4.340E+02	0.000E+00	0.000E+00
Sr-90	0.000E+00	7.697E+01	7.697E+01	7.708E+01	7.698E+01	4.290E+01	8.724E+00	0.000E+00	0.000E+00
1111111	1111111111	1111111111	1111111111	1111111111	iiiiiiiiii	1111111111	1111111111	1111111111	1111111111
*Concent	rations are	at consump	tion time a	nd include :	radioactive	decay and	ingrowth du	ring storage	e time.
For liv	estock fodd	er. consump	tion time is	s t minus m	eat or milk	storage tir	ne.		

Attachm	ent	7		Sheet I	No.	5 of 10	
Originator	r: <u>S. W.</u>	Clark		_Date _			
Chk'd By_	H. M. St	ulloway		Date			
Calc. No.	0100	F-CA-V0312	2	Rev. N	lo.	0	

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 6
Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation
File : 100-F-26-14_OB-BCL.RAD

Concentration of radionuclides in environmental media at t = 1.100E+01 years

	Contaminat-	Surface	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	4.203E-02	4.203E-02	4.050E-07	0.000E+00	0.000E+00	
Cs-137	1.106E+00	1.106E+00	1.066E-05	0.000E+00	0.000E+00	
Eu-152	6.035E-01	6.035E-01	5.815E-06	0.000E+00	0.000E+00	
Gd-152	1.606E-14	1.606E-14	1.547E-19	0.000E+00	0.000E+00	
Ni-63	6.477E+00	6.477E+00	6.240E-05	0.000E+00	0.000E+00	
sr-90	2.329E-01	2.329E-01	2.243E-06	0.000E+00	0.000E+00	
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 1.100E+01 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water	Vegetable		Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	3.363E+00	3.363E+00	3.387E+00	3.364E+00	4.994E+00	4.120E-01	0.000E+00	0.000E+00
Cs-137	0.000E+00	4.426E+01	4.426E+01	4.432E+01	4.426E+01	1.069E+02	2.390E+01	0.000E+00	0.000E+00
Eu-152	0.000E+00	1.509E+00	1.510E+00	1.515E+00	1.511E+00	8.090E-01	1.924E-02	0.000E+00	0.000E+00
Gd-152	0.000E+00	4.015E-14	4.018E-14	4.004E-14	4.018E-14	2.152E-14	2.048E-16	0.000E+00	0.000E+00
Ni-63	0.000E+00	3.238E+02	3.239E+02	3.240E+02	3.239E+02	1.263E+02	4.210E+02	0.000E+00	0.000E+00
Sr-90	0.000E+00	6.986E+01	6.986E+01	6.996E+01	6.987E+01	3.894E+01	7.918E+00	0.000E+00	0.000E+00
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111
*Concent	rations are	at consump	tion time a	nd include	radioactive	decay and	ingrowth du	ring storage	e time.
For livestock fodder, consumption time is t minus meat or milk storage time.									

Attachm	ent	7		Sheet	No. 6	of 10
Originator	: S.W.	Clark		Date		-
Chk'd By _	H. M. S	ulloway		Date		
Calc. No.	0100	F-CA-V031:	2	Rev.	No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 7 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Concentration of radionuclides in environmental media at t = 4.300E+01 years

	Contaminat-	Surface	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	6.209E-04	6.209E-04	5.982E-09	0.000E+00	0.000E+00	
Cs-137	5.246E-01	5.246E-01	5.054E-06	0.000E+00	0.000E+00	
Eu-152	1.141E-01	1.141E-01	1.099E-06	0.000E+00	0.000E+00	
Gd-152	3.289E-14	3.289E-14	3.169E-19	0.000E+00	0.000E+00	
Ni-63	5.082E+00	5.082E+00	4.896E-05	0.000E+00	0.000E+00	
Sr-90	1.072E-01	1.072E-01	1.033E-06	0.000E+00	0.000E+00	
1111111	1111111111	1111111111	1111111111	1111111111	fififififf	

