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Abstract

The second-~order nonlinear differential egualion for the rotation
of Mercury is shown to lmply locked-in motion when the period is within

the range

(21/3) [1 - A cos ?%1’- + L;- (21ne/2) /2 } ,

where e 1s the eccentricity and T the period of Mercury's orbit, the
time t is measured from perihelion,and A = (B - A)/C measures the
planet's distortion. For values near 2T/5 , the instantaneous period

!
[
i

oscillates about 2T/3 with period (elxe/g>-}/2 o,
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Radar (1) and visual (2) observations of the planet Mercury
indicate a rotation period Tr = 58.4 £ 0.4 days, close to 2/3 of the
orbit period T = 87.97 days. Colombo {3) and Liu and 0 'Keefe (4) have
surmised that e stable "locked-in" motion of this type can oécur as a
result of the inverse-cube term in the planetary potential (5,6) that
arises for a body with unequal moments of Iinertia in the orbital plane.

The existence of such a solution to the equations that govern the rotation
of a rigid distorted planet has been demonstrated by Liu and O'Keefe by
means of digital computations. In this report we pfesent approximate
analytic formulas that may afford further physical insight into the
character of locked-in motion, that could facilitate the interpretation

of observationél data, and that indicate the dependence of the results

upon the vﬁrious parameters of the model. For slmplicity, and for

clarity in the exposition, the analysis cutlined im this report is
carried to no higher order than is required to exhibit the ‘salient

3

features of the phenomenon.

{ s
The differential equation for the orientation, © , of the planet
is given by Eg. 4 of the report by Liu and O'Keefe (h).v In terms of the

variable T = 2nt/T 1t becomes, after insertion of the equation for the

Keplerian orbit (7) of eccentricity e ,

2 : |

-d__@_ + é A [l + e cos f(T)J sin 2[0 - f(‘r)] = 0, (l)
2 2 2

dr l-e

with the largest of the principal moments of inertia (C) taken perpendicular
to the orbital plane, A = (D - A)/C measuring the difference between

the two smaller moments of inertia, and T denoting the irue anomaly.
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[Since damping effects have been ignored in this analysis, Eq. 1 is
derivable from a simple Hamiltoﬁian function, with periodic coefficients,
in which p = d@/dT is the canonical momentum conjugate to € , and
Liouville's theorem concerning the conservation of phase-space area

/

applies to the variables © , p.]

Substitution of the explicit varlation of the true anomaly with

time, as given by
f{r) = v + 2esin-T : X , (2)

through the first-order term in e ,'converts Eq. 1 to the approximaie
form . -

d29

d72

roho

+ A [(l +3ecos T)sin 2(0 = 1) - 4 e sin T cos 2(6 - T)] =0,
' J

(3)
which forms the basls of -thc remainder of our analysis. [It is noted,
from Eq.ie, that 1 18 to be regarded as measured from the time of
perihelion passage, and & 1is the angle~madé by the smalle;t of'the
moments of inertia (A) with the major axis of the orbit.] One expects
that there may be periodic (locked-in) solutions to Eq. 1 or 3 that are
stable, in the sense that neighboring solutions describe oscillatory
motion about these periodic solutions.

We consider, specifically, solutions for which de/dt =~ (3/2)(2x/T),

and write

6:%1‘ + T}‘, ‘ - - (h)
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50 that Eq. 3 becomes

gfg + g A {(cos T % e - % e cos 2r)sin 2n + (sin T - % e sin 2r)cos 2q1 = 0.
T , - P
(5)
When v 18 small, Eq. 5 may be linearized, to assume the form
2
ifg + g AN(2cosT +7e~-ecos2r)y = = g AMein T - % e sin 271) .
' (6)

For Ae << 1, an approximate particular integral to the Inhomogeneous

Eq. 6 is readily obtained, and the solution to the corresponding linear
homogeneous equation may be derived (8) by ignoring terms of average
value zero in the coefficient of 1n . The solution thus includes a

periodic motion, of period T , and a long-period oscillation of

A

amplitude ao :
3 1 | (2 pey¥/2 ]
no= 3 AMsein 7T g e sin or)  + 0, ein ( 5 Ae) T o+,
(7a)
or
o e L 3 aetn B e otn Y s et [(Zae) O EE L o]
=T T2 T "5 T 0 5 M/ T ]
(70)
(for o, <« n) ,
where lab and ay are arbltrary constants.
If «. is not small, so that the slow excursilons of 7 preclud-

0
linearization, a similar averaging of the coefficient of sin 2n' in Eq. B

suggests that these oscillations are essentially described by an equaticn
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.of the form applicable to the motion of & physical pendulum:

2 : o
i—g + %% Nesin?2y = O, ‘ o (8)
.

for which one may write the first integral

2

1l . dyn 21 A on = . P
5 ( T ) - 7 Mecos2n = const, )

. a2
With the excursions of 7 Ilimited to * x/2 for oscillatory motion, the
maximum value that dn/dr can assume for locked-in motion (9) occurs when
N =0, and is

/2

lanfar] = (%xe)l :
max

With inclusion of the contributions from the first terms on the right-hand
slde of Eq. Tb, therefore, the values of de/df for locked-Iin motion are

t
expected to lie between the limits

+

v 1/ .
J = %? {l + N cos &L 4 % ( %% Ae) / ] s - (20)

max,min T

Ly ™
Qaloa
H®©

where we have neglected the term proportional to xe .

