The effect of CO2(aq), Al(aq) and temperature on feldspar dissolution

PDF Version Also Available for Download.

Description

The authors measured labradorite (Ca{sub 0.6}Na{sub 0.4}Al{sub 1.6}Si{sub 2.4}O{sub 8}) dissolution rates using a mixed flow reactor from 30 to 130 C as a function of CO{sub 2} (3 x 10{sup -3} and 0.6 M), and aluminum (10{sup -6} to 10{sup -3}M) at pH 3.2. Over these conditions, labradorite dissolution can be described with a single rate expression that accounts for observed increases in dissolution rate with temperature and decreases in dissolution rate with dissolved aluminum: Rate{sub Si} (mol Labradorite cm{sup -2} s{sup -1}) = k{double_prime} x 10{sup -Ea/2.303RT} [(a{sub H{sup +}}{sup 3n}/a{sub Al{sup 3+}}{sup n})K{sub T}/(1+K{sub T} (a{sub H{sup ... continued below

Physical Description

6 p. (0.2 MB)

Creation Information

Carroll, S & Knauss, K October 14, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The authors measured labradorite (Ca{sub 0.6}Na{sub 0.4}Al{sub 1.6}Si{sub 2.4}O{sub 8}) dissolution rates using a mixed flow reactor from 30 to 130 C as a function of CO{sub 2} (3 x 10{sup -3} and 0.6 M), and aluminum (10{sup -6} to 10{sup -3}M) at pH 3.2. Over these conditions, labradorite dissolution can be described with a single rate expression that accounts for observed increases in dissolution rate with temperature and decreases in dissolution rate with dissolved aluminum: Rate{sub Si} (mol Labradorite cm{sup -2} s{sup -1}) = k{double_prime} x 10{sup -Ea/2.303RT} [(a{sub H{sup +}}{sup 3n}/a{sub Al{sup 3+}}{sup n})K{sub T}/(1+K{sub T} (a{sub H{sup +}}{sup 3n}/a{sub Al{sup 3+}}{sup n}))] where the apparent dissolution rate constant, k{double_prime} = 10{sup -5.69} (mol Labradorite cm{sup -2}s{sup -1}); the net activation energy, E{sub a} = 10.06 (kcal mol{sup -1}); H{sup +}-Al{sup 3+} exchange coefficient, n = 0.31; and silica rich surface complex formation constant K{sub T} = 4.5 to 5.6 from 30 to 130 C. The effect of CO{sub 2}(aq) on mineral dissolution is accounted for by changes in solution pH. At temperatures below 60 C, labradorite dissolves incongruently with preferential dissolution of Na, Ca and Al over Si.

Physical Description

6 p. (0.2 MB)

Notes

PDF-file: 6 pages; size: 0.2 Mbytes

Subjects

Source

  • Journal Name: Chemical Geology, vol. 217, N/A, January 10, 2005, pp. 213-225; Journal Volume: 217

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-200556
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 936659
  • Archival Resource Key: ark:/67531/metadc900327

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 14, 2003

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • April 17, 2017, 12:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Carroll, S & Knauss, K. The effect of CO2(aq), Al(aq) and temperature on feldspar dissolution, article, October 14, 2003; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc900327/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.