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 4.300E+01 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water		Vegetable	Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	4.968E-02	4.968E-02	5.004E-02	4.970E-02	7.377E-02	6.086E-03	0.000E+00	0.000E+00
Cs-137	0.000E+00	2.098E+01	2.098E+01	2.101E+01	2.099E+01	5.068E+01	1.133E+01	0.000E+00	0.000E+00
Eu-152	0.000E+00	2.853E-01	2.856E-01	2.864E-01	2.856E-01	1.529E-01	3.638E-03	0.000E+00	0.000E+00
Gd-152	0.000E+00	8.225E-14	8.232E-14	8.230E-14	8.232E-14	4.409E-14	4.195E-16	0.000E+00	0.000E+00
Ni-63	0.000E+00	2.541E+02	2.541E+02	2.542E+02	2.541E+02	9.910E+01	3.303E+02	0.000E+00	0.000E+00
Sr-90	0.000E+00	3.217E+01	3.217E+01	3.221E+01	3.217E+01	1.793E+01	3.646E+00	0.000E+00	0.000E+00
1111111			ffffffffff						
*Concent	rations are	at consump	tion time a	nd include i	radioactive	decay and	ingrowth du	ring storage	e time.
For livestock fooder, consumption time is t minus meat or milk storage time.									

Attachme	ent7		Sheet No. 7	of 10
Originator	S. W. Clark		Date	
Chk'd By	H. M. Sulloway		Date	
Calc. No.	0100F-CA-V03	12	Rev. No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 8 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Concentration of radionuclides in environmental media at t = 1.350E+02 years

	Contaminat-	Surface	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	3.390E-09	3.390E-09	3.266E-14	0.000E+00	0.000E+00	
Cs-137	6.138E-02	6.138E-02	5.913E-07	0.000E+00	0.000E+00	
Eu-152	9.495E-04	9.495E-04	9.148E-09	0.000E+00	0.000E+00	
Gd-152	3.675E-14	3.675E-14	3.540E-19	0.000E+00	0.000E+00	
Ni-63	2.530E+00	2.530E+00	2.437E-05	0.000E+00	0.000E+00	
sr-90	1.153E-02	1.153E-02	1.111E-07	0.000E+00	0.000E+00	
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	
*** C	face Coil is	1.		1		

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 1.350E+02 years*

	Drinking	Nonleafy	Leafy	Fodder	Fodder	Meat	Milk	Fish	Crustacea
	Water	Vegetable		Meat	Milk				
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	2.712E-07	2.712E-07	2.732E-07	2.713E-07	4.028E-07	3.323E-08	0.000E+00	0.000E+00
Cs-137	0.000E+00	2.455E+00	2.455E+00	2.458E+00	2.455E+00	5.929E+00	1.326E+00	0.000E+00	0.000E+00
Eu-152	0.000E+00	2.374E-03	2.376E-03	2.383E-03	2.377E-03	1.273E-03	3.027E-05	0.000E+00	0.000E+00
Gd-152	0.000E+00	9.188E-14	9.196E-14	9.197E-14	9.197E-14	4.925E-14	4.686E-16	0.000E+00	0.000E+00
Ni-63	0.000E+00	1.265E+02	1.265E+02	1.266E+02	1.265E+02	4.934E+01	1.645E+02	0.000E+00	0.000E+00
Sr-90	0.000E+00	3.460E+00	3.460E+00	3.465E+00	3.460E+00	1.929E+00	3.922E-01	0.000E+00	0.000E+00
1111111			1111111111						
*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.									e time.
For liv	estock fodd	er, consump	tion time is	s t minus m	eat or milk	storage tir	ne.		

Attachm	ent	7		Sheet	No. 8	of 10
Originato	r: S.W.	Clark		Date	_	
Chk'd By	H. M. St	ılloway		Date		
Calc. No.	0100F	-CA-V0312	2	Rev. N	lo.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 9 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Concentration of radionuclides in environmental media at t = 3.000E+02 years

	Contaminat-	 Surface 	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	
Co-60	1.234E-18	1.234E-18	1.189E-23	0.000E+00	0.000E+00	
Cs-137	1.309E-03	1.309E-03	1.261E-08	0.000E+00	0.000E+00	
Eu-152	1.768E-07	1.768E-07	1.703E-12	0.000E+00	0.000E+00	
Gd-152	3.670E-14	3.670E-14	3.536E-19	0.000E+00	0.000E+00	
Ni-63	7.242E-01	7.242E-01	6.977E-06	0.000E+00	0.000E+00	
Sr-90	2.115E-04	2.115E-04	2.037E-09	0.000E+00	0.000E+00	
1111111	11111111111	11111111111	1111111111	1111111111	1111111111	

