Quasi-ternary nanoparticle superlattices through nanoparticle design

PDF Version Also Available for Download.

Description

Individual nanoscale building blocks exhibit a wide range of size-dependent properties, since their size can be tuned over known characteristic length scales of bulk materials. In the last several years, the possibility of combining different materials in the form of two and three component nanoparticles (NPs) has been extensively explored. Also multi-component materials can be obtained via self-assembly of NPs from their binary colloidal mixtures. These new nanocrystal solids may possess tunable collective properties that originate from interactions between size and composition controlled building blocks. Exchange coupling between neighboring NPs of magnetically soft and hard materials enhances the magnetic energy ... continued below

Physical Description

6

Creation Information

Kortright, Jeffrey; Shevchenko, Elena V.; Kortright, Jeffrey B.; Talapin, Dmitri V.; Aloni, Shaul & Alivisatos, A. Paul June 19, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Individual nanoscale building blocks exhibit a wide range of size-dependent properties, since their size can be tuned over known characteristic length scales of bulk materials. In the last several years, the possibility of combining different materials in the form of two and three component nanoparticles (NPs) has been extensively explored. Also multi-component materials can be obtained via self-assembly of NPs from their binary colloidal mixtures. These new nanocrystal solids may possess tunable collective properties that originate from interactions between size and composition controlled building blocks. Exchange coupling between neighboring NPs of magnetically soft and hard materials enhances the magnetic energy product of the nanocomposite material. Randomly mixed solids of small and large semiconducting CdSe NPs revealed enhancement of photoluminescence intensity of large semiconductor particles accompanied by quenching of photoluminescence of the small particles because of long-range resonant transfer of electronic excitations from the more electronically confined small particles to higher excited states of the large particles. Recently, it was demonstrated that binary semiconducting composite materials can show strongly enhanced electronic properties with about 100-fold higher conductance as compared to the sum of individual conductances of single-component films. Creation of highly periodic superlattices is expected not just provide the control of the homogeneity of the sample but also affect their properties. It was shown that silver nanocrystals organized into periodic cubic structures vibrated coherently [20] and demonstrated a change in electronic transport properties.

Physical Description

6

Source

  • Journal Name: Advanced Materials; Journal Volume: 19; Journal Issue: 23; Related Information: Journal Publication Date: December 3, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-280E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 928959
  • Archival Resource Key: ark:/67531/metadc900141

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 19, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 2, 2017, 5:35 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kortright, Jeffrey; Shevchenko, Elena V.; Kortright, Jeffrey B.; Talapin, Dmitri V.; Aloni, Shaul & Alivisatos, A. Paul. Quasi-ternary nanoparticle superlattices through nanoparticle design, article, June 19, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc900141/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.