Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials

PDF Version Also Available for Download.

Description

Eleven types of manganese-containing electrode materialswere subjected to long-term storage at 55oC in 1M LiPF6 ethylenecarbonate/dimethyl carbonate (EC/DMC) solutions. The amount of manganesedissolution observed depended upon the sample surface area, the averageMn oxidation state, the structure, and substitution levels of themanganese oxide. In some cases, structural changes such as solvateformation were exacerbated by the high temperature storage, andcontributed to capacity fading upon cycling even in the absence ofsignificant Mn dissolution. The most stable materials appear to beTi-substituted tunnel structures and mixed metal layered oxides with Mnin the +4 oxidation state.

Creation Information

Park, Yong Joon & Doeff, Marca M. January 31, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Eleven types of manganese-containing electrode materialswere subjected to long-term storage at 55oC in 1M LiPF6 ethylenecarbonate/dimethyl carbonate (EC/DMC) solutions. The amount of manganesedissolution observed depended upon the sample surface area, the averageMn oxidation state, the structure, and substitution levels of themanganese oxide. In some cases, structural changes such as solvateformation were exacerbated by the high temperature storage, andcontributed to capacity fading upon cycling even in the absence ofsignificant Mn dissolution. The most stable materials appear to beTi-substituted tunnel structures and mixed metal layered oxides with Mnin the +4 oxidation state.

Source

  • Journal Name: Journal of Power Sources; Journal Volume: 165; Journal Issue: 2; Related Information: Journal Publication Date: 03/20/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--59450
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 919824
  • Archival Resource Key: ark:/67531/metadc900168

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 31, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 29, 2016, 2:27 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Park, Yong Joon & Doeff, Marca M. Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials, article, January 31, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc900168/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.