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 3.000E+02 years*

	Drinking Water	Nonleafy Vegetable	Leafy Vegetable	Fodder Meat	Fodder Milk	Meat	Milk	Fish	Crustacea
Radio-	AAAAAAAAA		ÄÄÄÄÄÄÄÄÄÄÄ			********	*****	2222222222	********
	AAAAAAAAA	АААААААА	AAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA
Co-60	0.000E+00	9.875E-17	9.875E-17	9.947E-17	9.879E-17	1.467E-16	1.210E-17	0.000E+00	0.000E+00
Cs-137	0.000E+00	5.235E-02	5.235E-02	5.242E-02	5.235E-02	1.264E-01	2.827E-02	0.000E+00	0.000E+00
Eu-152	0.000E+00	4.421E-07	4.424E-07	4.437E-07	4.425E-07	2.370E-07	5.636E-09	0.000E+00	0.000E+00
Gd-152	0.000E+00	9.177E-14	9.184E-14	9.185E-14	9.185E-14	4.919E-14	4.680E-16	0.000E+00	0.000E+00
Ni-63	0.000E+00	3.621E+01	3.621E+01	3.623E+01	3.622E+01	1.412E+01	4.708E+01	0.000E+00	0.000E+00
Sr-90	0.000E+00	6.345E-02	6.345E-02	6.353E-02	6.345E-02	3.536E-02	7.191E-03	0.000E+00	0.000E+00
1111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111	1111111111
	rations are							ring storag	e time.
For livestock fodder, consumption time is t minus meat or milk storage time.									

Attachm	nent	7		Sheet	No.	9 of 10
Originato	r: <u>S. W</u>	. Clark		_Date		
Chk'd By	H. M. S	Sulloway		Date		
Calc. No.	0100	F-CA-V031	2	Rev.	No.	0

1RESRAD, Version 6.3 T« Limit = 180 days 10/02/2007 15:05 Page 10 Concent : 100-F-26:14 Overburden/Below Cleanup Level Stockpile RESRAD Calculation File : 100-F-26-14_0B-BCL.RAD

Concentration of radionuclides in environmental media at t = 1.000E+03 years

	Contaminat-	· Surface	Air Par-	Well	Surface	
	ted Zone	Soil*	ticulate	Water	Water	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Nuclide	pCi/g	pCi/g	pCi/m**3	pCi/L	pCi/L	
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	
Co-60	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
Cs-137	1.064E-10	1.064E-10	1.025E-15	0.000E+00	0.000E+00	
Eu-152	2.648E-23	2.648E-23	2.551E-28	0.000E+00	0.000E+00	
Gd-152	3.636E-14	3.636E-14	3.503E-19	0.000E+00	0.000E+00	
Ni-63	3.592E-03	3.592E-03	3.460E-08	0.000E+00	0.000E+00	
Sr-90	9.069E-12	9.069E-12	8.737E-17	0.000E+00	0.000E+00	
iiiiiii	1111111111	1111111111	1111111111	1111111111	1111111111	

*The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active.

Concentration of radionuclides in foodstuff media at t = 1.000E+03 years*

	Drinking Water	Nonleafy Vegetable	Leafy Vegetable	Fodder	Fodder	Meat	Milk	Fish	Crustacea
B 12 .				Meat	Milk	*****	*********		
Radio-	ÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA
Nuclide	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/kg	pCi/kg
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ
Co-60	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Cs-137	0.000E+00	4.256E-09	4.256E-09	4.262E-09	4.256E-09	1.028E-08	2.298E-09	0.000E+00	0.000E+00
Eu-152	0.000E+00	6.621E-23	6.627E-23	6.646E-23	6.628E-23	3.549E-23	8.443E-25	0.000E+00	0.000E+00
Gd-152	0.000E+00	9.092E-14	9.100E-14	9.101E-14	9.101E-14	4.874E-14	4.637E-16	0.000E+00	0.000E+00
Ni-63	0.000E+00	1.796E-01	1.796E-01	1.797E-01	1.796E-01	7.004E-02	2.335E-01	0.000E+00	0.000E+00
sr-90	0.000E+00	2.721E-09	2.721E-09	2.725E-09	2.721E-09	1.517E-09	3.084E-10	0.000E+00	0.000E+00
1111111				1111111111				1111111111	
*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time.								e time.	
For liv	estock fodd	er, consump	tion time is	s t minus m	eat or milk	storage ti	ne.		

Attachment	7	Sheet No. 10 of 10
Originator: S. W.	'. Clark	Date
Chk'd By H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0312	Rev. No. 0

APPENDIX E DATA QUALITY ASSESSMENT

DATA QUALITY ASSESSMENT

A data quality assessment (DQA) was performed to compare the verification sampling approach and resulting analytical data with the sampling and data requirements specified in the site-specific sample design (WCH 2007a). A review of the sample design (WCH 2007a), the field logbook (WCH 2007b), and applicable analytical data packages has been performed as part of this DQA. This DQA was performed in accordance with site specific data quality objectives found in the *100 Area Remedial Action Sampling and Analysis Plan*, (100 Area SAP) (DOE-RL 2005).

