The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

PDF Version Also Available for Download.

Description

This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West ... continued below

Creation Information

Molburg, J. C.; Kavicky, J. A. & Picel, K. C. March 3, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these conductors at a safe distance from each other and from the ground and the natural and built environment. Common elements that are generally less visible (or at least more easily overlooked) include the maintained ROW along the path of the towers, access roads needed for maintenance, and staging areas used for initial construction that may be restored after construction is complete. Also visible but less common elements along the corridor may include switching stations or substations, where lines of similar or different voltages meet to transfer power.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL/EVS/TM/08-4
  • Grant Number: DE-AC02-06CH11357
  • DOI: 10.2172/929262 | External Link
  • Office of Scientific & Technical Information Report Number: 929262
  • Archival Resource Key: ark:/67531/metadc900310

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 3, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 28, 2016, 6:01 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Molburg, J. C.; Kavicky, J. A. & Picel, K. C. The design, construction, and operation of long-distance high-voltage electricity transmission technologies., report, March 3, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc900310/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.