Two-phase viscoelastic jetting

PDF Version Also Available for Download.

Description

A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or ... continued below

Creation Information

Yu, J.-D.; Sakai, S. & Sethian, J. A. December 10, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

Source

  • Journal Name: Journal of Computational Physics; Journal Volume: 220; Journal Issue: 2; Related Information: Journal Publication Date: 01/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1423E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 946591
  • Archival Resource Key: ark:/67531/metadc900081

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 10, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 8, 2016, 1:20 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yu, J.-D.; Sakai, S. & Sethian, J. A. Two-phase viscoelastic jetting, article, December 10, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc900081/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.