To ensure quality data, the 100 Area SAP data assurance requirements and the data validation procedures for chemical and radiochemical analysis (BHI 2000a, 2000b) are used as appropriate. This review involves evaluation of the data to determine if they are of the right type, quality, and quantity to support the intended use (i.e., cleanup verification decisions). The DQA completes the data life cycle (i.e., planning, implementation, and assessment) that was initiated by the data quality objectives process (EPA 2000).

The cleanup verification sampling approach for the 100-F-26:14, pipeline site included a sample design with multiple subunit areas. All samples were collected per the sample design. Verification sample data collected at the 100-F-26:14 pipeline site(s) were provided by the laboratories in 5 sample delivery groups (SDGs). For the excavation footprint (referred to as either shallow-zone verification or verification in the data packages), verification sample data was provided in two SDGs: SDG K0916 and SDG J00125. SDG K0916 was submitted for third-party validation. For the overburden and layback stockpiles (referred to as below contaminant level (BCL) stockpiles in the data packages), verification sample data was provided in three SDGs: SDG K0910, SDG J00124, and SDG K0925. No major deficiencies were identified in the analytical data set. Minor deficiencies are discussed below.

SDG K0916

This SDG comprises five field samples (J15BV6-J15BV9 and J15BW0) collected from the 100-F-26:14 excavation footprint. One field duplicate pair is included in this SDG (J15BV8/ J15BV9). These samples were analyzed for ICP metals, mercury, hexavalent chromium, radionuclides by gamma spectroscopy, total strontium by beta counting, and nickel-63 by liquid scintillation counting (LSC). SDG K0916 was submitted for third-party validation. No major deficiencies were found in SDG K0916. Minor deficiencies are as follows:

In the ICP metals analysis, the RPD for silicon is above the acceptance criteria at 64.8%. The silicon data for SDG K0916 was qualified as estimated with a "J" flag by third party validation. Estimated data are useable for decision making purposes.

The matrix spike (MS) recoveries for five ICP metals (aluminum, iron, antimony, silicon and vanadium) are out of project acceptance criteria. For most of these analytes, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. To confirm quantitation, post digestion spikes and serial dilutions were prepared for each analyte with results ranging between 98.9-105.5%. Antimony and vanadium did not have mismatched spike and native concentrations in the original MS. The original MS recoveries for antimony and vanadium were 69.6% and 71.8%, respectively. The antimony and

vanadium data for SDG K0916 were qualified as estimated with a "J" flag by third party validation. Estimated data are useable for decision making purposes.

SDG J00125

This SDG comprises one field sample (J15BW2), a split of sample J15BV8 from SDG K0916. This sample was analyzed at Severn Trent Laboratories, Inc., with the analyses including ICP metals, mercury, hexavalent chromium, radionuclides by gamma spectroscopy, total strontium by gas proportional counting, and nickel-63 by LSC. No major deficiencies were found in SDG J00125. Minor deficiencies are as follows:

In the ICP metals analysis, the matrix spike (MS) and/or matrix spike duplicate (MSD) recoveries for five ICP metals (aluminum, iron, manganese, antimony, and silicon) are out of project acceptance criteria. For aluminum, iron, manganese, and silicon, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS and/or MSD is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony did not have mismatched spike and native concentrations in the original MS. The original MS and MSD recoveries for antimony were 46% and 48% respectively. The data for antimony in SDG J00125 may be considered estimated. Estimated data are useable for decision making purposes.

SDG K0910

This SDG comprises five field samples (J15BV1 – J15BV5) collected from the overburden and layback stockpiles. One field duplicate pair is included in this SDG (J15BV1/ J15BV2). These samples were analyzed for ICP metals, mercury, hexavalent chromium, radionuclides by gamma spectroscopy, total strontium by beta counting, and nickel-63 by LSC. No major deficiencies were found in SDG K0910. Minor deficiencies are as follows:

In the ICP metals analysis, the RPD for silicon is above the acceptance criteria at 59%. The silicon sample results may be considered estimated. Estimated data are considered acceptable for the intended use of the data.

