3,2-HOPO Complexes of Near-Infra-Red (NIR) Emitting Lanthanides: Sensitization of Ho(III) and Pr(III) in Aqueous Solution

PDF Version Also Available for Download.

Description

There is a growing interest in Near Infra-Red (NIR) emission originating from organic complexes of Ln{sup III} cations. As a major impetus, biological tissues are considerably more transparent at these low energy wavelengths when compared to visible radiation, which facilitates deeper penetration of incident and emitted light. Furthermore, the long luminescence lifetimes of Ln{sup III} complexes (eg. Yb{sup III}, {tau}{sub rad} {approx} 1 ms) when compared to typical organic molecules can be utilized to vastly improve signal to noise ratios by employing time-gating techniques. While the improved quantum yield of Yb{sub III} complexes when compared to other NIR emitters favors ... continued below

Creation Information

Moore, Evan G.; Szigethy, Geza; Xu, Jide; Palsson, Lars-Olof; Beeby, Andrew & Raymond, Kenneth N. May 19, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

There is a growing interest in Near Infra-Red (NIR) emission originating from organic complexes of Ln{sup III} cations. As a major impetus, biological tissues are considerably more transparent at these low energy wavelengths when compared to visible radiation, which facilitates deeper penetration of incident and emitted light. Furthermore, the long luminescence lifetimes of Ln{sup III} complexes (eg. Yb{sup III}, {tau}{sub rad} {approx} 1 ms) when compared to typical organic molecules can be utilized to vastly improve signal to noise ratios by employing time-gating techniques. While the improved quantum yield of Yb{sub III} complexes when compared to other NIR emitters favors their use for bioimaging applications, there has also been significant interest in the sensitized emission from other 4f metals such as Ln = Nd, Ho, Pr and Er which have well recognized applications as solid state laser materials (eg. Nd {approx} 1.06 {micro}m, Ho {approx} 2.09 {micro}m), and in telecommunications (eg. Er {approx} 1.54 {micro}m) where they can be used for amplification of optical signals. As a result of their weak (Laporte forbidden) f-f absorptions, the direct excitation of Ln{sup III} cations is inefficient, and sensitization of the metal emission is more effectively achieved using the so-called antenna effect. We have previously examined the properties of several Eu{sup III} complexes which feature 1-hydroxypyridin-2-one (Fig. 1) as the light harvesting chromophore. While the 1,2-HOPO isomer was found to strongly sensitize Eu{sup III}, we noted the analogous Me-3,2-HOPO isomer does not, which prompted further investigation of the properties of this chromophore with other metals.

Source

  • Journal Name: Angewandte Chemie International Version

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1185E
  • Grant Number: DE-AC02-05CH11231
  • Grant Number: HL69832
  • DOI: 10.1002/ange.200802337 | External Link
  • Office of Scientific & Technical Information Report Number: 941710
  • Archival Resource Key: ark:/67531/metadc900398

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 19, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 30, 2016, 6:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Moore, Evan G.; Szigethy, Geza; Xu, Jide; Palsson, Lars-Olof; Beeby, Andrew & Raymond, Kenneth N. 3,2-HOPO Complexes of Near-Infra-Red (NIR) Emitting Lanthanides: Sensitization of Ho(III) and Pr(III) in Aqueous Solution, article, May 19, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc900398/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.