An immunological basis for high-reliability systems control.

PDF Version Also Available for Download.

Description

This reports describes the successful extension of artificial immune systems from the domain of computer security to the domain of real time control systems for robotic vehicles. A biologically-inspired computer immune system was added to the control system of two different mobile robots. As an additional layer in a multi-layered approach, the immune system is complementary to traditional error detection and error handling techniques. This can be thought of as biologically-inspired defense in depth. We demonstrated an immune system can be added with very little application developer effort, resulting in little to no performance impact. The methods described here are ... continued below

Physical Description

41 p.

Creation Information

Somayaji, Anil B. (Carleton University, Ottawa, ON, Canada); Amai, Wendy A. & Walther, Eleanor A. March 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This reports describes the successful extension of artificial immune systems from the domain of computer security to the domain of real time control systems for robotic vehicles. A biologically-inspired computer immune system was added to the control system of two different mobile robots. As an additional layer in a multi-layered approach, the immune system is complementary to traditional error detection and error handling techniques. This can be thought of as biologically-inspired defense in depth. We demonstrated an immune system can be added with very little application developer effort, resulting in little to no performance impact. The methods described here are extensible to any system that processes a sequence of data through a software interface.

Physical Description

41 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2005-0819
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/922089 | External Link
  • Office of Scientific & Technical Information Report Number: 922089
  • Archival Resource Key: ark:/67531/metadc900438

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 2005

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 7, 2016, 3:24 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Somayaji, Anil B. (Carleton University, Ottawa, ON, Canada); Amai, Wendy A. & Walther, Eleanor A. An immunological basis for high-reliability systems control., report, March 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc900438/: accessed July 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.