New Fragment Separation Technology for Superheavy Element Research

PDF Version Also Available for Download.

Description

This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physically ... continued below

Physical Description

6 p. (0.1 MB)

Creation Information

Shaughnessy, D A; Moody, K J; Henderson, R A; Kenneally, J M; Landrum, J H; Lougheed, R W et al. January 28, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physically separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of {+-}0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the {sup 244}Pu+{sup 48}Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because it was found that the efficiency of transporting products from the target chamber to the detector array was much too low for applications in heavy element experiments where production rates are on the order of one atom per day or less. Work continues on the MASHA separator, and once the efficiency has been improved, we plan to continue our work on the Pu target for future element 114 experiments. Due to the delays of the MASHA separator, work on establishing the identity of heavy element species produced through nuclear reactions focused instead on chemical separations. In particular, element 115 decays through a series of alpha decays, terminating with an element 105 isotope with a long half-life ({approx} 1 day). By chemically separating the element 105 daughter and observing its subsequent fission decay, the identity of the original parent nucleus can be established through the genetic correlation of the initial series of alpha decays. Chemical separations of element 105 were developed in Switzerland, Russia, and at LLNL. Over the course of two experiments, reaction products from the {sup 243}Am+{sup 48}Ca reaction were collected in a copper block and subsequently processed for chemical separation of the Group Five elements [8,9,13,15]. The Group Five elements were initially separated from the Group Four species, and then the samples were sub-divided into tantalum and niobium fractions. All of the fission events were observed in the tantalum fractions, which implied that element 105 behaved more like tantalum under the chemical conditions of these experiments. These experiments were very successful, and not only demonstrated that chemical separation could be performed on single atoms of interest, but also lent proof to the identity of the parent nucleus as element 115. Subsequent analysis of the alpha spectra taken during the experiment further prove that the fission events observed during the two experiments came from element 105 as the decay daughter of element 115 and could not attributed to interference from other background species [16]. The final aspect of this project was the production of new isotopes and elements. All of the experiments were performed in Dubna at the U400 Cyclotron and the results are described in more detail in Refs. [2,3,5-8,11,12,14]. The first experiments were designed to establish the decay properties of isotopes of elements 112, 114, and 116 [5]. Because these isotopic signatures were established through these initial experiments, the discovery of element 118 [11] was possible, since the 118 nuclides decayed into these previously studied isotopes. This was the first successful report of the discovery of element 118, which was reported by the media to a large extent. The last experiment that was performed for this project was the production and detection of a new isotope of element 113 [14].

Physical Description

6 p. (0.1 MB)

Notes

PDF-file: 6 pages; size: 0.1 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-TR-400991
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/926047 | External Link
  • Office of Scientific & Technical Information Report Number: 926047
  • Archival Resource Key: ark:/67531/metadc900523

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 28, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • April 13, 2017, 6:31 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shaughnessy, D A; Moody, K J; Henderson, R A; Kenneally, J M; Landrum, J H; Lougheed, R W et al. New Fragment Separation Technology for Superheavy Element Research, report, January 28, 2008; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc900523/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.