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Abstract

UCRL-16633

The second-order nonlinear differential equation for the rotation

of Mercury is sho'ln to imply locked-in motion when the period is within

the range

where e 1s the eccentricity and T the period o~ Mercury's orbit, the

time t 1s measured from perihelio~ and A ~ (n - A)/C measures the

planet's distortion. For values near 2T/3 J the instantaneous period

oscillates about -zr/3 with period (21Ae/2) -1/2 T • ,!
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Radar (1) and. visual (2) observations of the planet Nercury

indicate a rotation period T
r

58.h ± 0.4 days, close to 2/3 of the

orbit period T = 87.97 days. Colombo (3) and Liu and O'Keefe (4) have

surmised that a stable" locl\cd-in" motion of this type can occur as a

result of the inverse-cube term in the planetary potential (5,6) that

arises for a body with unequal moments of inertia in the orbital plane.

The existence of such a solution to the equations that goyeru the rotation.

of a rigid distorted planet has been demonstrated by Liu and O'Keefe by

means of digital computations. In this report ,...e present approximate

analytic formulas that may afford further physical insight into the

character of locked-in motion, that could facilitate the interpretation

of observational data, and that indicate the depend.ence of the results

upon the various parameters of the model. For simplic:r.ty, and for

clarity in the exposition, the analysis outlined in this' report is

carried to no higher order than is reqUired to exhibit the 'salient

features, of the phenomenon.

The differential equation for the orientation, e, of the planet

is given by Eq. 4 of the repoy"t by Liu and 0 'Keefe (4). In terms of the

variable T = 2:rr.t/T it becomes, after insertion of the equation :for the

Keplerian orbit (7) of eccentricity e

1 + e p~G f(!l]3 sin 2[9 _ f(T)]
1 - e

= o , ( 1)

with the largest of the principal moments of inertia (C) taken perpendicular

to the orbital plane, A == (B - A)/C measuring the dJfference between

the two smaller moments of inertia., and f denoting the true anomaly.

\ ""'."r -.;; ,
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[Since damping effects have been ignored in this analysis, Eq. 1 is

derivable from a simple Hamiltonian function, with periodic coefficients,

in which p = de/dT is the canonical momentum conjugate to e, and

Liouville's theorem concerning the conservation of phase-space area
/

applies to the variables e J p.]

Substitution of the explicit variation of the true anomaly with

time, as given by

f{ T) :: T + 2e sin ,. ( 2)

through the first-order term i.n e, converts Eq. 1 to the approximate

form

[(1 + 3 e cos T)sin 2(8 - T) - 4 e sin T COB 2(8 - o ,

which forms the basis of~hc remainder of our analysis. [It 1s noted,

from Eq. 12, that ,. is to be regarded as measured from the time of

perihelion passage, and e 1s the angle made by the smallest of the

moments of inertia (A) with the major axis of the orbit.] One expects

that there may be periodic (locked-in) solutions to Eq. I or 3 that are

stable, in the sense that neighboring solutions describe oscillatory

motion about these periodic solutions.

We consider, specHically, solutions for which de/dtt:::J (3/2)(2:Jc/T),

and write

8 = ~ T
2 + 1l, (4 )
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::g + ~ A[(C08 T + ~ e - ~ C COB 2T)Bin ~ + (Bin T - i e Bin 2T)COS 2~] = o.

( 5)

When T) is smaD., Eq. 5 may be linearized, to assume the form

d
2

l) 3
dT2 + 2' ~ (2 cos T + 7e - e cos 2T)l) = - 2 A(sin T - l e sin 2T) •

2 2

( 6)

For A.2 « 1, an approximate particular integral to the j.nhomogeneous

Eq. 6 is readily obtained, and the solution to the corresponding linear

homogeneous equation may be derived (8) by ignoring terms of average

value zero in the coefficient of TJ. 'I'he solution thus includes a

periodic motion, of period T, and a long-period oscillation of

amplitude a
O

:

3 ( 1 )TJ = 2' A sin T - E e sin 2T

(7a)

or

7mt 3 2n't 1 i 4rrt) [ 21 \1/2 2rcte = T + 2' A.( sin -T'- - IT e s n T + a o sin (2'" A.e) T

(for aO «rr) ,

where aO and al are,arbitrary constants.