In addition, the matrix spike (MS) recoveries for four ICP metals (aluminum, iron, manganese, and silicon) are out of project acceptance criteria. For all of these analytes, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. To confirm quantitation, post digestion spikes and serial dilutions were prepared for each analyte with results ranging between 97.8-110.6%. The data are useable for decision making purposes.

SDG J00124

This SDG comprises one field sample (J15BW1), a split of sample J15BV1 from SDG K0910. This sample was analyzed at Severn Trent Laboratories, Inc., with the analyses including ICP metals, mercury, hexavalent chromium, radionuclides by gamma spectroscopy, total strontium by gas proportional counting, and nickel-63 by LSC. No major deficiencies were found in SDG J00124. Minor deficiencies are as follows:

For the gamma spectroscopy, insufficient sample material was available to prepare a laboratory duplicate of sample J15BW1. The duplicate result was obtained by recounting sample J15BW1 on a different detector.

In the ICP metals analysis, the MS recoveries for six ICP metals (aluminum, iron, manganese, antimony, silicon, and zinc) are out of acceptance criteria. For aluminum, iron, manganese, and silicon, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. For these analytes, the deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony and zinc did not have mismatched spike and native concentrations in the original MS. The original MS and MSD recoveries for antimony are both 47%. The original MSD recovery for zinc is 146%. The antimony and zinc data for sample J15BW1 may be considered estimated. The data are useable for decision-making purposes.

SDG K0925

This SDG comprises two samples (J15FF4 and J15FF5) from the 100-F-26:14 overburden and layback stockpiles. These samples were analyzed for ICP metals, mercury, hexavalent chromium, radionuclides by gamma spectroscopy, total strontium by gas proportional counting, and nickel-63 by LSC. The SDG also includes two samples from the 118-F-5 waste site; the results from the 118-F-5 waste site are not included in this data evaluation. The sample J15BV1 carbon-14 result reported in SDG K0910 indicated that the stockpile soil in area A1 of the overburden and layback stockpile decision unit was in excess of the remedial action goal (RAG). The sample J15BV5 carbon-14 result reported in SDG K0910 indicated that the stockpile soil in area A4 of the overburden and layback stockpile decision unit was also in excess of the RAG. The contaminated soil was removed; sample J15FF4 was taken to replace sample J15BV1, and sample J15FF5 was taken to replace sample J15BV5 in statistical calculations for verification sampling of the 100-F-26:14 site. No major deficiencies were found in SDG K0925. Minor deficiencies are as follows:

In the ICP metals analysis, the MS recoveries for four ICP metals (aluminum, iron, manganese, and silicon) are out of acceptance criteria. For each of these analytes, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. The data are useable for decision-making purposes.

Also in the ICP metals analysis, the RPDs for arsenic, barium, and potassium are above the acceptance criteria at 34%, 42.6%, and 42.6%, respectively. The sample results for these analytes may be considered estimated. Estimated data are considered acceptable for the intended use of the data.

FIELD QUALITY ASSURANCE/QUALITY CONTROL

RPD evaluations of main sample(s) versus the laboratory duplicate(s) are routinely performed and reported by the laboratory. Any deficiencies in those calculations are reported by SDG in the previous sections.

Field QA/QC measures are used to assess potential sources of error and cross contamination of samples that could bias results. The field QA/QC samples for the 100-F-26:14 site, listed in the field logbook (WCH 2007b), are primary and duplicate field samples from the excavation footprint (J15BV8/J15BV9), and a split sample of the excavation footprint sample J15F83 (J15BW2). Primary, duplicate, and split samples (J15BV1/J15BV2/J15BW1) were collected from the overburden and layback stockpiles Area A1, however, the sample results indicated that carbon-14 detections exceed the RAG. The contaminated soil was removed, and sample J15FF4 was taken to replace sample J15BV1. Therefore, the evaluation of field QA/QC samples for the overburden and layback stockpiles is not included in this DQA. The main and QA/QC sample results for the excavation shallow zone are presented in Appendix C.

Field duplicate samples are collected to provide a relative measure of the degree of local heterogeneity in the sampling medium, unlike laboratory duplicates that are used to evaluate precision in the analytical process. The field duplicates are evaluated by computing the RPD of the duplicate samples for each COC. Only analytes with values above five times the detection limits for both the main and duplicate samples are compared. The 95% upper confidence limit (UCL) calculation brief in Appendix D provides details on duplicate pair evaluation and RPD calculation. The data are suitable for the intended purpose of cleanup verification.

Radionuclides. None of the radionuclide RPDs calculated for the field duplicates are above the acceptance criteria (30%). The data are useable for decision making purposes.

