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We exposed samples of B4C, amorphous C, chemical-vapor-deposition (CVD)-diamond C, Si, and SiC to 
single 25 fs-long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm2.  The samples 
were chosen as candidate materials for x-ray free electron laser (XFEL) optics.  We found that the threshold 
for surface-damage is on the order of the fluence required for thermal melting.  For larger fluences, the crater 
depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are 
formed by two-phase vaporization [1]. 

XFELs have the promise of producing extremely 
high-intensity ultrashort pulses of coherent, 
monochromatic radiation in the 1 to 10 keV regime.  
The expected high output fluence and short pulse 
duration pose significant challenges to the optical 
components, including radiation damage.  It has not 
been possible to obtain direct experimental 
verification of the expected damage thresholds since 
appropriate x-ray sources are not yet available.  
FLASH has allowed us to study the interaction of 
high-fluence short-duration photon pulses with 
materials at the shortest wavelength possible to-
date.  With these experiments, we have come closer 
to the extreme conditions expected in XFEL-matter 
interaction scenarios than previously possible.   

Fig. 1 (a) through (c) show surface profiles on a SiC 
sample exposed to different FLASH fluences from a 
ZYGO interferometer, and Fig. 1 (d) shows lineouts 
through the center.  At low fluences (less than 
approximately 0.2 J/cm2), the character of the 
damage was material-dependent, and we found 
highly diverse morphological changes at the 
irradiated surfaces.  (i) In B4C and SiC, we 
observed both craters and extrusions of a few 
nanometers in height; (ii) in Si, we observed only 
craters; and (iii) in a-C, we observed only 
extrusions.  At larger fluences (up to 2.2 J/cm2), we 
observed craters that were tens to hundreds of 
nanometers deep in all the samples.   

Fig. 1:  FLASH-exposed SiC samples.  (a) through 
(c) show depth profiles of spots exposed at fluences 
of less than 0.3 J/cm2 ((a) and (b)) and 0.5 J/cm2 (c).  
The range of the linear black (depression, positive) to 
white (extrusion, negative) scale is (a) 4 to -9 nm, (b) 
13.5 to -5.5 nm, and 56.5 to -6 nm (c).  The width of 
pictures (a) through (c) is 31.6 μm.  (d) shows 
vertical lineouts through the center of the damaged 
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In order to extract the threshold fluence for damage, it is necessary to study the onset of surface 
modifications at relatively low fluences.  At these fluences, the pulse energy measurements were found to be 
very noisy.  Assuming that the variation in the onset of damage is solely due to the statistical variation of the 
FEL output, we have developed a statistical method to analyze the data, based on the known pulse-energy 
distribution of SASE-based FELs.  The measured energy fluctuations of high energy (weakly-attenuated) 
pulses can be described by a Gamma distribution with a shape parameter, describing the number of optical 
modes in the radiation source, of M=4.1.  For 15-pulse exposure series at low energies (high attenuation), 
only the average pulse energy is known.  For these low energy series we assume the same Gamma 
distribution function and assign the spots showing damage to the higher pulse energies out of the 
distribution.  For example, the low-fluence exposures of the SiC samples were performed in two series with 
different average energies.  In the first series with an average energy of 0.37 μJ, we observed surface 
modifications on 27 % of the exposed spots, which translates to a damage threshold of 0.46 μJ.  In the 
second series with an average energy of 0.47 μJ, we observed surface modifications on 73% of the exposed 
spots, which translates to a damage threshold of 0.36 μJ.  The error between these two independently-
obtained damage thresholds for SiC is less than 25%, leading to a damage threshold fluence for SiC of 0.14 
J/cm2.  Similar analyses result in measured damage threshold fluences of 0.060 J/cm2 for a-C, 0.20 J/cm2 for 
B4C, 0.14 J/cm2 for CVD-diamond, and 0.087 J/cm2 for Si.  We estimate the error in the damage threshold to 
be about 50% due to errors in the beam area, the energy measurements of the gas detector, and the small 
number of exposure per exposure series.  Thresholds of inorganic materials [1] are at least one order of 
magnitude higher that the threshold found with the same radiation in an organic polymer [2]. This is not 
surprising because inorganic solids exhibit in general higher thermal as well as radiation resistance. 

Low-fluence (threshold) damage is expected to be dominated by thermal processes, such as melting, 
occurring after the pulse, on timescales longer than 1 ps.  One possible thermal damage mechanism is fluid 
motions that occur upon melting. The threshold damage fluence is expected to lie between the value required 
to reach the melting temperature and the value required to additionally supply the latent heat of melting.  To 
calculate the melt thresholds, we use tabulated optical constants for cold materials, assuming that they do not 
change significantly during the pulse.  This is supported by recent FLASH measurements of transmission of 
Al and Si and reflection of SiO2 at fluences up to 2 J/cm2. The calculated melt thresholds lie between 0.056 
and 0.065 J/cm2 for B4C, 0.043 and 0.11 J/cm2 for CVD-diamond, 0.077 and 0.18 J/cm2 for Si, and 0.055 
and 0.082 J/cm2 for SiC.  We find that the measured damage threshold fluences presented in the previous 
paragraph are on the order of the expected melting fluences.  This result is very reassuring in that it supports 
the working assumptions made for determining the damage thresholds in LCLS optics.  
 
We have recently extended this study from 32 nm wavelength radiation to 21.7 and 13.5 nm, getting closer 
to the actual XFEL operating parameters.  We have also analyzed materials of wider interest for XFEL 
optics, such as thin films of high-Z materials considered for Kirkpatrick-Baez focusing optics and multilayer 
mirrors. 
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