If a
O

is not small, so that the slavr excursions of TJ precluC ..'

linearization, a similar averaeing of the coefficient of sin 2T') in Eq. ')

suggests that these oscillations are essentialJ.y deacr:i.bed by an equatio:l



~.~ ..
<.:.j

-4- UCRL-16633

of the form applicable to the motion of a. physical pendulum:

d
2

1) 21
+ +- A. e sin 21)

d-r2 '+
= a , (8)

for ~hich one nmy write the first integral

21- 1> A. e cos 21) = const.

/
With the excursions of 1) limited to ± ~/2 for oscillatory motion, the

maximum value that d1)jdT can assume for locked-in motion (9) occurs when

1) = a , and i6

21 1/2
( '2 A.e)

With inclusion of the contributions from tlle first terms on the right-band

side of Eq. 7b, therefore, the values of de/dt for locked-in motion are
i

expected to lie betveen the limits

r ]I d9

l dt max min,
2!. [ 2J-ct:: T 1 + A. cos T 2 21 1/2 J

± 3 ( :2 Ae) , ( 10)

where ~e have neglected the term proportional to ~e •

'l'he foregoing analysis serves to confirm that locked-·in rotational

motion ~ith a perlod approximately 2/3 the period of revo.lution is dynam-

ically possible. The form of the solution shown in Eq. 7b Buggests,

however, that observationG of the rotation will indicate rates that vary
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during the course of a planetary year and that, in addition, slower

variations of the rotational rate may occur with a period given by

21 .-1/2
( "2 Ae) T ( ll)

when the amplitude (00) of this libration is not large. An expression

of the form given by Eq. 7b may be useful for the interpretation of data

obtained by the sequential observation of surface features on the planet.

More simply, the instantaneous period--aa could be in~erred from radar

observations--would be (by differentiation of Eq. 7b when the term

proportional to Ae- is neglected)

1"01' 00 small, and., for any 00 compatible with-locked-in motion, would

lie between the limits obtained from Eq. 10:,

i

hl~'min =
A cos 2rct

T
2 21 1/2 J

+- -(-Ae) T.3 2 . ( 13)

For favorable values of 00 a determination of A. may be feasible through

observation of the slow libratory motion, with a period close to that

expressed by Eq. II, that is represented by the last term of Eq. 12. If)

however, 00 ia very sma11--as could well result from the action of

damping mechaniams--the terra 2 2rct- - A cos -- in Eq. 12 will represent the.5 T

larger contribution to the variation of the instantaneous period.

,"
I
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Substitution of the values T = 87~97/365 yr,e = 0.2, and

A = 5 x 10-5, as sUGgested by Liu and O'Keefe (4), into Eq. 11 leads

to a libration period Tllb ~ 23.5 yr for small-amplitude variations,

in substantial agreement with their computational results (4) •. Corre-

spondinGly, from the last tcnn of Eq. 13, the maximum variation of the

instantaneous period of rotation that could arise from this libratory

motion would be approximately ± o.l~o day, in good agreement with

recent computational results of Liu llnd O'Keefe (10). It is highly

unlikely, of Course, that such large variations are now actually occurring,

because of the damping that would have resulted from tidal effects.

Although the detailed results presented in this report have been

with reference to motion for which the rotation period is close to 2/3

the period of revolution, the existence of other stable modes of locked-in

motion should not be overlooked. The possible range of variation for the

rotational speed in general will be substantially smaller for the higher-

order modes, for reasonable values of the parameter A, and this feature
i

will have significant implications concerning the magnitude of the damp-

ine present at timcs When the speed of planetary rotation may have becn

considerably greater than is now observed. Lower limits, which depend on

x , can be set to the rate of decrease of the rotational energy through

the agency of damping if the rotational motion has passed through the

hieber-order modes during the past history of the planet. Similarly, an

upper limit can be set on the amount of damping that will permit the

rotation to remain locked in to the mode analyzed in this report. Worl,

to be reported elsewhere indicates, moreover, that damping torques actin';
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at present would shift the phase of the periodic solutions'presented

here, and this result suggests that information concerning the current

magnitude of such torques may be irJerred from more detailed observation

of the rotational motion.

L. Jackson Laslett

Andrew M. Sessler

Lawrence Radiation LaboratoIJr,

University of California,

Berkeley, California.
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