The foregolng analysls serves to confirm that locked-in rotational
motion with a period approximately 2/3 the per;od of revolution is dynam-
ically possible. The form of the solution shown in Egq. Tb suggests,

however, that observations of the rotation will indicate rates that vary
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during the course of a planctary year and that, 1n addition, slower
variations of the rotational rate may occur with a periocd given by'

~1/2 L
Ae) T (11)

H

"

~~
ol

when the amplitude (ao) of this libration is not large. An expression
of the form given by Eq. 7b may be useful for the interpretation of data
obtained by the sequential observation of surface features on the planet.

More simply, the instantaneous period--as could he inferred from radar

observations-~would be (by differentiation of Eq. Tb when the term

proportional to Ae 1is neglected)

2x Ox /2 . 1/2
. = =21 et 2,2 :‘[ 21 . 1 ot ]
=g/ 3 |t 287 -3 a( 5= Ae) cos (zr §e). ey | T

for ay small, and, for any a compatible with locked-in motion, would

lie between the limits obtained from Eq. 10:

ont 2, 21 1/2 ‘
1-XNcos = 1 =( 5 Ae) T . (13)

t
2
ST
L1 max,min >

For favorable values of a, @ determination of A may be feasible through
observation of the slow libratory motion, with a perlocd close to that
expressed by Eq. 11, that is represented by the last term of Eq. 12. If,
héwever, Qy is very small--as could well result from the action of

2nt

damping mechanisms--the term - % N cos 5 in Eq. 12 will represent the

larger contributlion to the variation of the instantaneous period.
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Substitution of the values T = 87.97/365 yr, e = 0.2, and
A=5x 10'5, as suggested by Liu and O'Keefe (4), into Eq. 11 leads
- to a libration period Tlib = 23.5 yr for small-amplitﬁde varlations,
in substantial agreement with their computational results (4). . Corre-
spondingly, frem the last term of Eq. 13, the maximum variation of the
instantancous period of rotation that could arise from this libratoryl
motion would be approximately =* 0.40 day, in good agreement with
récent computational results of Liu and O'Keefe (10). It is highly
unlikely, of course, that such large variations aré now actually occurring,
becausé of the damping that would have resulted from tidal effects.

Although the detailed results presented in this report have been
with‘reference to motion for which the rotation period is close to 2/5
the pefiod of revolution, the éxiétence of other stable modes of locked-in
motion shoul& not be overlooked. The possible range of variatién for the
rétational speed in general will be substantia;ly smaller for the higher-
gzégg mod?s, for reasonable values of the parameter A , and this feature
will have significant implications concerning the magnitude of the damp-
ing present at ;imes when the speed of planetgry rotation may have been
considérably greater than is now observed. Lower limits, which depend on
N , can be set to the rate of decrease of the rotational energy through
the agency of damping if the rotational motion has passed through the
higher-order modes during the past history of the planet. Similarly, an
upper limiﬁ can be set on the amount of damping that will permit the
rotation to remain locked in to the mode analyzed in this report. Work

to be reported elsevwhere indicates, moreover, that damping torques actin-;

ol
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at present would shift the phase of the periodic solutions presented

. ]
here, and this result suggests that information concerning the current

magnitude of such torques may be inferred from more detailed observation

of the rotational motion.

L. Jackson Laslett

Andrew M. Sessler

lLawrence Radiation Laboratory,
University of California,

Berkeley, California. : ?
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Rg£g£g§§g§“§§d Footnotes,
Gi H. Pettengill and R. B. Dyce, Nature 206, 1240 (1965).
W. E. Mccovérn, S. H. Gross, 8. I. Rasool, 1ibid. ggg, 375 (1965).
G. Colombo, ibid. 208, 575 (1965). o
H. Iiu and J. A. O'Keefe, Science %2*, 1717 (1965).
S. F. Peale and T. Gold, Nature 206, 1240 (1965).
P. Goldreich, ibid. 208, %75 (1965).
This ignores the (small) effect of the nonuniform rotétion (as
computed in this paper) upon the orbital motion. Interestingly
enough, it leads--most dramatically--to a perihelion motion which
contains both a secular term and a term with périod (21ke/2)-l/2_T.

These terms are small--of the same order as the perihelion advance

tivistic perihelion advance of 3.8 seconds of ‘arc per century.

K.' R, Symon et al., Phys. Rev. 103, 1837 (1956)--esp. p. 1858.

This result is seen to be 2/x timeés as great as the ‘corresponding

value that would havg.been inferred from use of a, = n/2‘ in the

solution given by Eq: 7?for the linearized problem.- The period of
i

these slow oscillations, moreover, will not be that suggested by the

last term in Eq. Ta,b, but will approach infinity as the amplitude

approaches n/e . |

We are grateful for the opportunity to discuss the work of Liu and

0'Keefe with these authors, and we appreciate their courtesy in

making some of their recent computational results avallable to us.

We thank Miss Penelope A. Collom for assistance with numerical

checks of our analysis.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

A.

nor any person acting on behalf of the Commission:

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used 1n the above, "person acting on behalf of the

Commission" includes any employee or contractor of the Com-

mission,

or employee of such contractor, to the extent that

such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access

to,

any information pursuant to his employment or contract

with the Commission, or his employment with such contractor.



