d-alpha correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV

PDF Version Also Available for Download.

Description

The interplay of the effects of geometry and collective motion on d-{alpha} correlation functions is investigated for central Xe+Au collisions at E/A=50 MeV. The data cannot be explained with out collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte -Carlo model, where thermal emission is superimposed on collective motion. Both the emission volume and the competition between the thermal and collective motion influence significantly the shape of the correlation function, motivating new strategies for extending intensity interferometry studies to massive particles.

Physical Description

PDF-file: 15 pages; size: 1.3 Mbytes

Creation Information

Verde, G; Danielewicz, P; Lynch, W; Chan, C; Gelbke, C; Kwong, L et al. July 27, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The interplay of the effects of geometry and collective motion on d-{alpha} correlation functions is investigated for central Xe+Au collisions at E/A=50 MeV. The data cannot be explained with out collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte -Carlo model, where thermal emission is superimposed on collective motion. Both the emission volume and the competition between the thermal and collective motion influence significantly the shape of the correlation function, motivating new strategies for extending intensity interferometry studies to massive particles.

Physical Description

PDF-file: 15 pages; size: 1.3 Mbytes

Source

  • Journal Name: Physics Letters B, vol. 653, n/a, July 21, 2007, pp. 12; Journal Volume: 653

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-223213
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 919608
  • Archival Resource Key: ark:/67531/metadc900447

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 27, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 22, 2016, 4:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Verde, G; Danielewicz, P; Lynch, W; Chan, C; Gelbke, C; Kwong, L et al. d-alpha correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV, article, July 27, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc900447/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.