A framework and methodology for nuclear fuel cycle transparency.

PDF Version Also Available for Download.

Description

A key objective to the global deployment of nuclear technology is maintaining transparency among nation-states and international communities. By providing an environment in which to exchange scientific and technological information regarding nuclear technology, the safe and legitimate use of nuclear material and technology can be assured. Many nations are considering closed or multiple-application nuclear fuel cycles and are subsequently developing advanced reactors in an effort to obtain some degree of energy self-sufficiency. Proliferation resistance features that prevent theft or diversion of nuclear material and reduce the likelihood of diversion from the civilian nuclear power fuel cycle are critical for a ... continued below

Physical Description

30 p.

Creation Information

McClellan, Yvonne; York, David L.; Inoue, Naoko (Japan Atomic Energy Agency, Ibaraki, Japan); Love, Tracia L. & Rochau, Gary Eugene February 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A key objective to the global deployment of nuclear technology is maintaining transparency among nation-states and international communities. By providing an environment in which to exchange scientific and technological information regarding nuclear technology, the safe and legitimate use of nuclear material and technology can be assured. Many nations are considering closed or multiple-application nuclear fuel cycles and are subsequently developing advanced reactors in an effort to obtain some degree of energy self-sufficiency. Proliferation resistance features that prevent theft or diversion of nuclear material and reduce the likelihood of diversion from the civilian nuclear power fuel cycle are critical for a global nuclear future. IAEA Safeguards have been effective in minimizing opportunities for diversion; however, recent changes in the global political climate suggest implementation of additional technology and methods to ensure the prompt detection of proliferation. For a variety of reasons, nuclear facilities are becoming increasingly automated and will require minimum manual operation. This trend provides an opportunity to utilize the abundance of process information for monitoring proliferation risk, especially in future facilities. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to resist proliferation associated with these activities. Additionally, a framework designed to monitor processes will ensure the legitimate use of nuclear material. This report describes recent efforts to develop a methodology capable of assessing proliferation risk in support of overall plant transparency. The framework may be tested at the candidate site located in Japan: the Fuel Handling Training Model designed for the Monju Fast Reactor at the International Cooperation and Development Training Center of the Japan Atomic Energy Agency.

Physical Description

30 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2006-0270
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/923178 | External Link
  • Office of Scientific & Technical Information Report Number: 923178
  • Archival Resource Key: ark:/67531/metadc900225

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 28, 2016, 6:02 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

McClellan, Yvonne; York, David L.; Inoue, Naoko (Japan Atomic Energy Agency, Ibaraki, Japan); Love, Tracia L. & Rochau, Gary Eugene. A framework and methodology for nuclear fuel cycle transparency., report, February 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc900225/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.