Nonradionuclides. The RPD calculated for aluminum in the excavation shallow zone duplicate (J15BV9) is above the acceptance criteria (30%) at 96%. The RPDs calculated for barium in the excavation shallow zone duplicate (J15BV9) and split (J15BW2) samples are above the acceptance criteria (30%) at 148% and 104%, respectively. The RPD calculated for boron in the excavation shallow zone split (J15BW2) is above the acceptance criteria (30%) at 80%. The RPDs calculated for calcium in the excavation shallow zone duplicate (J15BV9) and split (J15BW2) samples are above the acceptance criteria (30%) at 127% and 42%, respectively. The RPD calculated for copper in the excavation shallow zone duplicate (J15BV9) sample is above the acceptance criteria (30%) at 84%. The RPD calculated for iron in the excavation shallow zone duplicate (J15BV9) sample is above the acceptance criteria, at 66.7%. The RPD calculated for magnesium in the excavation shallow zone duplicate (J15BV9) sample is above the acceptance criteria, at 76%. The RPD calculated for manganese in the excavation shallow zone duplicate (J15BV9) sample is above the acceptance criteria (30%) at 64%. The RPDs calculated for silicon in the excavation shallow zone duplicate (J15BV9) and split (J15BW2) samples are above the acceptance criteria (30%) at 54% and 118%, respectively. The RPD calculated for vanadium in the excavation shallow zone duplicate (J15BV9) sample is above the acceptance criteria, at 74%. The RPD calculated for zinc in the excavation shallow zone duplicate (J15BV9) sample is above the acceptance criteria, at 55%. Elevated RPDs, such as these, in the analysis of environmental soil samples, are largely attributed to heterogeneities in the soil matrix and only in small part attributed to precision and accuracy issues at the laboratory. The data are useable for decision-making purposes.

RPDs for the remaining radionuclides and nonradionuclide analytes are not calculated because an evaluation of the data shows the analytes are not detected in both the main and duplicate sample at more than 5 times the target detection limit. RPDs of analytes detected at low concentrations (less than five

times the detection limit) are not considered to be indicative of the analytical system performance. The data are useable for decision making purposes.

A secondary check of the data variability is used when one or both of the samples being evaluated (main and duplicate) is less than 5 times the target detection limit (TDL), including undetected analytes. In these cases, a control limit of ± 2 times the TDL is used (Appendix D) to indicate that a visual check of the data is required by the reviewer. For the excavation shallow zone duplicate and split samples, boron and chromium duplicate samples required this check, and sodium duplicate and split samples required this check. These results are attributed to heterogeneities in the sample matrix from which the samples were collected. A visual inspection of all of the data is also performed. No additional major or minor deficiencies are noted. The data are useable for decision-making purposes.

Summary

Limited, random, or sample matrix-specific influenced batch quality control (QC) issues such as those discussed above, are a potential for any analysis. The number and types seen in these data sets are within expectations for the matrix types and analysis performed. The DQA review of the 100-F-26:14 verification sampling data found that the analytical results are accurate within the standard errors associated with the analytical methods, sampling, and sample handling. The DQA review for 100-F-26:14 pipeline site concludes that the reviewed data are of the right type, quality, and quantity to support the intended use. Detection limits, precision, accuracy, and sampling data group completeness were assessed to determine if any analytical results should be rejected as a result of QA and QC deficiencies. The analytical data were found acceptable for decision-making purposes. The verification sample analytical data are stored in the ENRE project-specific database prior to being submitted for inclusion in the HEIS database. The verification sample analytical data are also summarized in Appendix D.

REFERENCES

- BHI, 2000a, *Data Validation Procedure for Chemical Analysis*, BHI-01435, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2000b, *Data Validation Procedure for Radiochemical Analysis*, BHI-01433, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- DOE-RL, 2005, 100 Area Remedial Action Sampling and Analysis Plan, DOE/RL-96-22, Rev. 4, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- EPA, 2000, *Guidance for Data Quality Assessment*, EPA QA/G-9, QA00 Update, U.S. Environmental Protection Agency, Office of Environmental Information, Washington, D.C.
- WCH, 2007a, 100-F-26:14 Pipeline Shallow Zone and Overburden Sampling Plan, Calculation Number 100-F-CV-V0309, Rev. 0, Washington Closure Hanford, Richland, Washington.
- WCH, 2007b, 100F Remedial Sampling, Logbook EFL-1174-3 pp 40-47 and 60-61, Washington Closure Hanford, Richland, Washington