In situ x-ray photoelectron spectroscopy studies of gas/solidinterfaces at near-ambient conditions

PDF Version Also Available for Download.

Description

X-ray photoelectron spectroscopy (XPS) is a quantitative, chemically specific technique with a probing depth of a few angstroms to a few nanometers. It is therefore ideally suited to investigate the chemical nature of the surfaces of catalysts. Because of the scattering of electrons by gas molecules, XPS is generally performed under vacuum conditions. However, for thermodynamic and/or kinetic reasons, the catalyst's chemical state observed under vacuum reaction conditions is not necessarily the same as that of a catalyst under realistic operating pressures. Therefore, investigations of catalysts should ideally be performed under reaction conditions, i.e., in the presence of a gas ... continued below

Creation Information

Bluhm, Hendrik; Havecker, Michael; Knop-Gericke, Axel; Kiskinova,Maya; Schlogl, Robert & Salmeron, Miquel December 3, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

X-ray photoelectron spectroscopy (XPS) is a quantitative, chemically specific technique with a probing depth of a few angstroms to a few nanometers. It is therefore ideally suited to investigate the chemical nature of the surfaces of catalysts. Because of the scattering of electrons by gas molecules, XPS is generally performed under vacuum conditions. However, for thermodynamic and/or kinetic reasons, the catalyst's chemical state observed under vacuum reaction conditions is not necessarily the same as that of a catalyst under realistic operating pressures. Therefore, investigations of catalysts should ideally be performed under reaction conditions, i.e., in the presence of a gas or gas mixtures. Using differentially pumped chambers separated by small apertures, XPS can operate at pressures of up to 1 Torr, and with a recently developed differentially pumped lens system, the pressure limit has been raised to about 10 Torr. Here, we describe the technical aspects of high-pressure XPS and discuss recent applications of this technique to oxidation and heterogeneous catalytic reactions on metal surfaces.

Source

  • Journal Name: MRS Bulletin; Journal Volume: 32; Related Information: Journal Publication Date: 12/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--63712
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 927255
  • Archival Resource Key: ark:/67531/metadc900709

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 3, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bluhm, Hendrik; Havecker, Michael; Knop-Gericke, Axel; Kiskinova,Maya; Schlogl, Robert & Salmeron, Miquel. In situ x-ray photoelectron spectroscopy studies of gas/solidinterfaces at near-ambient conditions, article, December 3, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc900709/: accessed September 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.